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Abstract

Multimodal Large Language Models (MLLMs)
have shown strong performance in document
image tasks, especially Optical Character
Recognition (OCR). However, they struggle
with Document Image Machine Translation
(DIMT), which requires handling both cross-
modal and cross-lingual challenges. Previous
efforts to enhance DIMT capability through
Supervised Fine-Tuning (SFT) on the DIMT
dataset often result in the forgetting of the
model’s existing monolingual abilities, such
as OCR. To address these challenges, we in-
troduce a novel fine-tuning paradigm, named
Synchronously Self-Reviewing (SSR) its OCR
proficiency, inspired by the concept "Bilin-
gual Cognitive Advantage". Specifically, SSR
prompts the model to generate OCR text be-
fore producing translation text, which allows
the model to leverage its strong monolingual
OCR ability while learning to translate text
across languages. Comprehensive experiments
demonstrate the proposed SSR learning helps
mitigate catastrophic forgetting, improving the
generalization ability of MLLMs on both OCR
and DIMT tasks.!

1 Introduction

Multimodal Large Language Models (MLLMs)
have achieved significant advancements in various
document image understanding tasks, particularly
in Optical Character Recognition (OCR), which
plays a crucial role in extracting text from scanned
documents or images. These improvements have
led to notable progress in tasks, such as Visual
Question Answering (VQA), and Information Ex-
traction (IE) (Wei et al., 2024b; Liu et al., 2024;
Wang et al., 2024; Wei et al., 2024a). However,
MLLMs still face challenges towards Document
Image Machine Translation (DIMT)—the task of
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Figure 1: Performance of Qwen2-VL across various
benchmarks. Base refers to the performance of the orig-
inal MLLM, while SFT denotes the MLLM after fine-
tuning on the DIMT dataset. DIMT (ID) and DIMT
(CD) denote in-domain and cross-domain test separately.
The evaluation metrics for DIMT, OCR, and VQA are
BLEU, Character Accuracy (CA), and Average Normal-
ized Levenshtein Similarity (ANLS), respectively.

translating text in document images from one lan-
guage to another. (Zhang et al., 2023c,b; Liang
et al., 2024).

An intuitive approach to enhancing MLLM’s
DIMT ability is to apply Supervised Fine-Tuning
(SFT) (Ouyang et al., 2022) on annotated DIMT
datasets. However, a major challenge with SFT is
catastrophic forgetting, where fine-tuning MLLM
on translation tasks often causes a loss of the
model’s original OCR capability. As shown in
Figure 1, while the fine-tuned MLLM performs
well on translation tasks, achieving a BLEU score
of 53.92 on the in-domain DIMT task, it strug-
gles to accurately extract text from images, with an
accuracy of only 5.96 on the OCR task. This sig-
nificant drop in OCR performance indicates a near-
complete loss of the MLLM’s OCR proficiency.

To address the challenges associated with SFT,
existing continual learning methods have been pro-
posed (Yin et al., 2022; Mok et al., 2023; Yang
et al., 2024b; Shi et al., 2024; Wu et al., 2024).
These methods aim to mitigate catastrophic forget-
ting and enhance domain generalization through
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Figure 2: Bilingual individuals exhibit greater linguistic
proficiency.

various strategies, such as replay-based methods
and regularization-based methods. However, chal-
lenges persist in effectively balancing the retention
of prior knowledge with the acquisition of new
skills, especially in complex tasks like DIMT.

Inspired by the concept of "Bilingual Cognitive
Advantage" (Bialystok, 1991; Hamers, 1998; Bi-
alystok, 2001; Bialystok and Craik, 2010; Zhang
et al., 2023a, 2024, 2025a), as shown in Figure 2,
a learning paradigm that focuses on retaining and
leveraging human’s existing monolingual strengths
while learning new languages, we introduce a
simple yet effective fine-tuning paradigm called
Synchronized Self-Reviewing (SSR), where the
MLLM generates the OCR text in the source lan-
guage first, followed by the translation text in the
target language. By synchronous learning, SSR en-
ables the MLLM to leverage its strong monolingual
OCR proficiency while extending its capabilities to
new languages, thereby improving its cross-lingual
performance on the DIMT task. Additionally, SSR
enhances the MLLM’s generalization ability, mak-
ing it more robust across various domains and tasks.
Furthermore, the method benefits from the use of
large amounts of unsupervised data, reducing the
need for extensive parallel datasets, which are often
scarce in the DIMT task.

In summary, this paper presents a novel method
to improve DIMT performance by using syn-
chronously self-reviewing to preserve monolin-
gual OCR proficiency while enabling cross-lingual
DIMT. We demonstrate, through extensive ex-
periments, that SSR significantly enhances the
MLLM’s generalization across both OCR and
DIMT tasks, addressing challenges such as catas-
trophic forgetting and poor domain generalization.

Our contributions are summarized as follows:

* We propose a novel fine-tuning paradigm,
SSR, which leverages the strong monolingual
capabilities of MLLMs to enhance their cross-

lingual performance.

* We introduce synchronous self-reviewing to
utilize the MLLM’s OCR proficiency and pre-
serve its monolingual capability.

» Extensive experiments validate the effective-
ness of the proposed method in improving
the generalization ability of MLLMs on the
DIMT task while maintaining their monolin-
gual competence.

2 Related Work

Different from text machine translation (Yang et al.,
2023, 2024a, 2025), document image machine
translation aims to translate text within document
images from one language to another while preserv-
ing the logical layout (Liang et al., 2024). Recent
advancements in DIMT can be categorized into
two primary approaches: (1) Cascade systems (Hi-
nami et al., 2021; Sable et al., 2023; Zhang et al.,
2023c; Yao, 2023), which employ multiple models
sequentially and encounter issues such as structural
redundancy, error propagation, and high latency.
(2) End-to-end models (Ma et al., 2022; Zhu et al.,
2023; Zhang et al., 2023b; Liang et al., 2024; Ma
et al., 2024; Zhang et al., 2025¢c,b; Guan et al.,
2025), which streamline the process by optimiz-
ing a unified training objective, thereby improving
structural efficiency. These end-to-end methods are
increasingly attracting researchers’ attention. Zhu
et al. (2023) introduces an end-to-end TIMT frame-
work that bridges the modality gap with pre-trained
models. Liang et al. (2024) assembles multiple pre-
trained models to complete the end-to-end DIMT
task. Zhang et al. (2025b) proposes a framework
to unify the geometric layout and logical layout of
document images. While these end-to-end methods
have demonstrated satisfactory performance, their
effectiveness is restricted to respective training do-
mains, with limited cross-domain generalization.
Recent advancements in MLLMs have signifi-
cantly improved the processing and understanding
of text-rich document images (Hu et al., 2024a,b;
Wei et al., 2024b,a; Liu et al., 2024; Yu et al., 2024,
Wang et al., 2024; Jian et al., 2024; Ren et al., 2025).
Wei et al. (2024a) explores adding fine-grained vi-
sion perception for document images to the MLLM
without affecting its existing natural image under-
standing capabilities. Liu et al. (2024) proposes
shifted window attention to achieve cross-window
connectivity at higher input resolutions and token
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Figure 3: Overview of our proposed fine-tuning paradigm SSR. It contains two steps: (1) Monolingual proficiency:
Given a document image and the original OCR prompt, the MLLM generates the source text (OCR result). (2)
Cross-lingual enhancement: Use the self-generated source text and the ground truth target text to fine-tune the
MLLM, enabling it to learn the relationship between the image, source text, and target text, while also smoothing

the training process.

