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Abstract

We investigate the linguistic abilities of multi-
modal large language models in reference reso-
lution tasks featuring simple yet abstract visual
stimuli, such as color patches and color grids.
Although the task may not seem challenging for
today’s language models, being straightforward
for human dyads, we consider it to be a highly
relevant probe of the pragmatic capabilities of
MLLMs. Our results and analyses indeed sug-
gest that basic pragmatic capabilities, such as
context-dependent interpretation of color de-
scriptions, still constitute major challenges for
state-of-the-art MLLMs.

1 Introduction

The advent of large language models (LLMs) and
their expansion in scale, variety, and availability
over the past decade has led to considerable interest
— both in the research community as well as in the
public at large — in understanding their capabilities
and limitations. A lot of research focuses on their
general abilities (reasoning, math, professional ex-
aminations, . . . ) in order to answer questions about
the level or category of ‘intelligence’ these models
exhibit (e.g., Bubeck et al., 2023) or which practi-
cal tasks they might be suitable for. In contrast to
this, research in (computational) linguistics is also
interested in their basic linguistic abilities (Chang
and Bergen, 2024; Milliere, forthcoming).

In this paper, we investigate the linguistic abilities
of multimodal large language models (MLLMs) on
the level of language use, i.e., linguistic pragmatics,
in the well-known reference resolution paradigm.
More specifically, we examine whether off-the-shelf
MLLMs (LLaVA-NeXT, Qwen2-VL, and Janus-
Pro) are able to resolve references to abstract visual
stimuli (color patches and color grids; Monroe et al.,
2017; McDowell and Goodman, 2019; see Fig. 1)
given in director-matcher-style dyadic reference
games (Clark and Wilkes-Gibbs, 1986).

Although the task may not seem challenging for
today’s language models because it is straightfor-
ward and easy for human dyads, we consider it to be
a highly relevant probe of the pragmatic capabilities
of MLLMs. Being ubiquitous in all of language
use, reference (generation and resolution) is highly
context-dependent (here visual context). The same
can be said about the color references at the center
of the task (where color is a main distinguishing
attribute between potential referents; Monroe et al.,
2017). The complexity of the visual context varies
between the two types of stimuli we consider, but
can generally be considered simple. Their abstract-
ness, however, poses demands on the basic visual
perception capabilities of MLLMs.

Thus, we investigate how well MLLMs perform
basic reference resolution tasks requiring contex-
tualized pragmatic reasoning about color and sim-
ple spatial arrangements in two abstract visual do-
mains.! Our results show that models with sufficient
capacity achieve promising results for color patches.
However, even the best-performing models struggle
with the complex structure of color grids.

2 Background

The semantics and pragmatics of references to color
have long played a special role in work on reference
games (Pechmann, 1989; Baumgaertner et al., 2012;
Koolen et al., 2013; ZarrieB and Schlangen, 2016).
The categorization of colors is well-known to be
subject to complex interactions between semantic
and perceptual information (Mitterer and de Ruiter,
2008). The naming of colors in interactive games is
also well-known to be subject to pragmatic reason-
ing and negotiation between interaction partners
(Meo et al., 2014; McMahan and Stone, 2015; Mon-
roe et al., 2017). Finally, color references have been

ICode and data of the study are available at https://doi.org/
10.5281/zenodo.15553655 as well as https://github.com/clause-
bielefeld/mllm-listeners.
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director:
model responses:

yellow green. the less green one
4x left, 4x middle, 0x right

(a) Color patch example (Monroe et al., 2017).

HEN BN EEN
SN ENE EEE
HEE HEE EEE

director:
model responses:

(b) Color grid example (McDowell and Goodman, 2019).

first square is brown
5x left, 3x middle, Ox right

Figure 1: Example color patches and color grids stimuli
for director-matcher-style dyadic reference games with
the human director’s description and reference resolution
responses of eight different MLLMs. In both examples
the target referent is the object in the middle and was
correctly identified by the human matcher.

studied from the perspective of figurative language
and creativity (Kawakami et al., 2016).

