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Abstract

Research on reference and naming suggests
that humans can come up with very different
ways of conceptualizing and referring to the
same object, e.g. the same abstract tangram
shape can be a “crab”, “sink”, or “space ship”.
Another common assumption in cognitive sci-
ence is that scene context fundamentally shapes
our visual perception of objects and conceptual
expectations. This paper contributes SCENE-
GRAM, a dataset of human references to tan-
gram shapes placed in different scene contexts,
allowing for systematic analyses of the effect
of scene context on conceptualization. Based
on this data, we analyze references to tangram
shapes generated by multimodal LLMs, show-
ing that these models do not account for the
richness and variability of conceptualizations
found in human references.1

1 Introduction

Reference to visual objects is an elementary compo-
nent of language and situated interaction. Almost
always, we can refer to something in many differ-
ent ways, and the linguistic choices we make reflect
the ways we categorize or conceptualize it. More
often than not, we can have multiple conceptual
perspectives (Clark, 1997) on the same things: For
example, the same person could be referred to as a
“human”, “woman”, “engineer”, “mom” or using
their proper name, depending on what is deemed
relevant, appropriate or useful in a given situation
(e.g. Brown 1958; Graf et al. 2016). Even fewer
limitations exist for abstract shapes such as tan-
grams: In Figure 1, the same shape can be seen as
representing e.g., a “crab”, “sink”, or “space ship”,
showcasing the flexibility and richness of human
conceptualization and interpretation at the intersec-
tion of visual and semantic processing. Despite
recent progress in multimodal language modeling

1Data and code for this project are available at:
github.com/clause-bielefeld/scenegram

(Zhang et al., 2024), current systems show mixed
results in reproducing human variation in object
naming (Testoni et al., 2024) and figurative descrip-
tions for abstract stimuli remain a major challenge
in vision and language (V&L) research (Ji et al.,
2022; Gul and Artzi, 2024).

How can we navigate this complex web of many-
to-many relationships between visual stimuli and
possible conceptualizations and descriptions? A
common assumption in linguistics, cognitive sci-
ence, and psychology is that our cognition is highly
“tuned” to the everyday contexts and situations we
interact in. A well-researched instance of this is our
visual perception of objects which is known to be
fundamentally shaped by high-level, conceptual ex-
pectations on the level of scenes (Biederman et al.
1982; Greene 2013; Võ 2021, among many others).
For example, at the beach, we would rather expect
to see certain animals and plants than household
items, whereas in a bathroom, it would be the other
way around. It is well-researched that these pro-
cesses facilitate, e.g., visual object recognition (e.g.
Bar 2004), and it seems plausible that scene con-
text also affects descriptions of objects which can
be conceptualized in different ways. However, ex-
isting V&L datasets with real-world images make
it difficult to study the same objects in different
scenes: As objects often occur in typical contexts,
the same regularities that are exploited for visual
processing obstruct investigation with natural data.

In this paper, we contribute (i) a dataset of human
references to tangram shapes placed in different
scene contexts, allowing for systematic analyses of
the effect of scene context on the conceptualization
of the same shape, and (ii) analysis of references
to tangram shapes generated by multimodal LLMs,
showing that these models do not account for the
richness and variability of conceptualizations found
in human references. Our findings show that scene
context affects tangram descriptions in a way, that
speakers tend to verbalize conceptualizations that
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human: sink (5); bowl (2); crab (2);
bathtub shape (1)

human: crab (7); bathtub (1); bowl
(1); bull (1)

human: crab (4); bowl (2); dog (1);
seal (1); letter c (1); space ship (1)

LLaVA 7b: bathtub (6); rectangle (2);
bathroom (2)

LLaVA 7b: sun (3); bird (2); diamond
(2); boat (1); wave (1); house (1)

LLaVA 7b: house (3); square (2); dia-
mond (2); triangle (1); parallelogram
(1); box (1)

LLaVA 72b: house (8); boat (1); bath-
tub (1)

LLaVA 72b: sailboat (4); house (3);
boat (3)

LLaVA 72b: house (7); boat (3)

Figure 1: A single tangram in bathroom, beach and baseline contexts with counts for labels in annotated or predicted
descriptions. Human annotations commonly include labels which are coherent with scenes (“sink” and “crab”).
LLaVA 7b and 72b show similar patterns, but also issues in differentiating between tangrams and scenes.

are consistent with the provided scene context. Ex-
periments with MLLMs show similarities but also
shed light on limitations and biases relevant to var-
ious topics in vision and language research.

2 Background

Human scene understanding Research on hu-
man vision and perception has shown that when
viewing a scene, humans perceive it as a coher-
ent whole instead of mere collections of objects
(Võ, 2021). Capturing the gist of a scene is a rapid
process (Oliva and Torralba, 2006), and while in-
congruent context can also be misleading (Zhang
et al., 2020; Gupta et al., 2022), scene-level infor-
mation has been demonstrated to facilitate e.g., vi-
sual object recognition in both human cognition
(Palmer 1975; Oliva and Torralba 2007; Parikh
et al. 2012; Lauer et al. 2018, among others) and
computer vision systems (Divvala et al. 2009; Gal-
leguillos and Belongie 2010, see Wang and Zhu
2023 for a survey). For this, humans and machines
can exploit learned knowledge about regularities
of the visual word for visual processing (Bieder-
man, 1972; Bar, 2004; Greene, 2013; Pereira and
Castelhano, 2014; Sadeghi et al., 2015), e.g. se-
mantic rules that certain objects tend to occur in
some contexts rather than others (Biederman et al.,
1982; Võ, 2021; Turini and Võ, 2022).