resampler to filter out significant tokens. Wang
et al. (2024) introduces dynamic resolution mecha-
nism and multimodal rotary position embeddings
to facilitating the effective fusion of text, images,
and videos. Although MLLMs have demonstrated
strong performance across various document image
understanding tasks, their effectiveness diminishes
for emerging tasks like DIMT.

3 Method

In this section, we will introduce SSR, a novel fine-
tuning paradigm that leverage the MLLM’s mono-
lingual (OCR) proficiency to enhance its cross-
lingual (DIMT) ability. The overview of our ap-
proach is shown in Figure 3. The key idea is to
train the model to first generate the source text
(OCR result) before producing the target text (trans-
lation text). This approach enables the model to
incorporate both image and source text informa-
tion when generating the target text. Although the
self-generated source text may contain misrecog-
nized or repeated text, since it is sampled from
the model’s original distribution, it contributes to
a smoother convergence of the model’s loss curve
during training, which will be discussed in Sec-
tion 5.1. Furthermore, this self-review process
helps in the retention of the model’s original mono-
lingual capabilities.

3.1 Monolingual Proficiency

This process involves prompting the MLLM with
its original OCR instruction to perform OCR on
the document image. Since the generated text is
sampled from the MLLM’s original distribution, it
is better suited for maintaining its inherent mono-
lingual capabilities.

Given a DIMT dataset D = {(I,Y)}, where I
and Y denote the document image and correspond-

ing ground truth target text, we prompt the MLLM
to generate the OCR result X’ for each document
image I based on its original OCR instruction.

X/ NMLLM(Pocr,I) (1)

where P, is the MLLM’s original OCR instruc-
tion.

This process is similar to some replay methods
(Shi et al., 2024) in continual learning; however,
the key difference is that we allow the MLLM to
generate its own replay data.

3.2 Cross-lingual Enhancement

This process concatenates the self-generated source
text and ground truth target text to fine-tune the
MLLM. This approach enables the model to learn
the relationship between different modalities while
leveraging its monolingual capabilities to enhance
cross-lingual performance, simultaneously facili-
tating self-review of its monolingual proficiency.

SSR constructs a prompt template based on the
original OCR template. Take Qwen2-VL (Wang
et al., 2024) as an example, the prompt construction
is as follows:

SSR-constrained Prompt Template

Instruction:

Convert the content in the image to Markdown
(original OCR instruction of the MLLM), then
translate into Chinese.

Response:

X' (self-generated source text)
<Translation> (special token)
Y (ground truth target text)

The constructed instruction-response pair is sub-
sequently used to train the MLLM using the stan-
dard negative log-likelihood loss, which can be
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formulated as follows:

£=->"logp(Ri|R<:, P,1;0) )

t=1
R = CONCAT(X', < Translation >,Y) 3)

where R, denotes the ¢-th token of the response,
P represents the instruction, 0 refers to the train-
able parameters, and 7 denotes the length of R.

This approach trains the MLLM to gradually
learn to generate target text, using the generated
source text as a reference to guide target text gener-
ation. This aligns more closely with the MLLM’s
original output distribution, resulting in a smoother
training curve for the MLLM.

4 Experiment

4.1 Dataset & Metrics

We randomly select 10K samples from the DoTA
dataset (Liang et al., 2024) and comprehensively
evaluate the model on the DoTA dataset for in-
domain test and DITrans dataset (Zhang et al.,
2023b) for cross-domain test. Detailed settings
can be seen in Appendix A.l.

We thoroughly evaluate the models’ capabilities
in three aspects: (1) Full-text translation, which
means the translation quality of all the text in the
image - BLEU. (2) Plain-text translation, which
means the translation quality of the text after remov-
ing formulas and tables - BLEU-PT. (3) Structure
preserving, which means the model’s ability to
restore the layout structure of the document images
- STEDS (Structure Tree-Edit-Distance-based Sim-
ilarity). All metric calculations follow the same
procedure as described by Liang et al. (2024).

4.2 Settings

We select four MLLMs with different numbers of
parameters: Vary-toy (Wei et al., 2024b), Vary-
base (Wei et al., 2024a), Textmonkey (Liu et al.,
2024) and Qwen2-VL (Wang et al., 2024). Given
the constraints of our computational resources, the
Low-Rank Adaptation (LoRA) technique (Hu et al.,
2022) is utilized in our experiments. Specifically, a
LoRA adapter with a rank of 16 is integrated into
all the linear layers of the LLM part in the MLLM
and exclusively trains the adapter. The MLLMs
are fine-tuned for 3 epochs on the train set. We
use the Adam optimizer and employ a linear decay
learning rate schedule with a learning rate of le-
4. The batch is set to 32 for stable training. The
greedy search is used for inference. More detailed
settings are in Appendix A.2.

4.3 Baselines

We evaluate our method against diverse baselines,
including small models, MLLMs with Chain of
Thought (CoT), Supervised Fine-tuning (SFT), and
replay method, to comprehensively assess its per-
formance and validate its effectiveness.

e Small Model Baselines

LARDIT (Zhang et al., 2023c) This cascade sys-
tem employs a layout analysis model (Yao, 2023),
the OCR tool, and a text-only machine translation
model trained on the DoTA dataset, sequentially.

Nougat-trans (Blecher et al., 2024) We utilize
the Nougat model for combined layout analysis and
OCR and the text-only machine translation model
is employed for translation.

DIMTDA (Liang et al., 2024) This end-to-end
DIMT model uses a model assembler to integrate
multiple pre-trained models to enhance the under-
standing of layout and translation capabilities.

UMTIT (Niu et al., 2024) This model consists of
two image-text modality conversion steps. We only
use the result of the first step for evaluation, which
converts images to text to recognize the source text
and generate translations.

MTKD (Ma et al., 2023) This method can effec-
tively distillate knowledge from the pipeline model
and utilizes three teacher models to improve the
performance of the end-to-end TIMT model.

AnyTrans (Qian et al., 2024) This paper
presents a framework entirely using open-source
models, such as LLMs and text-guided diffusion
models, to complete in-image machine translation.
We only use the result of the translated text for
evaluation.

