
Findings of the Association for Computational Linguistics: ACL 2025, pages 23268–23281
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Thinking Before Running! Efficient Code Generation with
Thorough Exploration and Optimal Refinement

Xiaoqing Zhang1,2* Yuhan Liu1† Flood Sung2

Xiuying Chen3 Shuo Shang4 Rui Yan1,5,6†

1Gaoling School of Artificial Intelligence, Renmin University of China 2Moonshot AI
3Mohamed bin Zayed University of Artificial Intelligence

4University of Electronic Science and Technology of China 5School of Artificial Intelligence, Wuhan University
6Engineering Research Center of Next-Generation Intelligent Search and Recommendation, MoE

{xiaoqingz, yuhan.liu, ruiyan}@ruc.edu.cn floodsung@moonshot.cn
xy-chen@pku.edu.cn jedi.shang@gmail.com

Abstract

Code generation is crucial in software engi-
neering for automating the coding process ef-
ficiently. While test-time computation meth-
ods show promise, they suffer from high la-
tency due to multiple computation rounds. To
overcome this, we introduce ThinkCoder, a
framework that combines thorough exploration
with optimal refinement. The exploration phase
diversifies the solution space by searching
for potential solutions, followed by a refine-
ment phase that enhances precision. This ap-
proach allows us to select the best solution
through careful consideration before taking ac-
tion, avoiding excessive trial and error. To fur-
ther minimize test-time computation overhead,
we introduce preference-driven optimization
with Reinforced Self-Training (ReST), which
uses exploration trajectories from ThinkCoder
to guide LLM’s evolution. This approach en-
hances LLM’s exploration efficiency via pref-
erence learning, cutting costs while maintain-
ing accuracy. ThinkCoder boosts the per-
formance with a single LLM, excelling on
benchmarks like HumanEval and MBPP. Com-
pared to SOTA models, it improves Pass@1
by 3.0% over MapCoder with just 6.4% of
the computation cost. Against AgentCoder,
ThinkCoder achieves a 0.5% higher Pass@1
after 2 rounds, outperforming AgentCoder’s 5
rounds. Additionally, ReST with success tra-
jectories enhances efficiency, allowing models
like LLaMA2-7B to achieve competitive results
using only 20% of the computational resources.
These results highlight the framework’s effec-
tiveness and scalability. 1

1 Introduction

Recent research advances indicate that large lan-
guage models (LLMs) have demonstrated remark-

*This work was done during the internship at Moonshot
AI.

†Corresponding authors.
1The code is available at https://github.com/

xiaoqzhwhu/ThinkCoder

able capabilities in various programming-related
domains, such as code generation (Zheng et al.,
2023; Chaudhary, 2023; Dong et al., 2024; Li et al.,
2024a), code refinement (Chen et al., 2023; Guo
et al., 2024; Zheng et al., 2024; Ridnik et al., 2024;
Liu et al., 2024a; Zhang et al., 2024), and software
testing (Li et al., 2023; Jalil et al., 2023; Wang
et al., 2024; Jones et al., 2024). By utilizing exten-
sive training data, LLMs can understand complex
programming tasks, generate syntactically accu-
rate code, and even enhance the quality of their
solutions through iterative improvement.

In the context of code generation, researchers
have made significant progress in improving
prompts to encourage LLMs to generate higher-
quality answers. This includes two main directions:
optimizing the path for answer exploration and in-
corporating rich reflection information. In the first
direction of path optimization, for example, Self-
Planning (Jiang et al., 2024) reduces problem com-
plexity in code generation by introducing a plan-
ning phase, which refines the solution generation
process. Similarly, CodeCoT (Huang et al., 2023a)
improves the exploration by employing a Chain-of-
Thought(CoT) prompt, enabling models to reason
through each step systematically. In the second
direction, the integration of reflection, test cases,
and feedback is progressively being used to steer
and enhance the generation process. For instance,
RethinkMCTS (Li et al., 2024b) integrates verbal
feedback into its Monte Carlo Tree Search frame-
work to correct errors and improve code generation.
Similarly, AgentCoder (Huang et al., 2023b) boosts
efficiency and accuracy by using interactions be-
tween multiple agents to provide valuable input.

Despite the significant potential of using CoT for
planning code improvements, the thought process
incurs a substantial token overhead. To enhance
efficiency and minimize trial-and-error costs, it is
crucial to clarify the optimization direction before
implementing refinement. Existing methods, such

23268

https://github.com/xiaoqzhwhu/ThinkCoder
https://github.com/xiaoqzhwhu/ThinkCoder

as MapCoder, which leverages four LLM-based
agents, consume a considerable amount of compu-
tational resources.