Context, Conceptual Perspective and Referen-
tial Choice Verbal reference to visual objects
requires making linguistic choices, as the same
things can be called and described in many different
ways (Brown, 1958; Graf et al., 2016; Davies et al.,

2019). Research in Referring Expression Genera-
tion has modeled these choices as a function of con-
text (Schüz et al., 2023), i.e., objects co-occurring
with the target are factored in to determine which
properties have to be realized to make a descrip-
tion unambiguous in a given scenario (see Krah-
mer and van Deemter 2012 for a survey). More
generally, however, speakers can take on different
conceptual perspectives on referents, highlighting
different (often not mutually exclusive) facets and
aspects of referents, guided by principles beyond
pragmatic informativeness (Clark and Svaib, 1997;
Gatt and van Deemter, 2006, 2007; Gatt, 2007; van
Deemter, 2016). Importantly, different conceptual-
izations can be reflected in object labels or names
(Clark, 1997; Gualdoni et al., 2023), which have
been shown to be highly varied and flexible (Or-
donez et al., 2016; Zarrieß and Schlangen, 2017;
Silberer et al., 2020a,c; Gualdoni et al., 2022a,b,
2023). Recent work in vision and language re-
search has started to model this variation (Ilinykh
and Dobnik, 2023; Testoni et al., 2024), but general
questions remain about how visual context affects
conceptualization and naming in humans and gen-
eration systems.

Tangrams in linguistic research Tangrams are
abstract figures, which are constructed from a small
set of geometric primitives and can be more or less
nameable, i.e., easy or hard to describe (Zettersten
and Lupyan, 2020). Unlike natural objects, tan-
grams lack established naming conventions, trig-
gering diverse figurative descriptions and making
them suitable as stimuli to investigate linguistic ref-
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erence in humans (Clark and Wilkes-Gibbs, 1986;
Schober and Clark, 1989; Wilkes-Gibbs and Clark,
1992; Brennan and Clark, 1996; Murfitt and McAl-
lister, 2001; Hawkins et al., 2020; Bangerter et al.,
2020; Fasquel et al., 2022; Sudo et al., 2022) and
vision-language systems (Skantze and Willemsen,
2022; Ji et al., 2022; Gul and Artzi, 2024). Shore
et al. (2018); Ji et al. (2022) released crowdsourced
datasets using tangram figures as stimuli, we use
tangrams from the latter for our work.

Research Gap While e.g. MANYNAMES (Sil-
berer et al., 2020a,c) quantifies naming variation
for objects in photographs, object types are often
bound to certain contexts (reflecting real-life pat-
terns), and most objects are highly nameable and
easy to identify, limiting the range of different
conceptualizations. In contrast to this, tangram
datasets like KILOGRAM (Ji et al., 2022) offer rich
variation in conceptualizations, but do not account
for contextual influences, as items are described in
isolation. In this work, we take a different approach
and pair abstract tangram shapes with generated im-
ages representing a taxonomy of scene contexts. In
this way, we collect diverse descriptions of visual
items, which we subsequently analyze for context
effects and compare with the predictions of multi-
modal LLMs.

3 Data Collection

We combine tangram figures with images depicting
different types of scenes, and crowdsource annota-
tions to investigate how context affects the concep-
tualization of inherently ambiguous shapes.

Formally, each item in our dataset i ∈ I is de-
fined as a tangram ti ∈ T with a scene si ∈ S
as visual context, i.e. a tuple i = ⟨ti, si⟩. For
each item, we collect a set of Di = Dti,si descrip-
tions in English. From each annotated description,
we extract an object label and the corresponding
WordNet (Miller, 1995) synset, to reduce onoma-
siological variation and facilitate taxonomy-based
analyses.

3.1 Item Design and Generation

As the tangrams for our dataset, we use half of the
items from the dense split in KILOGRAM (Ji et al.
2022, |T | = 37), which come with rich annotations
that can be used for comparison.

Scene images (|S| = 11) are generated for a
set of scene categories using SDXL-Lightning (Lin
et al., 2024) as a state of the art text-to-image

model.2 We generate three images for each of the
8 basic level scene categories in Lauer et al. (2018),
which include various indoor scenes (kitchen, bath-
room, bedroom, office), for which we expect a par-
ticular influence due to their relation to common
everyday objects, but also a broad selection of typi-
cal outdoor scenes (forest, mountain, beach, street).
In addition to this, we include sky and sea bot-
tom as additional outdoor scene categories, which
are associated with certain objects that would be
less expected in the remaining scenes (e.g., fish or
birds). We prompt the model to generate “a photo-
graph of a [SCENE]”, where [SCENE] is replaced
with the respective scene category label. We also
add none as the baseline scene condition sb with
neutral context, i.e., uniform color patches.

Our final items (n = |T | × |S| = 407) combine
tangrams and scene images by arranging them into
a 2 × 2 grid of random order. Here, one tile is al-
ways occupied by a tangram shape and the remain-
ing three tiles by images depicting a specific type
of scene (cf. Figure 1). This procedure is intended
to combine tangrams with contextual information,
without evoking unwanted inferences about, e.g.,
size and location relations, which might occur if
the tangram were placed directly in or overlaying
scene images.

3.2 Data Collection

We collect our data using the Argilla framework3

with crowdworkers from Prolific (n = 110). Anno-
tators are instructed to locate the tangram and de-
scribe what kind of object it depicts. With this, we
ensure that participants pay attention to the scene
images at least briefly while locating the tangram,
given preceding work which indicates that the gist
of a scene is processed very quickly, cf. Oliva and
Torralba 2006. We collect 10 annotations per item,
i.e., a total of 4070 annotation points. Every anno-
tator is assigned 37 items, which include exactly
one item for each tangram in our data. 100 anno-
tators cover scene conditions, i.e., tangram images
are paired with random scene categories. Separate
from this, 10 annotators provide descriptions for
the baseline condition, i.e., tangrams are coupled
with uniform color patches. Workers are paid ac-
cording to the local minimum wage.