The following lists the baselines based on
MLLMs. The detailed prompts for each method
can be seen in Appendix A.3.

Base We directly prompt the original MLLM to
perform the DIMT task.

e CoT Baselines

CoT (Direct) (Wei et al., 2022) We directly
prompt the original MLLM to perform "OCR than
translation" on the document image.

CoT (Cascade) (Wei et al., 2022) We first
prompt the original MLLM to perform OCR, and
then prompt it to generate the translation based on
both the image and the OCR result.

o SFT Baselines

SFT (MT) (Ouyang et al., 2022) The MLLM is
first fine-tuned on the English-Chinese parallel cor-
pus from the training set, and then CoT (Cascade)
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Academic Article (ID) Political Report (CD) Ads & News (CD) Time
BLEU BLEU-PT STEDS | BLEU BLEU-PT STEDS | BLEU BLEU-PT STEDS | s/page(])
Baselines
LARDIT 35.58 41.75 75.83 14.66 16.58 57.77 1.64 1.71 41.63 12.46
Nougat-trans 43.37 50.79 88.16 18.39 19.21 52.12 2.71 2.83 40.53 17.03
DIMTDA 38.68 42.34 84.44 12.64 15.03 60.86 2.06 2.17 40.75 9.82
UMTIT 37.40 40.02 82.37 10.06 10.67 51.90 2.77 2.08 40.87 14.76
MTKD 37.32 39.96 82.28 13.24 15.33 59.58 242 2.39 40.89 9.24
AnyTrans 32.98 34.94 75.83 31.05 31.05 57.77 16.47 17.89 41.63 14.81
Vary-base (8.1B)
Base \ 13.45 5.79 76.26 \ 2.84 2.79 56.21 \ 1.06 1.06 44.17 \ 47.62
CoT (Direct) 11.41 4.60 79.89 2.37 2.31 57.11 0.95 0.96 51.05 52.32
CoT (Cascade) 342 1.81 42.11 2.90 2.73 41.17 0.87 0.87 37.14 120.54
SFT (MT) 3.94 2.48 48.00 3.29 3.16 57.89 1.18 1.18 4991 233.08
SFT (DIMT) 19.84 18.60 75.71 4.46 4.49 46.9 0.94 0.94 36.70 92.25
SDFT 11.56 11.51 67.30 2.99 3.02 42.13 0.79 0.82 33.96 137.93
SSR 33.86 34.50 81.72 21.47 22.03 50.92 6.68 6.69 49.07 150.44
Textmonkey (9.7B)
Base \ 0.12 0.21 29.37 \ 0.36 0.62 31.90 \ 0.32 0.67 26.65 \ 64.98
CoT (Direct) 0.34 0.33 33.65 0.99 0.94 37.85 0.88 0.48 33.75 71.88
CoT (Cascade) 0.47 0.61 29.43 0.52 0.74 31.90 0.34 0.70 26.69 123.21
SFT (MT) 16.69 18.93 69.42 12.26 12.26 61.06 5.26 5.26 52.21 259.22
SFT (DIMT) 21.10 24.50 73.07 15.98 16.07 60.46 6.07 6.07 54.25 97.99
SDFT 20.50 24.04 71.80 26.62 27.31 58.51 9.26 9.28 55.68 137.74
SSR 26.45 28.55 75.97 32.66 33.57 59.37 12.40 12.40 54.31 147.83
Qwen2-VL (8.3B)

Base 19.56 15.38 57.29 \ 26.49 26.51 58.10 \ 11.19 11.19 58.81 \ 33.58
CoT (Direct) 12.71 8.01 57.94 22.16 22.30 61.34 6.12 6.12 57.89 40.71
CoT (Cascade) | 29.44 27.07 57.75 36.37 36.31 63.50 28.92 28.92 68.69 58.69
SFT (MT) 33.07 35.30 63.91 35.79 35.78 64.17 18.68 18.68 50.67 113.72
SFT (DIMT) 53.92 53.20 87.27 37.96 37.93 63.08 23.48 23.49 69.72 51.64
SDFT 53.55 55.11 87.17 39.01 38.97 63.25 27.65 27.65 67.78 54.26
SSR 57.23 58.88 89.65 41.91 41.80 67.28 33.61 33.59 71.98 95.48

Table 1: Results on DoTA and DITrans dataset. All MLLMs are fine-tuned on the DoTA dataset and tested on both
the DoTA dataset, which contains images from the Academic Article domain, serving as the in-domain (ID) test
and the DITrans dataset, which includes images from the Political Report, Ads & News domains, serving as the
zero-shot cross-domain (CD) test. The number of parameters for each MLLM is provided alongside its respective
model. The Time refers to the average inference time on a single NVIDIA A100 GPU. () indicates that for this
metric, lower values are better. The bold numbers indicate the best performance achieved by each MLLM.

method above is applied to generate translations.
SFT (DIMT) (Ouyang et al., 2022) The MLLM
is directly fine-tuned on the train set.
¢ Replay Baseline
SDFT (Yang et al., 2024b) This method fine-
tunes the model with a distilled dataset generated
by the model itself to match its original distribution.

5 Results & Analysis
5.1

Table 1 reports the performance of all methods. It
can be observed that our method outperforms the
baselines in terms of translation quality across all
MLLMs with varying sizes and structures. The
results of Vary-toy experiment can be seen in the
Appendix B.1.

e MLLM with Limited Instruction-following
Ability In the Vary-base and Textmonkey exper-

Main Results

iments, the performance of SSR significantly sur-
passes all other methods. Take the Vary-base exper-
iment as an example, the improvements are 14.02
BLEU in the in-domain test, and 17.01 BLEU and
5.74 BLEU in two zero-shot cross-domain tests,
compared to SFT (DIMT). These results show that
our approach can be applied to larger MLLMs,
thereby validating its effectiveness in enhancing
translation quality and generalization.