Based on these insights, we propose ThinkCoder,
a novel framework for efficient code generation
that combines thorough exploration and optimal
refinement. First, we simplified the multi-agent
framework into a single Exploration Agent and a
CodeVerifier. The Exploration Agent is responsible
for in-depth analysis and generating various codes,
while exploring diverse test cases to build a robust
testing pool. The CodeVerifier, using the testing
pool, independently determines the optimization di-
rection without relying on LLMs. By continuously
improving the testing pool throughout the refine-
ment process, ThinkCoder ensures accurate verifi-
cation of generated code in each round, providing
efficient guidance for subsequent optimizations.

Second, to tackle the additional computa-
tional load resulting from extensive exploration,
we incorporate a preference-driven optimization
phase using Reinforced Self-Training (ReST) in
ThinkCoder. ReST leverages successful explo-
ration trajectories to train LLM, enabling it to gen-
erate optimal solutions more efficiently during ex-
ploration. This approach significantly reduces the
computational cost of test-time computations, en-
abling models like LLaMA2-7B to achieve notable
improvements in both performance and efficiency.

Our contributions are as follows:
• We introduce ThinkCoder, an efficiency frame-

work for code generation that integrates an LLM-
based exploration agent with a non-LLM-based
CodeVerifier. We utilize a self-evolving testing
pool, significantly enhancing the speed of code
verification and improvement.

• We introduce preference-driven optimization
with ReST, using exploration trajectories from
ThinkCoder to enhance LLMs’ generation and ver-
ification capabilities, further reducing computa-
tional overhead during testing.
• We have demonstrated the effectiveness of

ThinkCoder on multiple benchmark datasets and
across different scales of LLMs, achieving state-
of-the-art performance in code generation while
optimizing computational efficiency.

2 Related Work

Test-time Compute. Test-time computing meth-
ods use self-play and additional verifiers to enhance
performance, despite the computational overhead.

For example, training a Verifier with Preference
Reward Model data and combining strategies like
Best-of-N Weighted, Beam Search, and Lookahead
Search can help (Snell et al., 2024). ToolLLM (Qin
et al., 2023) evaluates tool usage by comparing suc-
cess rates and solution quality to ChatGPT-ReACT,
employing ToolEval as a Verifier for optimal API
calls using depth-first search. However, API-based
Verifiers are limited by training data and struggle
with generalization. In contrast, our approach em-
ploys a task-based testing tool as a Verifier, offering
a simpler and more effective solution that is closely
aligned with the specific task requirements.

Multi-Agent Code Generation. Deriving multi-
ple agents by mimicking the different stages of hu-
man programming can effectively improve both the
quality and efficiency of code generation, as agents
based on large language models possess strong rea-
soning capabilities (Liu et al., 2024b,c; Zhang et al.,
2025). For instance, AgentCoder (Huang et al.,
2023b) introduces programmer agents, test design
agents, and test execution agents during the code
generation process. Similarly, MapCoder (Islam
et al., 2024) introduces retrieval agents, planning
agents, coding agents, and debugging agents, it-
erating on code generation quality through more
frequent agent communication and reflection. How-
ever, MapCoder incurs higher computational over-
head and relies solely on sample I/O for code ex-
ecution, limiting test case coverage and robust-
ness. In contrast, our framework, ThinkCoder, ad-
dresses these limitations by self-verification effi-
ciently without excessive computational costs.

Instruction Tuning for Code. High-quality
code generation models often require instruc-
tion fine-tuning based on large-scale pre-trained
language models. The fine-tuning data gener-
ally comes from real-world collections or is ar-
tificially synthesized. For example, Code Al-
paca (Chaudhary, 2023) combines the SELF-
INSTRUCT strategy with code fine-tuning,
CODELLAMA (Roziere et al., 2023) gener-
ates questions, solutions, and test cases through
prompts, and OctoPack (Muennighoff et al., 2023)
directly collects data from Git. LLMs fine-tuned
with instructions possess stronger code generation
capabilities. However, existing methods often lack
comprehensive guidelines for data collection, vol-
ume management, and fine-tuning strategies. To
address this gap, we present a detailed fine-tuning
strategy for Llama2-7B using instruction-tuning
data collected via CodeQwen (Bai et al., 2023), pro-

23269

Figure 1: The end-to-end process of ThinkCoder involves k thorough exploration steps followed by n optimal
refinement cycles. The Exploration Agent generates k codes and tests simultaneously during self-exploration,
storing results in a Testing Pool. The optimal refinement phase includes self-verification that selects the optimal
solution with the CodeVerifier and aggregate reflection for the instruction update. The optimal refinement will be
repeated recursively for n cycles, ultimately leading to the final solution.

viding a transparent and reproducible methodology
that supports the advancement of instruction-tuned
code generation models.