2huggingface.co/ByteDance/SDXL-Lightning, accessed
via the provided Huggingface Space

3https://argilla.io/
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3.3 Post Processing
We process the collected annotations using a com-
bination of automatic tools and human validation
or refinement. Every item in our dataset contains
four annotations (raw, label, synset, normalized la-
bel), which are derived as follows: First, we reduce
the raw annotations to labels, i.e., nouns or com-
pounds that denote the type of object the tangram
is thought of depicting. If annotators provide more
than one interpretation for a given tangram, we se-
lect only the first. After this, we map the labels to
WordNet synsets and select the first lemma from
each synset as the normalized label with reduced
onomasiological variation. We use spaCy (Honni-
bal et al., 2020) and NLTK (Bird et al., 2009) for
label extraction and WordNet mapping. Both steps
are manually validated and corrected.

4 Data Analysis

4.1 Research Questions and Hypotheses
In our analysis, we investigate whether people cat-
egorize and name tangrams differently if they co-
occur with images of different scenes, i.e., if scene
context affects the choice between alternative con-
ceptual perspectives in tangram descriptions. Pre-
vious work has shown that tangrams vary in their
conceptual flexibility, i.e., there are different de-
grees of naming consensus for different tangram
shapes, cf. Ji et al. 2022. For scene context effects
on tangram descriptions, we expect the following
patterns:

H1 Scene context affects variation in tangram de-
scriptions.

H2 Tangram descriptions elicited in context will
be conceptually more coherent with this con-
text as compared to descriptions elicited out
of context.

H3 Context effects are more pronounced for cer-
tain combinations of tangrams and scenes, i.e.
tangrams vary in their conceptual compatibil-
ity to certain scenes.

4.2 Analysis methods
Shape Naming Divergence (SND) and % Top
We rely on SND (Ji et al., 2022) and the inter-
annotator agreement (% Top, Silberer et al. 2020b)
to estimate the degree of variation in our data. SND
quantifies variability between annotations by mea-
suring if tokens are used in multiple descriptions

for the same item or are specific to individual de-
scriptions. Following Ji et al. 2022, we use SND to
analyze phrase-level tangram descriptions. To this
end, we calculate SND scores for each set of raw
descriptions for individual items. We also correlate
SND scores in our data with SND in KILOGRAM,
using Kendall’s tau (Kendall, 1938). % Top is cal-
culated for normalized object labels, i.e., lemmas
of extracted synsets, by obtaining the relative fre-
quency of the most frequent label for each item.

Lexical Overlap with KILOGRAM and Mean
Reciprocal Rank (MRR) We use annotations
from the dense split in KILOGRAM as a benchmark
for our data. Since we are particularly interested
in the conceptualization of tangrams in terms of
depicted object types, we extract the object labels
from the phrases of the KILOGRAM annotations us-
ing spaCy. We then calculate the lexical overlap, i.e.
the proportion of unique labels in our annotations
that are also found in the KILOGRAM annotations
for the same tangram, and the MRR of labels in our
data and KILOGRAM ranked by frequency.

Label frequency To get interpretable estimates
of scene effects on tangram descriptions, we com-
pute the occurrence frequency of normalized object
labels in the annotations, aggregating all tangram
descriptions for each scene type. To identify con-
text effects, we test the most frequent labels in all
context conditions for significant deviation from
the baseline condition using a chi-squared test.

Label-Scene similarity To quantify conceptual
coherence and shifts in our data, we analyze the
similarities between tangram descriptions and the
scene context in which they were elicited, and com-
pare this to the similarities between scene contexts
and the baseline annotations, which are elicited
without meaningful context (see Figure 1). We test
text-image similarity using CLIP (Radford et al.,
2021), and text-text similarity using GloVe (Pen-
nington et al., 2014) and ConceptNet Numberbatch
(Speer et al. 2017, henceforth Numberbatch). With
CLIP, we encode the textual object labels extracted
from the annotations and the images used as scene
context and compute similarities between the labels
and the mean representations of all three scene im-
ages used in each scene condition. For GloVe and
Numberbatch, we replace the image vector with
embeddings for the respective scene category label.
Following Hessel et al. 2021; Takmaz et al. 2022,
we report coherence between tangram descriptions
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Variation KILOGRAM comparison
scene SND mean/std SND corr. / KILOGRAM % Top mean/std overlap MRR

bathroom 0.92±0.09 0.42*** 27.0±16.1 37.4 0.28
beach 0.92±0.13 0.46*** 26.8±17.2 38.3 0.29
bedroom 0.93±0.11 0.38** 25.4±14.8 40.0 0.28
forest 0.94±0.06 0.51*** 25.4±11.2 40.3 0.28
kitchen 0.92±0.11 0.37** 27.8±17.0 34.6 0.28
mountain 0.92±0.13 0.41*** 24.9±12.4 39.2 0.29
office 0.91±0.14 0.51*** 25.7±18.2 35.0 0.26
sea_bottom 0.95±0.05 0.47*** 22.2±8.5 35.5 0.24
sky 0.91±0.13 0.33** 27.0±16.3 34.0 0.29
street 0.93±0.10 0.51*** 25.4±14.5 37.9 0.27

none 0.91±0.13 0.61*** 27.6±18.0 38.7 0.30

Table 1: Variation and overlap results for human annotations. SND correlations, overlap, and Mean Reciprocal Rank
(MRR) are calculated with respect to annotations and scores for the same tangrams in KILOGRAM, asterisks denote
significance levels with Kendall’s tau (*p<0.05; **p<0.01; ***p<0.001). Highest and lowest scores are highlighted.

and scenes as scaled cosine similarities, i.e.,

sim(d⃗, s⃗) = 2.5 ∗max(cos(d⃗, s⃗), 0)

and

COHERENCE(D, s) =

∑
d∈D sim(d⃗, s⃗)

|D|

, where d⃗ and s⃗ are vector representations for tan-
gram descriptions (labels) and scene contexts (im-
ages or labels), and d is a single label in the set of
annotated labels D for an item. We especially look
at in-context coherence COHERENCE(Dti,si , si),
that is coherence between descriptions for tangrams
in a certain scene context and the respective scenes,
and baseline coherence COHERENCE(Dti,sb , si),
i.e. coherence between tangrams described in the
baseline condition sb and certain scenes. To quan-
tify conceptual shifts in scene context, we report
the difference between these scores, that is

SHIFT(i, s) =

COHERENCE(Dti,si , si)−COHERENCE(Dti,sb , si)

, representing the increase in scene coherence for
the descriptions of an item i = ⟨ti, si⟩ as com-
pared to baseline descriptions of the same tangram.
SHIFT > 0 indicates that tangrams are interpreted
more coherently to the scenes they are placed in.