¢ MLLM with Strong Instruction-following
Ability In the Qwen2-VL experiment, the original
MLLM achieves high translation quality (53.92
BLEU in the in-domain test) despite requiring
only minimal training data, our proposed method
still outperforms SFT (DIMT) by margins of 3.31
BLEU and 5.68 BLEU-PT. Furthermore, in zero-
shot cross-domain evaluations on ads & news do-
mains, SSR surpasses SFT (DIMT) by substantial
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OCR (Document) | OCR (Scene) | DocVQA InfoVQA  ChartQA
CA WA CA WA ANLS ANLS ANLS
\ Base \ 68.46 65.17 4574  41.73 47.76 5.13 7.87
Vary-to SFT (MT) 16.95 13.10 49.09 46.54 27.97 1.16 2.07
y-toy SFT (DIMT) | 14.53 8.81 31.61 29.56 40.10 2.73 5.25
SDFT 64.80 61.50 43.02 39.67 42.59 545 5.98
SSR 61.10 56.86 51.8  46.66 43.61 4.02 4.92
\ Base \ 68.48 64.91 81.41 76.83 66.38 12.75 12.51
Varv-base SFT (MT) 50.39 46.15 80.61 47.78 56.25 6.67 6.55
y SFT (DIMT) | 47.65 42.46 70.01 33.33 60.82 11.02 11.7
SDFT 67.35 63.59 5491 4941 62.68 11.49 12.46
SSR 66.14 62.45 81.26 75.92 62.19 10.15 9.78
\ Base \ 75.52 70.56 84.74 79.40 58.39 22.21 8.69
Textmonke SFT (MT) 9.23 7.49 78.46  74.53 39.17 12.15 6.10
y SFT (DIMT) 8.98 5.69 72.86 68.82 52.52 22.58 7.47
SDFT 73.51 69.77 5796 52.67 39.78 20.45 7.38
SSR 72.76 67.57 83.11 78.59 55.02 22.78 8.11
\ Base \ 85.30 78.20 70.29 64.75 93.55 63.07 63.68
Qwen2-VL SFT (MT) 5.83 3.08 19.83 1745 84.90 54.33 46.57
SFT (DIMT) 5.96 2.17 33.47 31.06 88.98 57.57 56.87
SDFT 86.72 80.12 7198 67.84 90.55 59.72 60.51
SSR 85.18 78.12 82.03 77.48 92.47 60.56 61.37

Table 2: Results of MLLMs’ monolingual ability preserving after fine-tuning with different methods. The bold
numbers indicate the best performance achieved by each MLLM, and the underline numbers are the second best.

—— SFT (DIMT)

2.5 —— SDFT

—— SSR
2.0
Z1s
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0.5

0 200 400 600 800
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Figure 4: Training loss curves of different methods in
the Vary-base experiment.

increments of 10.13 BLEU and 10.10 BLEU-PT.
These findings demonstrate that our approach re-
mains applicable to more advanced MLLMs ex-
hibiting superior instruction-following capabilities,
aligning with the ongoing research direction in
MLLM development. The output samples for the
DIMT test can be seen in Appendix D.

We also shows the training loss in the Vary-base
experiment in Figure 4. As shown in the figure, the
training loss curve of SSR is smoother and achieves
the lowest loss value. This is due to the fact that the
constructed data in the monolingual demonstration
is sampled from the original distribution of Vary-
base, making it more suitable for training.

5.2 Monolingual Ability Preserving

To assess the preservation of monolingual capa-
bilities in base MLLMs across different methods,
we perform a comprehensive evaluation using var-
ious benchmarks. For OCR performance evalua-
tion, we employ the DITrans dataset (Zhang et al.,
2023c) for document image testing and the FST
dataset (Karatzas et al., 2015) for scene text image
testing, with Character Accuracy (CA) and Word
Accuracy (WA) as quantitative metrics. Visual
Question Answering (VQA) capabilities are exam-
ined through the DocVQA (Mathew et al., 2021),
InfoVQA (Mathew et al., 2022), and ChartQA
(Masry et al., 2022) benchmarks, assessed via
the Average Normalized Levenshtein Similarity
(ANLS) metric. Notably, all evaluations are con-
ducted in a zero-shot manner without additional
fine-tuning on downstream task-specific datasets.
The results are listed in Table 2.

For OCR performance, both SFT-based methods
result in a significant decline in OCR effectiveness
across both scenarios, illustrating a classic case
of catastrophic forgetting. In contrast, SSR ex-
hibits remarkable proficiency in maintaining the
OCR capabilities of the base MLLMs. Taking the
Qwen2-VL experiment as an example, SSR causes
only a 0.12 decrease in CA and a 0.08 decrease
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\ DocVQA InfoVQA  ChartQA
Varvt Base 6.65 0.07 0.01
ary-toy SSR 7.57 0.21 0.38
Vary-base Base 8.64 1.10 0.90
y SSR 9.13 1.93 1.64
Textmonkey | B2 | 1920 9.73 13.71
Y| ssR | 2101 10.80 831
Base | 46.99 38.32 50.27
Qwen2-VL | gop | 5516 40.32 50.37

Table 3: Results of MLLMSs’ cross-lingual ability gen-
eralization after fine-tuning with SSR. The text in the
input image is in English, while the questions and an-
swers are in Chinese. The ANLS scores are reported.

in WA in document image scenarios. In the scene
text image scenarios, SSR even surpasses the base
MLLM, achieving a increase of 11.74 in CA and
12.73 in WA. These results underscore the effective-
ness of monolingual demonstrations in preserving
the OCR capabilities of the base MLLMs. In doc-
ument image scenarios, SDFT achieves the best
performance, as it is fine-tuned with document im-
age OCR task data. However, SSR still delivers
comparable performance and surpasses SDFT in
scene text image scenarios, highlighting its supe-
rior generalization capability.

In terms of VQA performance, our method also
exhibits impressive preservation of monolingual
abilities. In the Qwen2-VL experiment, the MLLM
experiences only a 1.08 drop in ANLS on the
DocVQA dataset, a negligible cost compared to
the 4.57 ANLS drop seen with SFT (DIMT). This
highlights the effectiveness of our method in pre-
serving unseen general monolingual capabilities.
The output samples for the OCR and VQA test can
be seen in Appendix D.

5.3 Cross-lingual Ability Generalization

In our preliminary experiments, we observed that
MLLMs, after fine-tuning with SSR, generalize to
cross-lingual document image understanding abili-
ties. Therefore, we conduct further comprehensive
experiments to evaluate their cross-lingual capabil-
ities. We translate both the questions and answers
in several VQA benchmarks into Chinese using
Google Translate and perform evaluation in a zero-
shot manner. The results are shown in Table 3.

It is evident that the cross-lingual document
image understanding ability of MLLMs is sig-
nificantly enhanced after fine-tuning with SSR.
Specifically, after fine-tuning, Qwen2-VL achieves
improvements of 8.17 and 2.00 ANLS on the

DIMT
(Ads & News)

- DIMT
(Docc)fnlfent) ~ "~ (Political Report)
28/16

OCR DIMT
(Scene) A.30" | (Academic Article)
43.20
.98 /
Y 60,
DocVQA ChartQA
60.6
InfoVQA
OCR — Image Caption — VQA

Figure 5: Results of Qwen2-VL through SSR fine-
tuning using different monolingual tasks. Detailed data
can be seen in Appendix C. It is better to zoom in for a
clearer view.

DocVQA and InfoVQA test sets, respectively.
Moreover, by comparing the performance of Vary-
base, Textmonkey and Qwen2-VL, MLLMs with
stronger instruction-following capabilities demon-
strate more substantial improvements. The output
samples for the cross-lingual VQA test can be seen
in Appendix D.