Color perception and understanding tasks have
also been used in recent work on probing language
models. Loyola et al. (2023) explored the alignment
between the perceptual color spaces of humans and
text-based LLMs. Their findings indicate moderate
alignment for basic color terms, which decreased as
color descriptions become complex and subjective.
Similarly, Abdou et al. (2021) found that alignment
improves with model size. Jones et al. (2024) ex-
amined the sensitivity of MLLMs to sensorimotor
features by testing their ability to identify images
that match textual implied features, showing that the
effect for color emerges only in the largest model.
Rahmanzadehgervi et al. (2024)’s study on vision
language models shows that even state-of-the-art
models, such as GPT4-0 and Gemini-1.5 Pro, per-
form surprisingly poorly at a range of low-level
tasks, which humans are expected to complete with
ease, e.g., determining whether two circles overlap.

Together, these studies warrant further inves-
tigations and analyses into multimodal language
understanding tasks. In this paper, we investigate
tasks for analyzing low-level language grounding of
color stimuli in combination with pragmatic capa-
bilities, focusing on referring expressions produced
by human players of reference games.

3 Experimental Setting
3.1 Models

We investigate reference resolution in the following
MLLMs: LLaVA-NeXT (Liu et al., 2024b) builds
on LLaVA 1.5 (Liu et al., 2024a) and the original
LLaVA (Liu et al., 2023), with CLIP-ViT-L as
the vision encoder. For the LLM backbone, we
use Vicuna at the 3b and 7b parameter scales,
NousHermes2-Yi at the 34b scale, and Llama 3
at the 72b scale. Qwen2-VL (Wang et al., 2024)
upgrades the Qwen-VL (Bai et al., 2023) models
and uses ViT as a vision encoder and multimodal
rotational position encoding (M-RoPE). It comes
with Qwen2 as the LLM backbone and is available
with 2b, 7b, and 72b parameters. Qwen2-VL-72B
has been reported to perform similarly to state-of-
the-art models such as GPT-40 (Wang et al., 2024).
Janus-Pro (Chen et al., 2025) enhances the original
Janus (Wu et al., 2024), both of which utilize the
structure of decoupling visual encoding (SigL.IP for
understanding tasks, VQ tokenizer for generation)
with an auto-regressive transformer LLM backbone.
We use it at 1b and 7b parameter scales. See Table 5
(Appendix) for a more detailed model overview.

3.2 Data

We base our investigation on two human director-
matcher-style reference game data sets, in which a
director (speaker) describes a target to a matcher
(listener) who must identify the described target
(see Fig. 1). Each data point — one round of a
game — consists of an abstract visual stimulus (e.g.,
three color patches in random order) and the textual
utterances produced by the two participants. In
both datasets, the stimuli were created with three
degrees of visual complexity (‘far’, ‘split’, and
‘close’), based on CIELAB color distances.

Color Patches The data set consists of 948 games
of 50 rounds each (Monroe et al., 2017). Partic-
ipants were assigned the role of either ‘director’
or ‘matcher’. In each round of the game, both par-
ticipants were presented with three color patches
(Fig. 1a) shown in a different order. The director
knows the ‘target’ color patch and has to describe
it by text input, for the matcher to identify it. The
matcher can clarify and has to select the target.
With three colors being displayed, the description
is thus not only shaped by the target color itself, but
also by its context, the two ‘distractor’ colors from
which it must be distinguished.
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Color Patches Color Grids
Model Size (b) Quant Total Far Split Close Total Far Split Close
Janus 1 — 36.1 38.1 354 34.8 333 33.2 334 333
) 7 — 68.4 83.9 64.4 56.8 39.5 41.1 38.7 38.7
7 — 60.1 71.4 59.1 49.5 38.0 38.6 38.7 36.8
LLaVA 13 — 59.4 70.0 57.8 50.4 37.7 38.3 37.9 36.8
34 — 80.3 93.1 77.4 70.2 37.9 38.8 38.2 36.6
72 8bit 62.3 75.8 59.9 51.2 39.9 42.0 40.2 37.6
2 — 61.9 77.3 58.3 50.0 38.4 40.0 38.3 36.8
Qwen 7 — 83.0 94.1 81.1 73.8 45.2 47.7 44.4 434
72 awq 87.5 95.1 86.9 80.3 66.5 70.2 66.0 63.2
human — — 90.0 97.0 89.7 83.3 92.7 96.0 92.4 89.8

Table 1: Accuracy scores (%) for all models and datasets. The highest score per column is highlighted in bold.