3 ThinkCoder

3.1 Overall Architecture

Figure 1 illustrates the structure of ThinkCoder.
Given an instruction I = [p, prompt] for problem
p, where prompt is the task description for code
generation, the Exploration Agent produces k can-
didate solutions. Each solution is paiblue with
m test cases, and the temperature t of the LLM’s
generation is adjusted to promote diversity. These
test cases are then aggregated into a Testing Pool
TP . We define the exploration results as E =
[G,TP], where G = {gi | gi = LLM(p, t) for i ∈
{1, 2, . . . , k}}, and TP ∈ Tk×m, where T rep-
resents each test. The CodeVerifier sequentially
executes each candidate solution in G using the
test cases from TP to compute pass rates. The
code gs with the highest pass rate is selected for
further refinement. Here we define the pass rate
of gi as rgi = number of tests passed by gi

|TP | and gs =
argmaxi rgi . Feedback f from failed test case
ft, along with the current code gs, generated test
cases tests, and problem p, is used to update the
instructions I = [p, gs, ft, f, tests, prompt] for the
next exploration. This iterative process allows the
Exploration Agent to generate improved solutions
and test cases over n iterations. To avoid unneces-
sary computation on well-solved problems, if rgi is

greater than θ, the refinement process is terminated,
and the code gs is returned as the final solution.
For more details of ThinkCoder please refer to the
algorithm 1 in Appendix A.1. Below, we detail the
implementation of Thorough Exploration, Optimal
Refinement, Exploration Agent&CodeVerifier, and
Testing Pool.

3.2 Thorough Exploration

During the thorough exploration phase,
ThinkCoder conducts extensive thinking be-
fore running code and performing corrections.
The self-exploration process generates k answers
simultaneously to expand the search area by
increasing the LLM’s temperature, which flattens
the probability distribution and enhances diversity.
The first iteration of self-exploration aims to
generate diverse code and comprehensive test
cases, including regular tests, boundary tests, and
performance tests. While the subsequent iterations,
focus on the exploration of code correction for
specific errors. The only LLM-based agent
conducts self-exploration with prompt design
detailed in Appendix A.4.

3.3 Optimal Refinement

To solve the problem efficiently, it is essential to
first identify the optimal solution through careful
consideration before making any code corrections.
Therefore, optimal refinement involves selecting
the best solution via self-verification and gathering
the necessary information for deeper exploration

23270

Figure 2: Trajectory collection with ThinkCoder and its application in ReST training for LLMs. We collect
success trajectories offline based on the verification with ground truth tests, ensuring the solution aligns with human
preferences. For reflection, we use LLM-generated tests, ensuring LLMs specifically address their own mistakes.

and improvement in the next exploration. During
self-verification, code quality is assessed by the
pass rate, calculated by the CodeVerifier running
candidate code against all test cases. The code with
the highest pass rate is chosen for refinement. We
then randomly select an unresolved error to target
in the current round of improvements, ensuring
all errors are eventually addressed. The refine-
ment instruction is generated based on the prob-
lem, the current best solution, feedback, and test
cases. After each refinement, the solution’s pass
rate is evaluated. If it exceeds previous solutions,
it becomes the new best. Through multiple itera-
tions, the best solution is continuously corrected
and optimized, resulting in a gradual increase in the
pass rate within the testing pool. For more details,
please refer to the Appendix A.4.

3.4 Exploration Agent& CodeVerifier

ThinkAgent consists of a single exploration agent
and a CodeVerifier. The exploration agent uses
LLMs to search for diversity code and test cases,
while the CodeVerifier runs the provided code snip-
pets and test cases in a local environment to gen-
erate feedback. To improve the efficiency of the
CodeVerifier, we leverage multiprocessing to vali-
date the code in parallel.