5.4 Monolingual Task Selection

To investigate the impact of different monolingual
tasks on our method, we select OCR, image caption,
and VQA as the monolingual abilities to demon-
strate, constructing synthetic data separately for
fine-tuning Qwen2-VL. Detailed prompt templates
can be found in Appendix A.3. All other settings
remain consistent with the main experiment. We
use BLEU, CA, and ANLS as metrics.

Figure 5 shows that using OCR as the demon-
stration task yields the best performance across all
test sets, effectively enhancing cross-lingual ability
while preserving monolingual proficiency. We be-
lieve this is because, to complete the OCR task, the
MLLM needs to generate the longest text, thereby
preserving the most information from the original
MLLM’s output distribution while also providing
more context for generating target text.

5.5 Extension to Unsupervised Data

A principal advantage of our method lies in its
capacity to harness the MLLM’s OCR capability
alongside extensive unsupervised data (only doc-
ument images) to generate synthetic data, thereby
augmenting the model’s translation performance.
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Academic Articles (ID)
BLEU BLEU-PT STEDS

BLEU BLEU-PT STEDS

Political Report (CD) Ads & News (CD)

BLEU BLEU-PT STEDS

Vary-base (8.1B)

Base \ 13.45 5.79 76.26 \ 2.84 2.79 56.21 \ 1.06 1.06 44.17
SSR w Ground Truth Text 33.71 32.50 83.14 26.05 26.90 56.82 4.63 5.00 46.15
SSR w OCR Text 27.35 25.57 72.16 23.78 24.08 52.50 5.05 5.05 48.35
SSR w Self-generated Text | 33.86 34.50 81.72 21.47 22.03 50.92 6.68 6.69 49.07
Qwen2-VL (8.3B)
Base \ 19.56 15.38 57.29 \ 26.49 26.51 58.1 \ 11.19 11.19 58.81
SSR w Ground Truth Text 54.55 58.07 87.62 41.43 41.38 60.43 32.55 32.55 68.14
SSR w OCR Text 52.83 52.03 84.68 37.63 38.24 61.70 29.09 29.09 64.08
SSR w Self-generated Text | 57.23 58.88 89.65 4191 41.80 67.28 33.61 33.59 71.98

Table 4: Results of Vary-base and Qwen2-VL through SSR fine-tuning using heterogeneous source texts. ID and
CD denote in-domain and cross-domain test, respectively. The bold numbers indicate the best performance.

60 58.58
57.23 3 Vary-base wo UD

[ Vary-base w UD
[ Qwen2-VL wo UD
[ Qwen2-VL w UD

35.29 35.17

33.86 33.61

Academic Articles (ID)

Political Report (CD)

Ads & News (CD)

Figure 6: Results of Vary-base and Qwen2-VL through
SSR fine-tuning using unsupervised data. UD denotes
unsupervised data. Detailed data can be seen in Ap-
pendix C. It is better to zoom in for a clearer view.

To investigate the effectiveness of incorporating ad-
ditional unsupervised data, we randomly select 10K
document images from the DocVQA training set as
the unsupervised data, obtain their OCR results us-
ing MLLMs, and translate them into Chinese using
Google Translate. These synthetic data are then
integrated with the original training set, and we
conduct experiments with Vary-base and Qwen2-
VL under the same settings as SSR in the main
experiment. The results are shown in Figure 6.

As shown in the figure, introducing unsupervised
data further enhances the DIMT performance of
MLLMs in both in-domain and cross-domain set-
tings compared to the main experiment. Taking
Qwen2-VL as an example, although SSR has al-
ready achieved 57.23 BLEU in the academic article
domain, our method, which leverages unsupervised
data to generate synthetic data, leads to an improve-
ment of 1.35 BLEU in the in-domain test and 3.13
BLEU in the cross-domain test. This demonstrates
the significant potential of our approach for practi-
cal applications.

5.6 Extension to Heterogeneous Source Texts

Another advantage of our method lies in the ex-
tensibility to accommodate heterogeneous source
texts. To validate this capability, we conduct
evaluations comparing performance when utilizing
ground truth source texts from the DoTA dataset
and source texts generated by the OCR tool. Exper-
iments are applied to both Vary-base and Qwen2-
VL, following the same settings as the main experi-
ment. The results are listed in Table 4.

Table 4 demonstrates that when the ground truth
source text formatting aligns with the MLLM’s
OCR output format, as observed in Vary-base, SSR
achieves performance parity using either ground
truth text or self-generated text. In contrast, signifi-
cant formatting discrepancies in Qwen2-VL lead
to self-generated text consistently outperforming
ground truth text in SSR across all evaluated do-
mains. Notably, OCR text proves to be a subopti-
mal variant of ground truth text, with performance
degradation attributed to inherent OCR noise ar-
tifacts. This disparity highlights the importance
of format alignment between source texts and the
MLLM OCR output for optimal SSR performance.

6 Conclusion

In this paper, we propose a novel fine-tuning
paradigm, SSR, to enhance MLLMs’ DIMT ca-
pabilities by leveraging their OCR proficiency, of-
fering three key advantages. First, monolingual
proficiency preserves the MLLM’s original mono-
lingual competence by maintaining the source text
format. Second, cross-lingual enhancement en-
ables the MLLM to establish relationships between
different modalities, enriching target text genera-
tion with additional information. Finally, our ap-
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proach can be extended to utilize large-scale un-
supervised data to further enhance performance.
Extensive experiments validate the effectiveness
of SSR, demonstrating its superiority in strength-
ening cross-lingual capabilities while preserving
monolingual proficiency.

Limitations

Although SSR achieves notable results on the
DIMT task, its instruction-following ability and
user interaction can be further improved. In the fu-
ture, we plan to leverage MLLMs’ text-grounding
capabilities and explore the integration of user
prompts to translate text within specific image
regions, thereby enhancing translation alignment
with user preferences.
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Appendix
A Setting Details

A.1 Dataset Settings

We randomly select 10K samples from the DoTA
dataset to form the train set, and use the original
valid and test sets. In the DITrans dataset, the sam-
ple sizes for the advertisement, news, and political
report subdomains are 485, 610, and 1397, respec-
tively. Due to the small number of images in the
advertisement and news domains and their similar
layout structures as scanned document images, we
merge these two domains. We then randomly select
100 images as the test set. For the political report
domain, we also randomly select 100 images as the
test set.

A.2 Main Experiment Settings

We select four MLLMs with different numbers of
parameters: Vary-toy (Wei et al., 2024b), Vary-base
(Wei et al., 2024a), Textmonkey (Liu et al., 2024)
and Qwen2-VL (Wang et al., 2024). We use the
LoRA fine-tuning in our experiments. The LoRA
adapter is added to all the linear layers of the LLM
part in the MLLM. The LoRA rank and alpha are
both equal to 16. We only fine-tune the adapter for
3 epochs with a batch size of 32. A linear decay
learning rate schedule with a learning rate of 1e-4
and a warmup ratio of 0.1 is used. We use Adam
optimizer with 5; = 0.9, f2 = 0.999, ¢ = le — 8
for both training stages. We used two NVIDIA
A100 GPUs and spent 16 hours to complete all the
training task of SSR in the main experiment. The
greedy search is used for inference.