Color Grids The data set consists of 197 games
of 60 rounds each (McDowell and Goodman, 2019).
It follows the same procedure, but the stimuli consist
of three 3 X 3 grids of color patches (Fig. 1b).

3.3 Prompting Procedure

For generating multimodal prompts for the MLLMs,
we render color patches and grid items in the same
order as they were presented to the human matcher
in the original data. We concatenate the three color
patches or the three color grid items into a single
image before feeding this combined image to the
model. The verbal part of the prompt contains
the full, original dialogue between director and
matcher on a visual stimulus, transformed into a
script-like format (speaker: ... q listener: ... |
...). We prompt the model to locate the target
referent described by the speaker in the dialogue
(see Appendix B), generate the model response
using greedy decoding, and extract the location
information (i.e., left, middle, or right) from the
model response using a regular expression.

4 Results

We evaluate the MLLMs’ performance with accu-
racy, i.e., how often the models identify the visual
target correctly. We compare results between (a)
visual complexity condition (far/close/split, see Sec-
tion 3.2) (b) humans and models; and (c) different
models and model sizes (see Section 3.1). Table 1
shows the main results for color patches and color
grids. In addition, we test our models on restricted
subsets of the color patch and grid datasets, where
we included only dialogues with a total length of
< 5 words, out of which > 1/3 have to be basic color
terms (see Appendix E). We applied this restriction
to reduce the linguistic complexity and to remove

the meta-commentary that often appears in longer
exchanges (Monroe et al., 2017).

4.1 Color Patches

Accuracies in the color patch task show a wide range
of performance levels, across models and model
sizes. The smallest Janus model barely performs
above chance level (36 % accuracy), displaying a
strong bias to predict left positions for targets (see
Appendix F). In contrast, the largest Qwen model
comes close to human accuracy (cf. Table 1). Qwen
7b also outperforms Janus and LLaVA variants of
the same size, and even Qwen 2b achieves com-
petitive results. Janus and Qwen generally improve
with larger model sizes. For LLaVA, this is much
less consistent, likely because the larger models use
different LLM backbones (see Section 3.1, Table 5,
Appendix). Here, the 7b, 13b, and 72b variants
achieve very similar scores, with the largest variant
outperforming the smallest model only by a 2-point
increase in accuracy. LLaVA 34b behaves as an
outlier and achieves notable improvements over all
other LLaVA variants.

Model performance also depends substantially on
the degree of visual complexity, with most models
achieving the highest scores in the far condition, and
the lowest accuracies for the more challenging close
items. While increasing size in the LLaVA models
(except 34b) does not incur any improvement on the
close condition, we find a substantial improvement
for Qwen 72b over 7b on the close condition.

On the subset of items with limited description
complexity, all models show only small improve-
ments (cf. Table 3, Appendix E). Reducing linguis-
tic complexity in the dialogues does not make it sub-
stantially easier for the models to resolve the visual
targets. This suggests that models face challenges
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in linguistically simple expressions consisting of a
few basic color terms only. Our inspection of exam-
ples (Section 4.3) supports this. Overall, the results
show near-human scores from some models, but
also demonstrate that even supposedly simple color
patches can pose problems for current MLLMs.

4.2 Color Grids

Accuracy scores for color grids (Table 1) are con-
siderably lower than for color patches, with the
best-performing model (Qwen 72b) falling short of
the total human accuracy by more than 25 points.
The lowest performing model (Janus 1b) does not
even perform above chance level. We again observe
that larger models achieve higher accuracies, but
only Qwen 72b achieves a somewhat satisfactory
accuracy of 66%, surpassing Qwen 7b by more
than 20 points. This indicates that all models did
not learn certain aspects of multimodal language
grounding required in this task, failing to reason
about the more challenging abstract grid shapes.

Overall, differences between the visual complex-
ity conditions are less pronounced than for color
patches, supporting the impression that models gen-
erally struggle with grounding references in the
grid shapes. Notably, reducing linguistic complex-
ity leads to further decreases in accuracies for the
far and split color conditions (Table 3), indicat-
ing that this task exhibits pragmatic complexities
beyond simple color understanding.