3.5 Testing Pool

The Testing Pool includes numerous test cases gen-
erated by the exploration agent, categorized into
regular, boundary, and performance tests. Our goal
is to create a robust pool to assess complex situ-
ations beyond simple cases. A higher pass rate
indicates stronger code robustness, so we ensure
test case diversity and accuracy. Several key opera-
tions contribute to achieving this. Abstract Syntax
Tree (AST) (Backus et al., 1960) is applied to iden-
tify and remove duplicate test cases in the testing
pool, eliminating unnecessary time costs associated
with redundant tests. Additionally, after each itera-

tion, the testing pool only selects test cases that can
improve the code’s pass rate, thus enhancing the
diversity and accuracy of the pool. Finally, the test-
ing pool will select test cases with distinct errors
and use feedback to update the code’s improvement
goals, driving continuous optimization.

4 Preference-driven Optimization

In ThinkCoder, the generated code evolves as the
pass rate on the testing pool improves. Each in-
crease in the pass rate signifies the development
of better codes. This progression demonstrates
that the exploration agent is gradually producing
higher-quality outputs. By collecting the trajec-
tory of these improvements, we aim to fine-tune
the model, enabling the LLM to generate superior
code and test cases more effectively. This approach
helps to refine the exploration process, clarify its
direction, and reduce the time required for explo-
ration. Figure 2 describes the process of trajectory
collection and fine-tuning of the LLM. We will ex-
plain this process from the perspectives of Data
Collection, the Model Training and Inference.

4.1 Data Collection

The process of data collection for LLM fine-tuning
involves two key steps. First, an exploration agent,
denoted as M0, generates diverse low-probability
data DM0 by sampling at various temperatures.
Second, this data is further refined using reflec-
tion to produce an enhanced dataset RM0 . In our
data generation task, offline data collection starts
with a training set D = {xi}Ni=1, where N is
the number of instances in the dataset. We gen-
erate high-quality preference data DM0 ∪RM0 for
LLM fine-tuning through the temperature-based
and reflection-based generation process.

Temperature-based Generation. During
temperature-based generation, we obtain DM0

to enhance the diversity of responses. For a
given problem x, the language model M0 is used

23271

Model n MBPP↑ MBPP-ET↑ HumanEval↑ HumanEval-ET↑ Avg↑

LLama2-7B-Chat

0 27.8 22.9 12.9 11.2 18.7
1 35.3(27.0%) 29.0(26.6%) 15.9(23.3%) 11.6(3.6%) 23.0(23.0%)
2 37.5(34.9%) 29.5(28.8%) 17.1(32.6%) 12.2(8.9%) 24.1(28.9%)
5 38.1(37.1%) 29.8(30.1%) 21.3(65.1%) 12.9(15.2%) 25.5(35.4%)

CodeQwen1.5-7B-Chat

0 73.1 67.8 79.5 71.0 72.9
1 80.2(9.7%) 74.7(10.2%) 90.9(14.3%) 80.5(13.4%) 81.6(11.9%)
2 84.4(15.5%) 75.0(10.6%) 92.1(15.8%) 80.5(13.4%) 83.0(13.9%)
5 86.0(17.6%) 75.0(10.6%) 93.3(17.4%) 80.5(13.4%) 83.7(14.8%)

Kimi

0 70.0 67.4 81.6 73.4 73.1
1 77.2(10.3%) 73.5(9.1%) 87.2(6.9%) 79.9(8.9%) 79.5(8.8%)
2 78.7(12.4%) 74.5(10.5%) 87.2(6.9%) 79.3(8.4%) 79.9(9.3%)
5 79.5(13.6%) 74.8(11.0%) 86.6(6.1%) 79.3(8.4%) 80.1(9.6%)

GPT-4-Turbo

0 81.2 74.4 85.7 81.0 80.6
1 89.5(5.1%) 78.2(5.1%) 90.2(5.3%) 84.8(4.7%) 85.7(6.3%)
2 89.5(5.1%) 79.9(7.4%) 90.8(6.0%) 84.8(4.7%) 86.3(7.1%)
5 89.5(5.1%) 80.0(7.5%) 91.5(6.8%) 84.8(4.7%) 86.5(7.3%)

GPT-4o

0 84.9 78.2 92.5 85.8 85.4
1 88.5(4.2%) 79.9(2.2%) 96.3(4.1%) 87.8(2.3%) 88.1(3.2%)
2 89.6(5.5%) 79.2(1.3%) 97.0(4.9%) 89.0(3.7%) 88.7(3.9%)
5 90.0(6.0%) 79.2(1.3%) 97.0(4.9%) 89.6(4.4%) 89.0(4.2%)

Table 1: ThinkCoder performance of various LLMs. n = 0 indicates results without the framework. n > 0 indicates
results after n iterations of ThinkCoder, with each exploration generating k = 5 solutions for optimal refinement at
temperature t = 0.5. Percentages in parentheses show improvement over the base LLMs.

to explore k times, generating {yj}kj=1, where
yj ∼ M0(y|x). During exploration, a rela-
tively large temperature value t is set for M0.
The generated outputs are then evaluated using
the CodeVerifier, which computes E(x, yj) =
(pass_rate, feedback). For any sample where
pass_rate == 1, the corresponding instance (x, yj)
is added to the training dataset DM0 .