A.3 Detailed Prompts

The OCR instructions used in the main experiment
are listed as follows.

OCR Instruction for Vary-toy/base

Convert the document to markdown format.

OCR Instruction for Textmonkey

Read all the text in the image.

OCR Instruction for Qwen2-VL

Convert the content in the image to Markdown.

The instructions of baselines in the main experi-
ment are listed as follows.

Instruction for CoT (Direct)

Convert the content in the image to Markdown (orig-
inal OCR instruction of the MLLM), then translate
into Chinese.

Prompt Template for CoT (Cascade)

<Round 1>

Instruction:

Convert the content in the image to Markdown.
(original image caption instruction of the MLLM)

Response:
X (self-generated source text)

<Round 2>
Instruction:
Translate these text into Chinese.

Response:
Y (generated target text)

Instruction for SFT (DIMT)

Translate all the text in the image into Chinese and
output in Markdown format.

The prompt templates used in the monolingual
task selection experiment are listed as follows.

Prompt Template for Image Caption

Instruction:

Describe this image (original image caption
instruction of the MLLM), then translate into
Chinese.

Response:

X (self-generated image caption text)
<Translation> (special token)

Y (ground truth target text)

Prompt Template for VQA

Instruction:

Convert the content in the image to Markdown
(original OCR instruction of the MLLM), then
answer the following question:

Q (question from DocVQA, translated into Chinese)

Response:

X (self-generated source text)

<Answer> (special token)

A (answer from DocVQA, translated into Chinese)

B Detailed Analysis
B.1 Small MLLM Results in the Main
Experiment

The results are shown in Table 5. In the Vary-toy
experiment, SSR surpasses SFT (DIMT) by 4.64
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Academic Article (ID) Political Report (CD) Ads & News (CD) Time
BLEU BLEU-PT STEDS | BLEU BLEU-PT STEDS | BLEU BLEU-PT STEDS | s/page(])
Vary-toy (2.2B)
Base \ 10.64 4.92 66.23 \ 2.07 2.10 45.12 \ 0.70 0.70 29.60 \ 43.53
CoT (Direct) 9.17 3.87 73.45 2.40 242 59.58 0.68 0.68 57.91 46.88
CoT (Cascade) 3.99 1.68 38.13 1.09 0.99 36.06 0.23 0.27 38.39 62.64
SFT (MT) 1.99 1.38 32.14 1.30 1.33 41.04 0.47 0.47 40.02 185.38
SFT (DIMT) 9.31 8.37 62.73 1.49 1.47 38.39 0.42 0.46 41.06 86.79
SDFT 7.35 7.44 57.86 1.54 1.56 37.00 0.54 0.55 50.79 98.09
SSR 13.95 14.21 65.49 8.15 8.22 49.25 1.26 1.34 42.84 142.29
Table 5: Results of different settings of Vary-toy on DoTA and DITrans dataset.
Academic Articles (ID) Political Report (CD) Ads & News (CD)
BLEU BLEU-PT STEDS | BLEU BLEU-PT STEDS | BLEU BLEU-PT STEDS
GPT-40 29.70 31.95 59.45 38.66 38.66 60.54 21.75 21.75 59.48
Gemini 30.31 31.69 63.32 40.11 40.11 69.58 26.83 26.83 65.31
Qwen2-VL (8.3B)
Base ‘ 19.56 15.38 57.29 ‘ 26.49 26.51 58.10 ‘ 11.19 11.19 58.81
SFT (DIMT) | 53.92 53.20 87.27 37.96 37.93 63.08 23.48 23.49 69.72
SSR 57.23 58.88 89.65 41.91 41.80 67.28 33.61 33.59 71.98

Table 6: Results on comparison with commercial MLLMs. The bold numbers indicate the best performance of all

models, including the commercial MLLMs.

BLEU on the in-domain test, and also achieves
8.15 BLEU in the political report zero-shot cross-
domain test. These results demonstrate the effec-
tiveness of our method in enhancing both transla-
tion quality and generalization in small MLLMs.
Although our method increases inference time, the
performance improvement makes this trade-off ac-
ceptable.

B.2 Comparison with Commercial MLLMs

With the rapid development of MLLMs, some com-
mercial MLLMs (Hurst et al., 2024; Reid et al.,
2024) demonstrate the capability of understanding
text-rich document images. To assess their ability
to accomplish the DIMT task, we randomly choose
200 samples from the test set of the DoTA dataset
and the original DITrans test sets in the main ex-
periments, then prompt GPT-40 and Gemini with
three different prompts to complete the document
image machine translation task. The prompts we
used are as follows.

Prompts for GPT-40 and Gemini to com-
plete DIMT task

<Prompt 1>
Output the Chinese translations of this image in
markdown format.

<Prompt 2>

Please extract and provide the Chinese translations
of the text contained within this image, ensuring
that the translations are accurately represented, and
format them using markdown for clear presentation.

<Prompt 3>

Please translate the all texts in this image into
English and adhere to the following translation
standards:

Accuracy: Ensure that the translation fully captures
the meaning of all the texts in the image without
adding or omitting any information.

Fluency: The translation should read naturally and
smoothly, reflecting the conventions of the target
language and the translation should follow the
reading order of the image.

Format: The translation should be presented in
markdown format.

We average the metric values of the translation
results obtained from different prompts to deter-
mine the final results. As the output format of
MLLMs may be unstable, we filter the English
parts of the output text and only keep the Chinese
parts.

Table 6 demonstrates that while GPT-40 and
Gemini exhibit inherent capability to execute the
DIMT task, surpassing the baseline Qwen2-VL
model, they exhibit inferior performance compared
to SSR-fine-tuned Qwen2-VL. This discrepancy
stems from commercial MLLMs’ lack of training
on the DoTA dataset and their divergent output for-
mats relative to the reference standards, resulting in
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Academic Articles (ID)
BLEU BLEU-PT STEDS

Political Report (CD)
BLEU BLEU-PT STEDS

Ads & News (CD)
BLEU BLEU-PT STEDS

En-Fr Vary-base (8.1B)

Base | 18.27 11.88 81.87 | 5.46 5.35 56.61 | 3.85 3.85 49.41

SFT (DIMT) | 30.97 29.23 79.16 10.50 10.50 48.17 342 341 41.03

SSR 44.9 45.37 81.71 35.99 36.68 56.21 10.19 10.19 48.79
En-Fr Qwen2-VL (8.3B)