Part of this is the more complex spatial arrange-
ment of colors in the grid, resulting in frequent
spatial descriptions in the dialogues. Qualitative in-
spections of examples led us to suspect that models
adopt a simple strategy of spotting spatial keywords
and using these in their responses. To test this, we
partition the grid data into smaller sets of dialogues
containing exactly one of the position labels “left”,
“middle” or “right”, and calculate the frequency in
which our models generate the respective label in
the responses. The results in Table 4 (Appendix F)
show that all of our models are biased towards
predicting labels which are also mentioned in the
dialogues. This indicates that all tested models strug-
gle with this nested structure of grids and do not
differentiate enough between position descriptions
within grids or between potential referents.

4.3 Examples

A qualitative inspection of reference resolution fail-
ures in the color patch data (Examples 1a—1c and
Table 2) suggests that models struggle with different

semantic and pragmatic phenomena. In Example 1a,
the basic color term “orange” also applies to a dis-
tractor, which, however, would rather be called
“red” in this context. Some models show problems
with this ambiguity, including all LLaVA variants.
Similarly, in Example 1b, all models struggle with
a basic but highly context-dependent comparative
color description. Example 1c illustrates a case
where negation and graded color terms challenge
many of the models. In the color grid data (Exam-
ples 1d and 1le, Table 2), these issues combine with
challenges in understanding the basic grid layouts.
For instance, in Example 1d, models fail to locate
the graded description of a shade of purple within
the respective grid and seem to simply focus on
the locative adjective right. Models also fail on
complex grid examples like Example le, where
descriptions of multiple rows or cells within a grid
need to be composed, for a correct resolution of the
reference.

4.4 Discussion

In general, our results do not warrant a conclu-
sive answer to the title question. While the large
variants of the Qwen model achieve close to hu-
man performance on the simple color patch task
and show promising accuracies in resolving ref-
erences to more complex color grids, the LLaVA
and Janus models do not show robust competen-
cies in either setting. The great difference between
the large LLaVA and Qwen models is particularly
striking in this regard, suggesting that architectural
decisions in MLLMs and fine-tuning protocols can
have substantial effects on fundamental capabilities
in situated language understanding — compared to
LLaVA, Qwen uses a different vision encoder and
multimodal rotational position encoding, and was
subject to multiple pretraining stages (see compar-
ison in Table 5, Appendix). Future work should
explore such variations more systematically, poten-
tially with smaller LMs, to gain a deeper understand-
ing of the factors that lead to implicit pragmatic
competencies in LMs.

In addition, different reasoning skills can be nec-
essary for correctly resolving references. While
descriptions often only apply to single items (e.g.,
“yellow green” in Figure 1a), they are more ambigu-
ous in other cases and require reasoning about how
the director might have referred to alternative tar-
gets (e.g., “orange” in Example 1a, see Section 4.3).
The distinction between these cases is not always
clear, which is why our results do not differentiate
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(a) “orange” (middle)

(d) “the right bottom is a bright purplish blue” (left)

(b) “more turquoise than cyan” (right)

(c) “bluish, not greenish” (middle)

(e) “middle tile green (not aqua), lower right purple” (right)

Example 1: Examples for color patches (a—c) and color grids (d, e). The caption of each example shows the
description of the target given by the director, and the target (left, middle, right). See Table 2 for human and model

responses.

Janus LLaVA Qwen
Ex. Condition Correct Human 1b 7b 7b 13b 34b 72b 2b 72b
la split middle middle  left middle left left left left middle middle
1b split right right left left left left left left left left
1c split middle middle  left middle right right middle right left middle
1d  split left left right right right right right right right right
le close right right left middle middle middle middle middle middle middle

Table 2: Human reference resolution and model responses for the target color patch examples la—1c and color grid
examples 1d and le. Correctly resolved references are highlighted in boldface.

between different forms of contextual or pragmatic
reasoning.

Finally, one advantage that the human match-
ers had in the reference games is that they can
collaborate with the director, e.g., by requesting
clarification or more information. In contrast to
that, the MLLMs in our investigation are merely
‘overhearers’ (Schober and Clark, 1989) and had to
rely on the information specified in the prompt. Fu-
ture work should explore more interactive settings
where the agent can negotiate common ground with
the director.