Reflection-based Generation. The primary pur-
pose of generating RM0 is to enhance the ability
of error correction. For a given sample x and the
feedback E(x, yj) = (pass_rate, feedback) from
the CodeVerifier, for samples with pass_rate = 0,
we add the feedback to x and use the language
model M0 to perform temperature-based explo-
ration on the input x′ = (x, feedback) and get
the output y′j . Then we also use the CodeVer-
ifier to obtain the right correction answer with
E(x′, y′j) = (pass_rate′, feedback′). Finally, we
add the instance (x′, y′j) with the pass_rate′ == 1
to the reflection-based trajectories RM0 .

4.2 Model Training and Inference

Generating high-probability text does not necessar-
ily align well with human preferences, which may
lead to biases in various tasks (Becker et al., 2024).
Reinforced Self-Training(ReST) mitigates this is-

sue effectively by collecting offline data aligned
with human preferences for online training (Gul-
cehre et al., 2023). We train the base model M
with the success trajectory dataset DM0 ∪RM0 :

LMLE(θM) = −E(x,y)∼DM0
∪RM0

log pθM(y | x)
In inference, we compare the performance with
baselines at two configurations. The first uses a
fine-tuned base model, feeding input x directly to
generate text at temperature t = 0. This setup
tests if ThinkCoder data improves output quality.
The second configuration uses the fine-tuned base
model as the exploration agent in ThinkCoder. It
generates and refines solutions with k explorations
and n refinements, using different temperature set-
tings t. This aims to assess the framework’s ability
to improve solutions through successful trajectories
and the ThinkCoder framework.

5 Experiments

5.1 Dataset
We utilized the MBPP (Austin et al., 2021) and
HumanEval (Chen et al., 2021) datasets to evaluate
the effectiveness of our approach. To ensure a com-
prehensive assessment, we tested their enhanced
versions—MBPP-ET and HumanEval-ET (Dong
et al., 2023)—which include 80 and 35 times more

23272

Model MBPP↑ MBPP-ET↑ HumanEval↑ HumanEval-ET↑ Avg↑

GPT-3.5-Turbo
MapCoder 78.3 54.4 80.5 70.1 70.8

AgentCoder 89.9 89.1 79.9 77.4 84.1
ThinkCoder(Ours) 90.9 78.8 89.0 81.0 84.9

GPT-4-Turbo
MapCoder 83.1 57.7 93.9 82.9 79.4

AgentCoder 91.4 91.4 89.6 76.2 87.2
ThinkCoder(Ours) 90.5 80.5 93.9 86.0 87.7

Table 2: Pass@1 for MapCoder, AgentCoder, and ThinkCoder on MBPP, MBPP-ET, HumanEval, and HumanEval-
ET benchmarks with GPT-3.5-Turbo and GPT-4-Turbo as the backbone.

Model MBPP↑ MBPP-ET↑ HumanEval↑ HumanEval-ET↑ CodeContests↑ Avg↑

GPT-4o
LDB 82.4 65.4 98.2 81.7 29.3 71.4
LPW 84.8 65.8 98.2 84.8 34.7 73.7

ThinkCoder(Ours) 90.0 79.2 97.0 89.6 40.1 79.2

Table 3: Pass@1 for LDB, LPW, and ThinkCoder on MBPP, MBPP-ET, HumanEval, HumanEval-ET, and Code-
Contests benchmarks with GPT-4o as the backbone.

test cases than the original datasets, respectively.
Regarding the test data, the original problem set
sizes for MBPP and HumanEval are 257 and 164,
while their extended versions contain 378 and 164
problems, respectively. For training, we started
with 374 MBPP training examples and 90 vali-
dation examples, combining them as the initial
dataset. Using temperature-based and reflection-
based generation methods, we expanded this set to
over 2,000 examples for ReST training. We also
evaluate our framework on two major benchmarks
designed for harder problems: LiveCodeBench and
CodeContests. LiveCodeBench consists of the 167
most recent samples collected between October
2024 and January 2025, while CodeContests in-
cludes 165 problems.