4.3 Results
SND and % Top Aggregated over scenes, anno-
tations in the baseline condition show the lowest
SND, although differences between conditions are
marginal (Table 1). Hence, on average, descriptions
for tangrams show slightly more variation if paired

Figure 2: SND scores broken down for tangrams, mark-
ers indicate the mean. The overall distribution is skewed
right, showing high variation in descriptions.

with scene context, indicating that scenes can bring
in additional ways of interpreting tangram shapes
that are less accessible without context. Correlat-
ing the SND scores for different scene conditions
with the scores provided in KILOGRAM reveals
significant correlations in all cases, i.e., similar
variance patterns for the same tangrams with or
without context. However, the highest correlation
can be seen for the baseline condition, whereas pat-
terns in certain scene conditions deviate more from
KILOGRAM (Table 1). This again points to gen-
eral context effects at the level of variation patterns,
supporting H1 in this regard.

Aggregating scores over tangrams shows large
differences between shapes, in line with Ji et al.
(2022). However, mean SND scores are mostly
close to the upper bound, indicating rich variation
(Figure 2). Interestingly, lower scores tend to be
associated with higher variance, suggesting that for
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#1 #2 #3 #4 #5

bathroom person (7.57 %) dog (3.78 %) sink (3.24 %) table (2.16 %) wrench (2.16 %)
beach person (5.41 %) dog (4.32 %) crab (3.51 %) horse (2.43 %) K (2.16 %)
bedroom person (6.49 %) dog (4.32 %) bed (3.78 %) lamp (3.51 %) table (2.16 %)
forest person (7.3 %) dog (4.05 %) bird (2.43 %) house (2.16 %) forest (1.89 %)
kitchen person (5.68 %) dog (5.68 %) cabinet (2.7 %) table (2.43 %) bird (2.43 %)
mountain mountain (6.22 %) person (5.14 %) bird (2.97 %) dog (2.43 %) rock (1.89 %)
office person (7.84 %) desk (4.32 %) table (3.24 %) dog (2.97 %) lamp (2.43 %)
sea bottom person (4.59 %) fish (4.59 %) turtle (2.43 %) dog (2.43 %) table (2.16 %)
sky person (5.41 %) bird (4.86 %) dog (4.05 %) cloud (3.24 %) mountain (2.43 %)
street person (7.57 %) dog (4.59 %) crab (2.7 %) house (1.89 %) bird (1.89 %)

none person (7.03 %) dog (5.68 %) horse (2.97 %) bird (2.43 %) snake (2.16 %)

Table 2: Occurrence frequencies for WordNet Lemmas in the annotations for all tangrams in the given scene. Labels
printed bold deviate significantly from the occurrence frequencies in the baseline condition (none).

the same tangrams, annotators are more aligned in
certain scenes than in others.

The % Top scores, calculated for labels normal-
ized via WordNet, generally resemble the findings
of the SND analysis (Table 1). Broken down for
scenes, the high agreement can be seen in cases
where SND scores indicate low variation (e.g.,
kitchen or the baseline condition), and low agree-
ment aligns with high variation (sea bottom).

Lexical Overlap and MRR The overlap scores
between labels in our annotations and the dense
split in KILOGRAM reveal no clear patterns, with
the highest overlap in the forest and the lowest
in the sky condition (see Table 1). However, our
data still contains a high proportion of labels not
included in the extensive KILOGRAM annotations,
highlighting the high variability in tangram descrip-
tions. Taking into account the counts and frequency
ranks of labels in both datasets, the MRR results
in Table 1 reveal similar patterns as SND and %
Top: Labels in the baseline condition resemble
KILOGRAM annotations the most, and scores are
generally lower with scene context.

Label frequency In Table 2, we show the five
most frequent object labels in all tangram descrip-
tions for each scene condition, normalized via
WordNet. Although certain labels are frequent in
all conditions (e.g. “person”, “dog”), others occur
more frequently in conceptually related scenes. In
particular, most labels whose frequency deviates
significantly from the baseline condition (p < 0.05
in the chi-squared test) denote objects typically oc-
curring in the respective scenes, e.g. “sink” / bath-
room, “bed” / bedroom, “cabinet” / kitchen and,
most prominently, “mountain” / mountain. This
supports our hypothesis H2, i.e., the significantly

higher frequency of conceptually related labels in-
dicates preferences towards tangram conceptualiza-
tions coherent with scene context.

Label-Scene similarity The results of the con-
ceptual coherence analysis are illustrated in Figure
3. Across all encoding methods and scenes, in-
context coherence surpasses baseline coherence,
i.e., labels that are elicited in a given scene context
show higher similarity to corresponding scene rep-
resentations than baseline annotations for the same
tangrams. Generally, this indicates that annotators
tend to produce descriptions for tangrams that align
with scenes displayed to them, supporting H2.

Interestingly, the degree of conceptual shift de-
pends on the embedding space used to encode la-
bels and scenes. CLIP, which scores visual similar-
ities, predicts smaller shifts than GloVe and Num-
berbatch, which encode more generic and concep-
tual similarities. This supports the interpretation
that conceptual shifts triggered by scene context
represent genuine conceptual variation and changes
in perspective, rather than mere visual associations.
The largest differences can be seen with Number-
batch embeddings, possibly as a result of the ex-
plicit semantic relations included in the underlying
ConceptNet meaning representation.