Base | 3042 27.76 60.22 | 40.58 40.57 60.74 | 21.16 21.16 66.56

SFT (DIMT) | 61.19 62.81 87.13 41.95 41.68 62.21 27.82 27.82 57.99

SSR 65.25 68.18 89.85 51.39 51.22 63.34 38.96 38.97 66.58
En-De Vary-base (8.1B)

Base | 18.95 12.62 82.23 | 6.10 5.97 56.10 | 447 4.47 50.03

SFT (DIMT) | 29.11 27.76 78.35 6.66 6.72 48.92 2.73 2.87 41.84

SSR 38.48 37.66 79.57 22.22 22.76 56.47 7.93 8.41 49.25
En-De Qwen2-VL (8.3B)

Base | 2538 22.10 60.52 | 27.23 27.28 5729 | 19.09 19.09 64.78

SFT (DIMT) | 56.15 55.47 86.40 35.01 34.84 61.05 27.18 27.18 63.52

SSR 58.60 60.32 90.09 43.43 43.18 65.61 27.99 27.99 65.31

Table 7: Results on English-French and English-German DIMT test. The bold numbers indicate the best perfor-

mance of all methods.
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Figure 7: Results of Vary-base through SSR fine-tuning
under low-resource scenarios. Detailed data can be seen
in Appendix C.

substantially poorer performance on metrics includ-
ing BLEU and STEDS, compared to Qwen2-VL
after fine-tuning. Notably, Qwen2-VL, after fine-
tuning with SSR, maintains superior performance
over commercial MLLMs in the political report
and ads & news domains, which are absent from
its original training data. In contrast, Qwen2-VL
fine-tuned with SFT does not exhibit comparable
performance. This comparative analysis substanti-
ates SSR’s efficacy in enhancing MLLMs’ general-
ization capabilities for DIMT tasks.

B.3 Low-resource Scenarios

To investigate the performance of our method in
low-resource scenarios, we fine-tune Vary-base

with SSR using different sizes of training data. The
results are presented in Figure 7.

It can be observed that as the training data size
increases, the performance of both methods im-
proves. However, SSR consistently outperforms
SFT across all data sizes and in both testing sce-
narios. With only 10K training samples, SSR sur-
passes SFT, which utilizes 100K training samples,
by 3.01 BLEU on the in-domain test and 18.77
BLEU on the cross-domain test. Even with just
500 training samples, SSR still outperforms SFT
(100K) by 5.09 BLEU on the cross-domain test,
highlighting the exceptional potential of our ap-
proach in low-resource scenarios.

B.4 Evaluation on Other Languages

To verify our method’s effectiveness in other lan-
guages, we conduct English-French and English-
German DIMT experiments. We randomly choose
10K samples from the En-Fr and En-De subsets
of the DoTA dataset to fine-tune MLLMs. The
rest of the settings remain the same as the main
experiment. The results are shown in Table 7.
Taking Qwen2-VL as an example, in the English-
French DIMT test, SSR outperforms SFT (DIMT)
across all test scenarios, achieving a BLEU score
of 65.25 in the in-domain test. Similarly, in the
English-German DIMT test, SSR surpasses SFT
(DIMT) in all test scenarios, reaching a BLEU
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DIMT DIMT DIMT OCR OCR
(Academic Article) (Political Report) (Ads & News) (Document) (Scene) DocVQA  InfoVQA  ChartQA
BLEU BELU BLEU CA CA ANLS ANLS ANLS
OCR 57.23 4191 33.61 85.18 82.03 92.47 60.56 61.37
Image Caption 48.20 33.01 20.37 39.80 44.83 89.98 60.62 60.36
VQA 51.70 39.11 28.16 6.53 18.03 60.12 41.43 39.63
Table 8: Detailed data of Figure 5.
Academic Articles (ID) Political Report (CD) Ads & News (CD)
BLEU BLEU-PT STEDS | BLEU BLEU-PT STEDS | BLEU BLEU-PT STEDS
Vary-base (8.1B)
w/oUD | 33.86 34.50 81.72 21.47 22.03 50.92 6.68 6.69 49.07
w UD 35.29 37.07 84.61 24.24 24.74 52.65 11.63 11.56 51.54
Qwen2-VL (8.3B)
w/oUD | 57.23 58.88 89.65 4191 41.80 67.28 33.61 33.59 71.98
w UD 58.58 60.14 89.94 45.04 45.04 63.49 35.17 35.17 73.12
Table 9: Detailed data of Figure 6. UD denotes unsupervised data.
| SFT (ID) SFT(CD) | SSR(ID) SSR(CD) on the DoTA dataset can understand complex lay-
0.5K 6.82 1.12 11.05 10.81 out relationships and generate translation texts in
IK 8.55 1.95 14.64 12.27 markdown format following human reading order.
2K 10.70 2.53 19.64 16.08 . ; .
5K 13.50 2.84 28.56 2147 Moreover, it can transfer this capability across do-
10K 19.84 4.46 33.86 24.49 mains to political report and ads & news domains.
20K 21.48 4.75 Fi 11 and Fi 12 sh h |
50K 2374 547 igure 11 and Figure 12 show the output samples
100K | 30.85 5.72 of Qwen2-VL (after fine-tuning with SSR in the

Table 10: Detailed data of Figure 7.

score of 58.60 in the in-domain test. These results
demonstrate the effectiveness of SSR in enhancing
the DIMT capability of MLLMs and improving
their generalization in DIMT tasks across different
languages.

C Detailed Data

Table 8 presents the detailed data corresponding to
the results of Qwen2-VL through SSR fine-tuning
using different monolingual tasks, as shown in Fig-
ure 5. Table 9 provides the detailed data corre-
sponding to the results of Vary-base and Qwen2-
VL through SSR fine-tuning using unsupervised
data, as shown in Figure 6. Table 10 lists the de-
tailed data corresponding to the results of Vary-base
through SSR fine-tuning using different training
data sizes, as shown in Figure 7.