5.2 Baselines

In terms of LLM base model selection for the
application of ThinkCoder, we considered a
range of advanced instruction-tuned models, in-
cluding the general-purpose models LLama2-7B-
Chat, Kimi2, GPT-4-Turbo(gpt-4-1106-preview)
and GPT-4o(gpt-4o-2024-05-13), as well as
the code-specific model CodeQwen1.5-7B-Chat.
We conducted a comprehensive evaluation of
ThinkCoder’s Pass@1 performance on MBPP and
HumanEval across LLMs of different parameter
sizes. For the test-time optimization process, we
used the base model LLama2-7B to evaluate per-
formance changes on the MBPP dataset. We com-
pared results obtained before and after fine-tuning,
using either the original training data or the suc-
cess trajectories and incorporating or excluding

2https://platform.moonshot.cn

the ThinkCoder framework. For the composite
model, we compared it with the current SOTA
models, MapCoder (Islam et al., 2024), Agent-
Coder (Huang et al., 2023b), LDB (Zhong et al.,
2024), and LPW (Lei et al., 2024).

Model n LiveCodeBench↑ CodeContests↑

GPT-4-Turbo

0 33.4 16.1
1 43.7(30.8%) 26.1(62.1%)
2 46.1(38.0%) 27.3(69.6%)
5 44.9(34.4%) 28.5(77.0%)

GPT-4o

0 22.5 21.0
1 35.3(56.9%) 34.1(62.4%)
2 38.3(70.2%) 38.9(85.2%)
5 41.3(83.6%) 40.1(91.0%)

Table 4: ThinkCoder performance on LiveCodeBench
and CodeContests. n represents the self-refinement
budget, with the self-exploration budget fixed at k = 5.

5.3 Implementation details
We set different parameter combinations for differ-
ent experimental settings. To validate the improve-
ment of the base LLMs, we set the exploration
budget k = 5, the temperature received by the ex-
ploration agent t = 0.5, the number of optimal re-
finements n = 5, and the budget control threshold
θ = 0.8. The exploration agent generates m = 3
test cases per code. To compare ThinkCoder with
SOTA results, we set the hyperparameters k, t, n,
θ, and m to 20, 1.0, 2, 1.0, and 3, respectively.
In the data collection phase, the exploration agent
M0 is specified as CodeQwen1.5-7B-Chat because
it is free and performs well. During ReST train-
ing, we set the learning rate to 2× 10−5 and train
for 2 epochs. We employ Low-Rank Adaptation

23273

Figure 3: (a) The Pass@1 metric of the baseline models under different temperature t. (b) The Pass@k metric of
the baseline models, where k represents the exploration budget. (c) The variation of the Pass@1 metric for each
baseline model under the ThinkCoder framework as the optimal refinement budget n increases.

(LoRA) (Hu et al., 2021) to train LLMs.

6 Evaluation

Table 1 illustrates the performance changes of var-
ious base LLMs on the MBPP and HumanEval
datasets as the Optimal Refinement iteration n in-
creases. Table 2 and Table 3 compare the perfor-
mance of ThinkCoder and SOTA models, using
GPT-4-Turbo and GPT-4o as the base LLMs. Ta-
ble 4 shows great potential on harder benchmarks.
Table 5 compares ThinkCoder’s computation load
with MapCoder at similar settings. Table 6 presents
the performance changes of LLama2-7B before and
after fine-tuning with trajectory data collected by
ThinkCoder. Table 7 illustrates the ablation study
of self-exploration and self-refinement. Figure 3
shows the impact of changes in the hyperparam-
eter temperature t, exploration budget k, and re-
finement iterations n on the Pass@1 and Pass@k
metric. Figure 4 depicts the trends in the accuracy
of generated test cases and codes as the optimal
refinement iterations in the ThinkCoder increase.

6.1 Performance on Code Generation

Table 1 shows that ThinkCoder achieves significant
improvements in scenarios with fewer standard test
cases, with performance on MBPP and HumanEval
improving by 4%-70% after 5 iterations of refine-
ment. In contrast, gains in more extensive scenar-
ios, like MBPP-ET and HumanEval-ET, are more
modest, ranging from 1%-35%. ThinkCoder’s gen-
erated test cases effectively verify code, reducing
the need for manual tests, but its performance satu-
rates in complex scenarios, making it better suited
for simpler tasks. Table 2 further demonstrates the
potential of ThinkCoder. When the number of ex-
ploration iterations k is extended to 20, ThinkCoder
surpasses AgentCoder’s performance, which needs
5 refinement rounds, in just 2 iterations.