To illustrate conceptual shifts for individual tan-
grams, Figure 4 shows the SHIFT scores for all
tangram/scene combinations, computed with Num-
berbatch. For each tangram, a single data point
represents the conceptual SHIFT with respect to a
single scene, i.e., the difference between in-context
and baseline coherence for this combination of
tangram and scene. Again, there is a clear trend
towards annotations that are coherent to the respec-
tive context, i.e. SHIFT > 0 in the majority of
cases. However, the degree of conceptual shifts
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Figure 3: Mean COHERENCE scores between tangram annotations and scenes (images for CLIP, labels for GloVe and
Numberbatch) for all scene categories. In-context coherence consistently surpasses baseline coherence, indicating
that scene context causes semantically related conceptualizations in descriptions.

Figure 4: SHIFT scores broken down for tangrams.
SHIFT > 0 (red line) indicate that scene context leads
to coherent tangram conceptualizations. The marked
item is displayed in Figure 1 (bathroom condition).

varies between tangrams: whereas for some tan-
grams, descriptions in context show marginally
higher scene coherence than baseline annotations,
conceptualizations of other shapes seem to be more
adaptable to different scenes. In particular, right
outliers in this graph mark individual scenes for
which tangram annotations elicited in context show
a much higher similarity than the baseline annota-
tions. This can be seen as cases where tangrams are
conceptually compatible with certain scenes, with
regard to interpretations that are less accessible
without context, supporting hypothesis H3.

Qualitative Examples Figure 1 shows labels for
a single tangram in three scene conditions (bath-
room, beach, and none). With bathroom context,
this item has one of the highest SHIFT scores in our
data (0.65, cf. Figure 4), as it includes a high rate
of conceptually related labels (“sink”, “bathtub”),
none of which occurs in the baseline condition. For
beach, annotations also have high relatedness to the
scene, but lower SHIFT (0.17) since related labels

Overlap
system % Top SCENEGRAM KILOGRAM

LLaVA-7b 58.50 26.61 34.99
LLaVA-13b 36.71 21.13 34.42
LLaVA-34b 59.17 27.64 50.22
LLaVA-72b 79.46 26.00 54.52

Table 3: % Top and % Overlap with our human anno-
tations (same item, normalized labels) and the KILO-
GRAM annotations (same tangram), global mean.

are also included in the baseline condition.

5 Modelling Experiments

Analyzing human annotations has shown that scene
context affects tangram descriptions, i.e., tangrams
are often interpreted in ways that align with the
scenes they are placed in. In this section, we ex-
plore the tangram descriptions in context generated
by off-the-shelf multimodal LLMs. For this, we
generate tangram descriptions using the 7b, 13b,
34b and 72b parameter variants of LLaVA-NeXT
(Liu et al., 2023, 2024)4, and test the outputs for
variation, alignment with human data and concep-
tual shifts, using methods from the preceding anal-
ysis.

5.1 Method

We use a two-step inference process to collect sets
of tangram descriptions: First, we prompt our mod-
els to predict the location of the tangram in the item
grid, i.e., top/bottom and left/right. After this, akin
to Testoni et al. (2024) and keeping the location
prediction as context, we repeatedly prompt our
systems to generate descriptions of the tangram
using nucleus decoding (Holtzman et al., 2019)
with p=0.5. To facilitate subsequent analysis, we

4accessed via huggingface, the latter using Int-8 quantiza-
tion due to resource limitations.
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Figure 5: COHERENCE scores (Numberbatch) for LLaVA 7b (smallest) and 72b (largest). LLaVA 72b shows the
higher overall scores (especially baseline coherence), but 7b has higher differences between in-context and baseline
coherence. In both cases, in-context coherence spikes in the mountain condition.

restrict responses to WordNet lemmas, i.e., after
each response, we use SpaCy to extract the head
noun from the generated description, assert that it
is included in WordNet, and repeat the prediction
process a maximum of 10 times if this is not the
case. Inference terminates after 10 valid responses.

We calculate the relative frequency of the most
frequent label in each response set (% Top) to as-
sess the variation in generated descriptions, and the
overlap to extracted labels in KILOGRAM dense
and our data. Finally, we use COHERENCE scores
to test for conceptual shifts. Accuracies for lo-
cation predictions and frequency tables for scene
conditions are included in the appendix.

5.2 Results

% Top As we repeatedly sample the output dis-
tributions of the same models,% top indicates if
the systems are able to conceptualize the same tan-
grams in different ways. The results in Table 3
show that apart from LLaVA 13b, scores increase
with size, i.e., models converge on a limited set of
interpretations per item. Although the exact scores
depend on decoding parameters, we note that on
average, the most frequent labels occur much more
often than in the human data (between 20 and 30 %,
see Table 1), indicating that individual systems can-
not capture the range of human tangram conceptu-
alizations.

Lexical Overlap With less than 30 % of the gen-
erated labels also occurring in human annotations
for the same items, the overlap between system re-
sponses and annotations in our data is surprisingly
small (Table 3). This indicates that system pre-
dictions seldom coincide with labels produced by
humans, raising doubts about their general capabil-
ity of replicating human-like conceptualization of
abstract depictions. However, overlap with KILO-

GRAM is higher, possibly due to their extensive
annotations (n ≥ 50 per item).

Label-Scene Similarity The COHERENCE

scores in Figure 5 suggest that our systems
generate labels with higher coherence to scenes
if tangrams are paired with the respective images,
similar to human annotations. However, coherence
scores and differences between baseline and
in-context predictions are often much higher, espe-
cially for mountain scenes. Occurrence counts of
generated labels show that here, systems generate
the label “mountain” in up to 74 % of cases (cf.
Appendix I), raising doubts about whether models
rather describe scenes than tangrams, i.e., fail to
parse the visually complex items.