5 Conclusion

In this paper, we investigated how well MLLMs
perform basic reference resolution tasks that require
contextualized pragmatic reasoning about color in
two abstract visual domains of different complex-
ity. We found that models with sufficient capacity
achieve promising results in the simpler domain
of color patches, but that even the best-performing
models struggle with the more complex structure
of color grids.

Limitations

The study presented in this paper has a number of
limitations. First, we have focused on models whose
weights are available and can be run locally. The per-
formance of commercial models such as ChatGPT
or Gemini may be different. Second, we presented
the stimuli as a single image to the MLLMs. Chang-
ing the format of the visual input so that each of
the three object is provided as an individual image
could enable the models to use the full potential of
their visual encoders for each stimulus object. This
could be particularly beneficial in the color grid
domain with more complex objects. Third, here we
did not systematically study the dialogue structure
of some of the human interactions. It would be very
interesting to investigate if there are differences
between cases where the required information is
contained in a single utterances in contrast to cases
where it is built up by interlocutors turn-by-turn.
Finally, the order of location labels was fixed (left,
middle, right) in our prompts to the models and
there is a tendency, at least in some of the models,
to prefer the label first mentioned (left). Changing
the order in the prompt may mitigate this issue.
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A Risks and Ethical Considerations

We do not believe that there are significant risks
associated with this work, as we analyze existing
models using data with limited scale without con-
tents that might be perceived as hurtful. No ethics
review was required.

B Prompts

Our model prompts consist of three parts: (i) a
general task instruction, (ii) the formatted utterances
for the current item in question, and (iii) a repetition
of the set of possible output labels. The prompts
are constructed as in the following example from
the color grid domain:

In this image you can see three color grids.
In the following dialogue, the speaker will
describe exactly one of the grids. Please
indicate to me whether he refers to the
left, middle or right grid.

speaker: first square is brown
Is it the left, middle or right grid?

In case a chat dialogue between director (speaker)
and matcher (listener) occurs, it is included in part
(ii) of the prompt as follows:

speaker: CENTER BOX is DULL purple
listener: with bright green on left middle
or dull green

speaker: BOTTOM RIGHT CORNER is
green

C Implementation Details

For our experiments we rely on models from hug-
gingface. In detail, we used the following models:
* deepseek-ai/Janus-Pro-1B
* deepseek-ai/Janus-Pro-7B
llava-hf/llava-v1.6-vicuna-7b-hf
llava-hf/llava-v1.6-vicuna-13b-hf
llava-hf/llava-v1.6-34b-hf

Ilava-hf/llava-next-72b-hf (quantized using the
bitsandbytes library)

* Qwen/Qwen2-VL-2B-Instruct
* Qwen/Qwen2-VL-7B-Instruct
* Qwen/Qwen2-VL-72B-Instruct-AWQ

To generate responses with our models, we used
Python 3.9.20 with the following libraries:

* torch (2.5.1)
e transformers (4.46.2)

* autoawq (0.2.8)
* bitsandbytes (0.44.1)

We used three NVIDIA RTX A6000 GPUs for
inference with the 72b models, two GPUs of the
same type for LLaVA 34b and a single GPU of the
same type for the remaining models. Depending
on model size, generating responses took between
10 h and 46 h for the color patch data and between
2.5h and 13 h for the color grid data.

D Scientific Artifacts

In our work, we mainly used scientific artifacts in
the form of publicly available datasets and model
implementations (MIT, Apache 2.0, and Llama 2 li-
censes), as well as Python frameworks and modules
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Figure 2: Location biases in model responses for color patches (left) and color grids (right). The vertical dotted red
lines denote the approximately equal distribution of target locations in the data.

(cf. Appendix C). The color patch dataset can be
downloaded from cocolab.stanford.edu, the color

grid dataset is available on GitHub (MIT License).

In all cases, we are confident that our work is
consistent with their intended use.

Data and code of this study are available (Apache
License 2.0) at:

* https://doi.org/10.5281/zenodo.15553655

* https://github.com/clause-bielefeld/mllm-
listeners

E Results for Simplified Dialogues

To test effects of linguistic complexity, we test our
models on restricted subsets of the color patch and
grid datasets, where we only include dialogues with
a total length of < 5 words, out of which > 1/3
have to be included in the following basic color

terms (cf. Berlin and Kay 1969; Kay and McDaniel
1978): black, white, red, green, yellow, blue, brown,
orange, pink, purple, gray/grey. See Table 3 for
detailed results.