2 4 6 8

Optimal Refinement Iterations
0.40

0.45

0.50

0.55

0.60

0.65

0.70

Pa
ss

@
1

0.48

0.54

0.50

0.58

0.50

0.60

0.51

0.60

0.51

0.62

0.53

0.62

0.54

0.64

0.54

0.64

0.54

0.66
Trendline (Generated Code)
Trendline (Generated Tests)
Generated Tests on Groundtruth Code
Generated Code on Groundtruth Tests

Figure 4: The variation in Pass@1 performance of the
exploration code and test cases on the MBPP dataset
under ThinkCoder, as evaluated by CodeQwen1.5-7B-
Chat as the base LLM.

6.2 Ablation Study of Self-exploration and
Self-refinement

Figures 3(b) and 3(c) highlight the perfor-
mance gains from both self-exploration and self-
refinement. The gain from self-exploration
is greater than that from self-refinement. As
illustrated in Table 7, self-refinement signifi-
cantly enhances efficiency when paired with self-
exploration. However, increasing the exploration
budget excessively (e.g., k = 20) leads to ineffi-
ciency. A moderate increase in the exploration
budget accelerates the optimization of the self-
refinement process.

6.3 Performance with ReST Training

From the results presented in Table 6, it is clear
that ReST fine-tuning on LLama2-7B using suc-
cessful trajectories collected by ThinkCoder sig-
nificantly enhances the model’s core capabilities.
Firstly, LLama2-7B(ReST) demonstrates superior
performance compared to both LLama2-7B(SFT)
and LLama2-7B at iteration 0, highlighting that
ReST training improves the exploration agent’s

23274

Models
HumanEval Mbpp CodeContest

n k Pass@1↑ Tokens (k)↓ n k Pass@1↑ Tokens (k)↓ n k Pass@1↑ Tokens (k)↓
MapCoder 5 5 93.9 21.3 3 3 83.1 5.58 3 3 28.5 18.3

ThinkCoder(Ours) 20 1 93.9 0.26 5 1 89.5 0.24 5 5 28.5 2.94

Table 5: The token usage for agent responses and the required refinement iterations in ThinkCoder for HumanEval
and MBPP, compared to MapCoder (as ThinkCoder and MapCoder share similar configurations), with GPT-4-Turbo
as the base LLM. The tiktoken package is used to calculate the response token usage.

Models
Optimal Refinement Iterations

0 1 2 3 4 5
LLama2-7B 14.7 22.7 24.9 27.7 32.7 36.9

LLama2-7B(SFT) 27.8 35.3 37.5 37.6 38.0 38.1
LLama2-7B(ReST) 32.3 46.2 44.8 46.1 45.7 46.1

Table 6: Performance comparison of the LLama2-7B
model under different settings: baseline without fine-
tuning, supervised fine-tuning (SFT) with original train
dataset, and Reinforced Self-Training (ReST) with suc-
cess trajectories from ThinkCoder on the MBPP dataset.

ability to identify better solutions. Secondly, with
a temperature setting of 0.5, the model achieves
optimal performance with only a single round of
refinement, underscoring the efficiency of ReST
fine-tuning in reducing computational overhead.

Self-exploration
Budget k

Self-refinement Budget n
1 2 3 5 10 20

1 91.7 90.0 91.7 93.3 93.3 95.0
2 93.3 95.0 95.0 96.7 96.7 96.7
5 93.3 93.3 95.0 95.0 96.7 96.7
10 96.7 96.7 96.7 96.7 96.7 96.7
20 96.7 96.7 96.7 96.7 96.7 96.7

Table 7: The performance trends on the randomly 60
Mbpp samples on GPT-4 with varying compositions of
self-exploration and self-refinement budgets.

6.4 Evolution of Generated Code and Tests

After each round of optimal refinement, we evalu-
ated the generated solutions and testing pools. Us-
ing the ground truth test set, we analyzed the per-
formance changes of the solutions in each round.
Meanwhile, the ground truth code was used to as-
sess the changes in the testing pools. As shown in
Figure 4, the accuracy of both the solutions and test-
ing pools improved simultaneously. This demon-
strates that ThinkCoder is capable of generating
continuously optimized test cases while also refin-
ing the quality of the solutions.