6 Discussion and Conclusion

The role of context in the conceptualization of vi-
sual objects and its interactions with variability and
creativity in referring are notoriously hard to grasp
for (computational) linguistic research. SCENE-
GRAM addresses this gap, proposing a controlled
paradigm that elicits descriptions of conceptually
ambiguous tangram shapes in scene context. Our
results underpin a common theoretical assumption
that has, however, been rarely tested “in the wild”,
especially not in language & vision research: scene
context can fundamentally shape speakers’ concep-
tual perspectives when describing a visual stimulus.
SCENEGRAM shows that tangram descriptions in
context remain highly diverse while becoming con-
ceptually more coherent with the scene context.
Experiments with off-the-shelf multimodal LLMs
indicate that the systems cannot reproduce human
variance and conceptualizations of tangrams, but
demonstrate general effects of scene context. Over-
all, our results highlight the importance of scene
context on object naming at the level of conceptu-
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alization, pointing to weaknesses of current multi-
modal language models in this regard.

For future work, our data can be used to, e.g.,
probe more general mechanisms of visuo-linguistic
processing in multimodal LLMs, similar to work
in cognitive science or psycholinguistics, where
using abstract visual stimuli is a well-established
paradigm. At the same time, our approach also
raises new questions and directions. More work is
needed to understand how exactly context modu-
lates the variance of conceptualizations. Data in
SCENEGRAM suggests that context could prime
humans for certain interpretations, effectively re-
ducing variance, or could evoke entirely new inter-
pretations without blocking preexisting ones, point-
ing to interesting connections to creativity. Further
work is also needed to understand how conceptual
perspective and scene context interact when the
communicative effectiveness of object descriptions
is at stake, e.g. in a reference game. Here, the
creative use of language is a necessity in the first
place. Combining abstract stimuli with contextual
information or communicative demands could be a
valuable tool for future research to study creativity
and linguistic variability in humans and language
models.

Limitations

We identify the following limitations in our study:
First, we note that the annotation procedure

could be further refined. In particular, more ad-
vanced setups with defined communicative objec-
tives as in e.g. reference games could further ensure
high-quality descriptions for tangrams and elicit
tangram descriptions that are not only creative, but
also effective if communication. Our primary inter-
est here is to collect and analyze general descrip-
tions for tangrams in varying scene contexts, but
we see potential for further insights by adapting
and improving our methods.

Second, the robustness of our findings could be
further improved by scaling up the data collection.
By focusing on a subset of the tangrams in KILO-
GRAM, we were able to achieve an acceptable sam-
ple size of 10 annotations for each combination of
tangrams and scenes within our financial and time
limits. However, due to the high variance in our
data, a larger pool of annotations per item could
allow for more reliable or comprehensive conclu-
sions.

Finally, for the modelling experiments, further

system architectures and hyperparameter config-
urations could be added for more comprehensive
insights, possibly including commercial systems
such as ChatGPT, Gemini, DeepSeek and Claude.
Due to space and time constraints, we leave this for
future research.
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A Crowdsourcing Procedure

For our data collection, we recruited 110 annota-
tors, all of which are located in the United States
and have stated English as their primary language.
Workers were paid according to the local mini-
mum wage, and the intended purpose of the data

was explained. We recruited the crowdworkers
via Prolific, and used Argilla (hosted on Hugging-
face Spaces) to collect annotations. The annota-
tors are heterogeneous in terms of their age (18-29:
25.3%; 30-39: 34.3%; 40-49: 22.2%; 60+: 18.2%),
ethnicity (White: 58.6%; Black: 18.2%; Asian:
11.1%; other: 12.1%) and sex (female: 51.5%;
male: 48.5%). A screenshot of the annotation in-
structions can be seen in Figure 6. The annotation
interface can be seen in Figure 7.

To validate the automatic processing steps, we
provided student assistants with the automatically
processed data and instructed them to manually
check whether the correct labels were extracted and
valid WordNet synsets were selected, and update
labels and synsets if necessary.

B Scientific Artifacts

In our work, we mainly use scientific artifacts in
the form of publicly available datasets and model
implementations, as well as Python frameworks
and modules (cf. Appendix E). In all cases, we
are confident that our work is consistent with their
intended use. Most importantly, our work builds
on the KILOGRAM dataset as a source of tangram
figures. The dataset is available on GitHub. To gen-
erate scene images we rely on SDXL-Lightning (Lin
et al., 2024), accessed via the provided Hugging-
face Space. The model is available on huggingface.
Our data and code for this project are available at
github.com/clause-bielefeld/scenegram.

C Risks and Ethical Considerations

We do not believe that there are significant risks
associated with this work, as we work with descrip-
tions of abstract items which are not believed to be
perceived as hurtful, and release data with limited
scale. No ethics review was required. Our data
does not contain any protected information and is
fully anonymized.

D Prompts and Model Inference

Our model prompts consist of two parts. First,
we instruct the systems to predict the locations of
tangrams in the item grids, using greedy decoding:

“In this 2 by 2 grid, exactly one tile contains a
tangram figure. In which grid cell is it? Pick your
response from the following options: Top left, top
right, bottom left, bottom right.”

After this, keeping the location prompt and pre-
dictions as context, we instruct the models to gen-
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Figure 6: Screenshot of the annotation instructions

Figure 7: Screenshot of the annotation setup
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erate tangram descriptions:
“Describe what this tangram looks like. Ignore

the other tiles. Keep your answer short and concise.
Give your answer in the form: The tangram depicts
a _.”

As described in Section 5.1, we repeatedly
prompt our systems using the last prompt, to collect
a diverse set of responses (using nucleus decoding
with p = 0.5). For each generated response, we ex-
tract the head noun from the model response using
spaCy, assert that it is included in WordNet, and
repeat the prediction for a maximum of 10 times if
this is not the case. Inference terminates after 10
valid responses.