F Location Biases in Model Responses

For color grids we test if location terms in input
dialogues introduce biases in model responses by
defining subsets with utterances that contain exactly
one of the labels “left”, “middle” or “right”. For
each of the location labels, we report the proportion
of cases (%) where the model predicts the respective
label. The results in Table 4 show that all models are
affected by location descriptions in input dialogues,
albeit to varying degrees. Figure 2 illustrates model
biases for target location predictions with respect
to the full datasets.
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Color Patches Color Grids
Model Size (b) Quant Total Far Split Close Total Far Split Close
Jan 1 — 36.9 39.1 36.1 34.8 33.1 32.7 33.6 33.3
anus - g — 75.2 89.4 68.9 61.5 41.5 41.7 39.4 43.6
7 — 64.5 74.2 62.2 52.9 37.6 36.7 37.3 39.7
LLaVA 13 — 62.0 70.1 59.5 52.7 36.0 35.5 35.1 38.1
34 — 84.9 95.2 80.8 74.6 37.5 36.9 36.9 39.7
72 8bit 65.2 77.0 60.9 52.6 40.5 40.1 40.5 41.1
2 — 69.9 83.7 64.4 55.7 41.0 40.8 39.9 42.8
Qwen 7 — 87.3 95.9 84.3 77.9 44.0 45.2 41.7 44.7
72 awq 90.1 96.4 88.6 82.5 65.9 66.9 64.9 65.1
human — — 91.6 97.7 90.7 83.6 94.5 96.8 93.6 90.9

Table 3: Accuracy scores (%) for all models and datasets, restricted to items with limited description complexity
(max. 5 tokens per item, from which min. /3 have to be basic color terms). Scores which surpass the full dataset
results are highlighted in bold. Note that close annotations tend to be longer than far and split annotations, i.e., total
scores are skewed towards easier items.

Left Middle Right

Model Size (b) Quant Predicted  Accuracy Predicted  Accuracy Predicted  Accuracy
Janus 1 — 100.0 33.1 322 36.2 13.1 33.7
7 — 94.4 34.7 95.6 34.7 53.8 41.9
LLaVA 7 — 90.9 37.6 89.2 37.0 94.4 322
13 — 88.7 37.6 95.4 34.8 95.8 325
34 — 92.5 34.3 99.5 33.7 90.5 32.6
72 8bit 88.1 38.4 87.1 37.2 91.1 325
Qwen 2 — 95.9 35.0 67.0 38.3 73.2 38.7
7 — 76.1 46.4 92.8 37.2 30.7 474
72 awq 474 71.0 69.0 55.8 359 74.9

Table 4: Location biases for all models in the color grid task. For each of the location labels “left”, “middle”, and
“right”, we report the proportion of cases (%) where the model predicts the respective label, if it is the only location
label in the annotations (33.3 % is the expected result). Accuracy reports the accuracy of predictions (%) in these
cases.

Qwen2-VL

LLaVA-NeXT

Janus-Pro

Vision Encoder

ViT and 2D-RoPE

CLIP-ViT-L, higher-res grids

SigLIP-Large-Patch16-384

Cross-modal Connection MLP MLP MLP

LLM Backbone Qwen2 Vicuna (3b, 7b), NousHer- Autoregressive Transformer
mes2-Yi (34b), and Llama 3
(72b)

Training Pretraining on image-text Pretraining cross-modal con- Pretraining cross-modal con-
pairs (ViT), full parameter nection and instruction fine- nection, image heads, unified
training and instruction fine-  tuning pretraining, and instruction
tuning (ViT frozen) fine-tuning

Data Extensive and diverse data- High-quality visual and mul- Expanded dataset and syn-

Special Features

sets

Naive Dynamic Resolution
support and Multimodal Ro-
tary Position Embedding (M-
ROPE)

timodal data
Response prompting, dy-
namic high resolution, and
data-efficient

thetic data
Decoupled Visual Encoding

Table 5: Comparison of aspects of the multimodal large language models Qwen2-VL, LLaVA-NeXT, and Janus-Pro
used in this study, based on information available in the publications on these models (see Section 3.1).
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