D Output Samples

We provide the output samples of Qwen2-VL (after
fine-tuning with SSR in the main experiment) on
the DIMT test in Figure 8, Figure 9, and Figure 10.
It is evident that the MLLM fine-tuned with SSR

main experiment) on the OCR and VQA test. As
shown in the figure, the MLLM retains strong OCR
and VQA capabilities even after being fine-tuned
with SSR. Furthermore, during SSR fine-tuning,
the MLLM learns the relationships between En-
glish and Chinese, enabling it to generalize cross-
lingual VQA capability—allowing it to answer in
Chinese when given an English image and a Chi-
nese question.
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Figure 8: The output samples of Qwen2-VL (after fine-tuning with SSR in the main experiment) on the DoTA
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translations in markdown format after rendering. It is better to zoom in for a clearer view.
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Figure 9: The output samples of Qwen2-VL (after fine-tuning with SSR in the main experiment) on the DITrans
test set (Political Report). For each image pair, the left is the input document image, and the right is the output
translations in markdown format after rendering. It is better to zoom in for a clearer view.
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Steinfeld 14 2 0 AU & .
AT A SESSION NOTABLE FOR ITS SUBSTITUIE GOVI. WITNESSES, Sen. Moss (D-tah) opened Steinfeld S EMALEAL AR S B
hearings of his Consumer Subcommittee Feb. 1 on his bill to requize the Federal Trade
Commission to set maximum limits of "tar" and nicotine in cigarettes, and other

PRI it DU R, B T R Kirkpourick
matters. The Dept. of Health, Education & Welfare said it was "endorsing” the i , B B Cook ( SMTUFSHE—E, AR
measure, at the same time suggesting amendmencs which could cloud its effectiveness. BOEIUIHIEN . SIS Moss B Cook (T-Ky) SINTUIFEHE—R, I B4

HEABE T W,

Dr. Merlin K. DuVal put forth the Administration view, a last-minute sub-
stitute for Surgeon General Steinfeld, who, DuVal said, was at home with —
flu. Duval is assistant secretary of HEW for health & scientific affairs. SR Moss TEWFES LH 447
S G. Steinfeld did not attend or testify at amy session of the hearings.
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Another substitute was FTC's Robert Pitofsky, director of the bureau of consumer pro-

tection, replacing Commission Chairman Kirkpatrick as the agency's witness. Sen. Moss SUBPETERI: SR, YEAT 1070 T (ST R M, BT R
and Sen. Cook (R-Ky.) attended ion of the heari d both asked T o tan o [N & 5
questions of witmesses, T ool of (I NeAinge and both asked mumerous BRI, A SRR - AL, I, B

Sen. Moss opened the hearings by stating that "tar"-nicotine limitation is
"the next logical step" for the govt. to take in regulating cigarettes.

He pointed out that "several cigarette mfrs." have promoted low "t"-n i1t
cigarettes, and said "that activity is to be commended."
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Sen. Cook responded: "The plain truth is that Congress itself made no determination SRR TSR] AT T ARIE S ek, H HR A AT AT LB 5
when it passed the Public Health Cigarette Smoking Act of 1970 beyond the finding that e A SN A R 2 L R A
smoking may be--not is, but may be--hazardous...The case fs not closed, the question TIRAT A RSN RE AT A R R R

is still open, and the jury is still out." Sen. Cook said that "for too long the
cigarette controversy has been characterized by an ample quota of unfairness and a SN, ERIE
callous for its vi sts who dare to doubt and dissent in their S
quest for truth; and thousands upon thousands of tobacco growers whose honest and FUETEBE. i |agRE
productive labor would be taken from them and replaced with welfare payments and =a
Job retraining." °
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Sen. Cook accused Sen. Moss of an unjustified attack on the tobacco industry
and of having mo right to refer to the entire industry as "'merchants of
death’" and "'unconscionable hucksters'" who "'bombard the American people
with wanton invitations to ravish their health'."

S¥20292000

Sen. Cook suggested the anti-smoking zealots use cigarettes as a scapegoat to cover
problems of industrial hazards and air pollution. Their theory, Sen. Cook said, "is
about 1like blaming the Johnstown flood on a leaky faucet in Altoona, Pa."

N

Figure 10: The output samples of Qwen2-VL (after fine-tuning with SSR in the main experiment) on the DITrans
test set (Ads & News). For each image pair, the left is the input document image, and the right is the output
translations in markdown format after rendering. It is better to zoom in for a clearer view.
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Pillar 3:

Governing Al effectively

Ensuring that national governance of Al technologies encourages innovation,
investment, protects the public and safeguards our fundamental values, while
working with global partners to promote the responsible development of Al

internationally

Government's aim is to build the most
trusted and pro-innovation system for Al
governance in the world.

This will be achieved by

Establishing an Al governance framework
that addresses the unique challenges and
opportunities of Al, while being flexibl
proportionate and without creating
unnecessary burdens;

Enabling Al products and services to be

An effective governance regime that supports
scientists, researchers and entrepreneurs to
innovate while ensuring consumer and citizen
confidence in Al technologies is fundament
to the government's vision over the next
decade

tists,

In a world where systematic international
competition will have significant impacts on
security and prosperity around the world, the
‘government wants the UK to be the most
trustworthy jurisdiction for the development
and use of Al, one that protects the public

it

trustworthy, by supporting the develop
of an ecosystem of Al assurance tools and
0 provide meaningful information
I systems to users and regulators;

Growing the UK contribution to the

evel (obal Al technical
standards, to translate UK R&D for
trustworthy Al into robust, technical
specifications and processes that can
support our Al governance model, ensure
global interoperability and minimise the
Costs of regulatory compliance;

men

Building UK regulators’ capacities to use
and assess Al, ensuring that they can deliver
on their responsibilities as new Al-based
products and services come to market

Setting an example in the safe and ethical
deployment of Al with the government
leading from the front;

Working with our partners around the
world to promote international agreements
and standards that deliver for our
prosperity and security, and promote
innovation that harnesses the benefits of Al
25 we embed our values such as fairmess,
openness, liberty, security, democracy, rule
of law and respect for human rights

and the consurner while increasin
confidence and investment in Al technologies
in the UK.

Effective, pro-innovation governance of Al
means that () the UK has a clear
proportionate and effective framework for
regulating Al that supports innovation while
addressing actual risks and harms, (i) UK
regulators have the flexibility and capabilities
to respond effectively to the challenges of Al
and (i) organisations can confidently innovate
and adopt Al technologies with the right tools
and infrastructure to address Al risks and
harms. Tne UK public sector willlead the way
by setting an example for the safe and ethical
deployment of Al through how it governs ts
own se of the technology.

We will collaborate with key actors and
partners on the global stage to promote the
responsible development and deployment of
Al The UK will act to protect against efforts to
adopt and apply these technologies in the
service of authoritarianism and repression.
Through our science partnerships and wider
development and diplomacy work, we wil
seek to engage early with countries on Al
governance, to promote open society values.
and defend human rights

Pillar 3: Governing Al effectively

Tusuring that national governance of Al technologies encourages innovation, investinent, protects the public
and eafeguards our fundamental values, while working with global partners to promate the responsible devel-
opment. of Al internationally
CGovernment's aim is to build tho i
in the world.

most trusted and
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« Ensbling AT products and sevices 1o be rustworthy, by supporting the development of an ecosyste of AT
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Figure 11: The output samples of Qwen2-VL (after fine-tuning with SSR in the main experiment) on the OCR test.
It is better to zoom in for a clearer view.
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Figure 12: The output samples of Qwen2-VL (after fine-tuning with SSR in the main experiment) on the VQA test.
For each document image containing English text, although our model is only trained on the DIMT dataset without
utilizing the VQA dataset, it can still respond in the language corresponding to the question. It is better to zoom in
for a clearer view.
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