E Implementation Details

For our experiments we rely on models from hug-
gingface. In detail, we used the following models:

• llava-hf/llava-v1.6-vicuna-7b-hf

• llava-hf/llava-v1.6-vicuna-13b-hf

• llava-hf/llava-v1.6-34b-hf

• llava-hf/llava-next-72b-hf (quantized using
the bitsandbytes library)

To generate responses with our models, we used
Python 3.9.20 with the following libraries: torch
(2.5.1), transformers (4.46.2), bitsandbytes (0.44.1).
For data analysis we used Python 3.10.9, mostly us-
ing the following frameworks: nltk (3.8.1), numpy
(1.23.5), pandas (1.5.2), scikit-learn (1.2.0), scipy
(1.9.3), seaborn (0.12.2), spacy (3.5.3 and the
en_core_web_sm model).

We used three NVIDIA RTX A6000 GPUs for
inference for LLaVA 72b, two GPUs of the same
type for LLaVA 34b and a single GPU of the same
type for the remaining models. Depending on
model size, generating responses took between 50
min (LLaVA 7b) and 7h (LLaVA 72b).

F Further Examples

Figure 8 contains further qualitative examples for
items with high SHIFT scores for human annota-
tions.

G Location determination accuracies

In Table 4 we report accuracy scores for target
locations in the item grids as predicted by our sys-
tems. The results indicate that most models handle
the location task without major problems, with the

LLaVA
scene 7b 13b 34b 72b

bathroom 86.5 100.0 100.0 100.0
beach 83.8 100.0 100.0 100.0
bedroom 78.4 100.0 100.0 100.0
forest 89.2 100.0 100.0 100.0
kitchen 75.7 97.3 100.0 97.3
mountain 91.9 100.0 100.0 100.0
office 83.8 100.0 100.0 97.3
sea_bottom 73.0 100.0 100.0 94.6
sky 83.8 100.0 100.0 100.0
street 86.5 100.0 100.0 100.0

none 56.8 100.0 100.0 100.0

Table 4: Location determination accuracies (%)

exception of LLaVa 7b. Whereas all larger vari-
ants produce no or only singular mistakes, this
system struggles especially in the baseline condi-
tion, where the remaining grid cells are filled with
uniform colors. While this does not mean that it
fails to describe the tangram, the low location deter-
mination scores point to parsing difficulties which
should be taken into consideration.

H Lexical Classes in Scene Contexts

Using WordNet, we are able to abstract the la-
bel frequency analysis to more general sets of
lexical items. For this, we map our annotation
synsets to a pre-defined set of reference synsets
(artifact.n.01, animal.n.01, person.n.01, geologi-
cal_formation.n.01, written_symbol.n.01 and en-
tity.n.01 as a generic fallback), selecting the ref-
erence synset with the highest distance from the
WordNet root to which the annotated synset is a
recursive hyponym as the lexical category.

Figure 9 shows that rankings are similar be-
tween scene conditions, i.e., artifact and animal
are ranked first and second in all cases. However,
there are differences in the frequency of occurrence:
While artifacts is especially common for indoor
scenes (bathroom, bedroom, kitchen, office), ani-
mals is slightly more frequent in natural or outdoor
scenes (beach, forest, mountain, sea bottom, sky).
geological_formation, with labels like “mountain”
or “hill”, is especially frequent in the mountain
condition, reflecting our label frequency results.

I Label Frequencies for Generated
Descriptions

Table 5 shows occurrence frequencies for labels
in tangram descriptions as generated by LLaVA
variants, aggregated over scenes.
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human: wrench (5); pipe wrench (2);
hook (1); building (1); faucet (1)

human: streetlamp (1); bird (1); drill
(1); screw (1); spike (1); street sign
(1); rose (1); bird talon (1); wrench (1);
person (1)

human: monkey wrench (1); deer
(1); tree (1); fishhook (1); wrench (1);
sword (1); person (1); cactus (1); totem
pole (1); chicken (1)

LLaVA 7b: bathtub (3); chair (2);
house (2); triangle (2); diamond (1)

LLaVA 7b: diamond (3); house (3);
shape (1); triangle (1); figure (1); stair-
case (1)

LLaVA 7b: diamond (5); house (2);
triangle (2); figure (1)

LLaVA 72b: house (6); cross (2); cat
(1); bird (1)

LLaVA 72b: bird (5); cross (3); house
(2)

LLaVA 72b: house (6); bird (3); per-
son (1)

human: turtle (2); sailboat (1); wing
suit (1); origami (1); airplane (1); kite
(1); box kite (1); tie (1); map (1)

human: stingray (2); person (1); ra-
dio (1); iceberg (1); turtle (1); pyra-
mids (1); water fountain (1); sea ray
(1); duck (1)

human: pyramids (1); monkey face
(1); aeroplane (1); kite (1); shell (1);
airplane (1); stealth bomber (1); tissue
box (1); stingray (1); spaceship (1)

LLaVA 7b: beach (5); sunset (2); tri-
angle (2); sun (1)

LLaVA 7b: diamond (6); square (2);
hexagon (2)

LLaVA 7b: diamond (5); square (2);
cloud (2); triangle (1)

LLaVA 72b: house (10) LLaVA 72b: house (10) LLaVA 72b: house (10)

human: toilet (2); lightbulb (1); foun-
tain (1); sink (1); bathtub (1); brush
(1); water fountain (1); rocketship (1);
rose (1)

human: pot (1); lighthouse (1); light
(1); candle (1); torch (1); dagger (1);
vase (1); house (1); lamp (1); mirror
(1)

human: candle (2); library (1); light-
house top (1); sword (1); torch (1); pot
(1); corn (1); flower bud (1); altar (1)

LLaVA 7b: house (5); triangle (3);
bathtub (2)

LLaVA 7b: house (6); pyramid (3);
diamond (1)

LLaVA 7b: pyramid (7); triangle (3)

LLaVA 72b: house (7); pyramid (3) LLaVA 72b: house (7); pyramid (2);
triangle (1)

LLaVA 72b: house (6); pyramid (4)

Figure 8: Further examples with human annotations and model predictions. Humans often produce labels which are
coherent to scenes; whereas models are considerably less creative.
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#1 #2 #3 #4 #5

bathroom bathtub (28.65 %) house (19.19 %) diamond (7.03 %) person (6.76 %) rectangl (5.95 %)
beach sun (14.59 %) house (12.43 %) bird (10.27 %) triangle (9.46 %) beach (9.19 %)
bedroom house (28.11 %) bed (14.59 %) diamond (10.54 %) bird (8.38 %) chair (7.3 %)
forest diamond (14.32 %) house (11.35 %) triangle (10.27 %) forest (8.65 %) tree (7.57 %)
kitchen house (28.65 %) bird (12.16 %) diamond (7.57 %) chair (7.3 %) triangle (7.3 %)
mountain mountain (74.05 %) triangle (4.05 %) figure (3.78 %) person (3.24 %) pyramid (2.97 %)
office chair (14.86 %) house (14.05 %) diamond (8.92 %) person (7.3 %) triangle (7.3 %)
sea bottom triangle (9.19 %) diamond (8.65 %) square (7.57 %) fish (7.03 %) letter (7.03 %)
sky triangle (14.32 %) bird (13.78 %) house (11.35 %) diamond (10.27 %) letter (7.84 %)
street house (22.7 %) triangle (11.35 %) diamond (10.81 %) person (8.65 %) dog (7.57 %)

none diamond (17.3 %) house (14.05 %) triangle (10.54 %) square (8.38 %) bird (7.84 %)

(a) LLaVA 7b

#1 #2 #3 #4 #5

bathroom house (18.11 %) bird (16.22 %) person (13.78 %) square (10.81 %) tree (9.19 %)
beach bird (19.73 %) person (14.05 %) house (11.35 %) tree (10.27 %) a (7.57 %)
bedroom house (20.81 %) bird (17.84 %) person (12.7 %) square (7.84 %) a (7.57 %)
forest bird (26.22 %) person (18.92 %) house (15.14 %) tree (8.65 %) animal (4.86 %)
kitchen house (20.81 %) bird (18.65 %) person (15.95 %) square (8.38 %) tree (5.41 %)
mountain mountain (35.41 %) house (16.76 %) bird (12.7 %) person (10.81 %) landscape (6.49 %)
office house (18.92 %) bird (16.49 %) person (14.86 %) square (11.35 %) tree (5.41 %)
sea_bottom bird (21.35 %) person (14.86 %) fish (9.19 %) house (8.92 %) square (8.38 %)
sky bird (24.86 %) house (18.11 %) person (14.32 %) square (7.03 %) tree (6.49 %)
street bird (20.54 %) person (18.11 %) house (15.68 %) square (11.35 %) a (5.95 %)

none bird (24.86 %) person (19.19 %) house (10.81 %) square (10.27 %) shape (6.76 %)

(b) LLaVA 13b

#1 #2 #3 #4 #5

bathroom bird (25.14 %) house (14.86 %) triangle (14.32 %) dog (8.92 %) man (4.86 %)
beach bird (24.05 %) triangle (15.68 %) dog (13.51 %) house (10.0 %) man (3.78 %)
bedroom bird (20.54 %) house (18.11 %) dog (14.05 %) triangle (12.97 %) horse (4.05 %)
forest bird (21.62 %) triangle (19.73 %) dog (10.81 %) house (9.73 %) man (4.32 %)
kitchen bird (22.43 %) triangle (16.49 %) house (13.78 %) dog (12.7 %) square (4.05 %)
mountain triangle (21.08 %) mountain (16.22 %) bird (12.16 %) dog (8.92 %) house (7.84 %)
office bird (21.62 %) triangle (17.57 %) dog (11.62 %) house (11.62 %) person (5.68 %)
sea_bottom triangle (20.27 %) bird (19.46 %) dog (7.3 %) house (6.76 %) man (4.59 %)
sky bird (23.78 %) triangle (17.03 %) dog (10.0 %) house (9.73 %) man (5.95 %)
street triangle (20.27 %) bird (19.19 %) dog (12.16 %) house (11.62 %) diamond (5.14 %)

none bird (17.03 %) triangle (14.86 %) dog (11.08 %) house (8.92 %) person (3.78 %)

(c) LLaVA 34b

#1 #2 #3 #4 #5

bathroom house (71.08 %) bird (6.76 %) letter (5.14 %) person (3.51 %) figure (1.89 %)
beach house (64.86 %) bird (7.3 %) letter (5.68 %) person (5.14 %) dog (3.51 %)
bedroom house (69.73 %) letter (6.22 %) person (4.59 %) bird (4.32 %) bed (3.24 %)
forest house (63.78 %) person (8.38 %) dog (5.14 %) bird (4.59 %) letter (3.51 %)
kitchen house (68.92 %) person (4.59 %) bird (4.05 %) letter (3.78 %) dog (3.78 %)
mountain mountain (64.86 %) house (19.19 %) person (5.95 %) pyramid (2.43 %) letter (2.16 %)
office house (57.3 %) person (7.84 %) letter (7.84 %) bird (4.86 %) pyramid (3.24 %)
sea_bottom house (54.32 %) bird (7.3 %) boat (6.76 %) person (4.86 %) letter (4.05 %)
sky house (62.43 %) bird (9.19 %) person (5.14 %) horse (4.59 %) letter (3.51 %)
street house (64.59 %) person (8.11 %) letter (7.3 %) bird (5.41 %) dog (2.7 %)

none house (58.92 %) person (6.49 %) None (5.41 %) bird (4.86 %) horse (4.05 %)

(d) LLaVA 72b

Table 5: Occurrence frequencies for labels in tangram descriptions generated by LLaVA variants, aggregated over
scenes.
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Figure 9: Occurrence frequencies for labels in different lexical classes for human annotations, calculated via
WordNet.
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