6.5 Hyperparameters Study

We conducted hyperparameter selection experi-
ments on the MBPP dataset. As shown in Fig-
ure 3(a), models exhibit optimal performance
at different temperature settings. LLama2-7B-
Chat, CodeQwen1.5-7B-Chat, and Kimi improve
in Pass@1 as temperature increases, while GPT-
4-Turbo and GPT-4o perform better at lower tem-
peratures. Figure 3(b) indicates that Pass@k per-
formance of base LLMs improves with increasing
exploration budget k but eventually stabilizes. Fig-
ure 3(c) shows that Pass@1 performance improves
with more refinement iterations n, but exploration
gains are more significant. For details on hyperpa-
rameters θ and m, see Appendix A.2 and A.3.

6.6 Cost Analysis

In Table 5, we compare the computational overhead
between MapCoder and ThinkCoder. Compablue
to MapCoder, which uses four LLM-based agents
executed serially, ThinkCoder employs only one
LLM-based agent and one non-LLM-based Code-
Verifier, resulting in lower time overhead. There-
fore, we use token overload as a measure of cost
consumption. It reveals that ThinkCoder demon-
strates more efficient resource utilization compared
to MapCoder with a similar pass@1.

7 Conclusion

In this paper, we introduce ThinkCoder, a frame-
work designed to improve the code generation effi-
ciency of LLMs. The proposed approach incorpo-
rates LLM’s exploration with a non-LLM-based
CodeVerifier that greatly reduces the token us-
age. To further minimize computational costs dur-
ing exploration, we capture successful trajectories
through ThinkeCoder to fine-tune the LLM. This
process enhances code generation performance
while reducing refinement iterations for optimal so-
lutions. We evaluate our framework across LLMs
of varying sizes and demonstrate its superior per-
formance over current composite models.

23275

Limitations

In our current approach to managing the testing
pool, we primarily focus on selective expansion but
lack effective strategies for cleaning noise from the
test set. Moreover, test set diversity relies heavily
on LLMs’ generation capabilities. Our work high-
lights the importance of tests and the gap between
generated and annotated cases. We plan to enhance
the testing pool in future work. Furthermore, while
ReST training has demonstrated excellent results in
enhancing the code generation capabilities of foun-
dational LLMs, validation in ThinkCoder reveals
rapid convergence. This indicates that fine-tuning
teaches the LLM to find good answers, but the im-
provement in exploring the overall solution space
remains limited. To address this, we look forward
to introducing on-policy training methods in future
work, combining data collection with fine-tuning
to continuously evolve the model during training.
This will generate more diverse answers and en-
hance the LLM’s online exploration capabilities.

Acknowledgments

This work is also supported by the Public Comput-
ing Cloud, Renmin University of China and by fund
for building worldclass universities (disciplines) of
Renmin University of China.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

John W Backus, Friedrich L Bauer, Julien Green,
Charles Katz, John McCarthy, Alan J Perlis, Heinz
Rutishauser, Klaus Samelson, Bernard Vauquois,
Joseph Henry Wegstein, et al. 1960. Report on the
algorithmic language algol 60. Communications of
the ACM, 3(5):299–311.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Jonas Becker, Jan Philip Wahle, Bela Gipp, and Terry
Ruas. 2024. Text generation: A systematic literature
review of tasks, evaluation, and challenges. arXiv
preprint arXiv:2405.15604.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. GitHub
repository.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak,
Jon Ander Campos, Jun Shern Chan, Samuel R Bow-
man, Kyunghyun Cho, and Ethan Perez. 2023. Im-
proving code generation by training with natural lan-
guage feedback. arXiv preprint arXiv:2303.16749.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo
Li, and Zhi Jin. 2023. Codescore: Evaluating
code generation by learning code execution. arXiv
preprint arXiv:2301.09043.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024.
Self-collaboration code generation via chatgpt. ACM
Transactions on Software Engineering and Method-
ology, 33(7):1–38.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, et al. 2023. Reinforced self-
training (rest) for language modeling. arXiv preprint
arXiv:2308.08998.

Qi Guo, Junming Cao, Xiaofei Xie, Shangqing Liu,
Xiaohong Li, Bihuan Chen, and Xin Peng. 2024. Ex-
ploring the potential of chatgpt in automated code re-
finement: An empirical study. In Proceedings of the
46th IEEE/ACM International Conference on Soft-
ware Engineering, pages 1–13.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Dong Huang, Qingwen Bu, and Heming Cui. 2023a.
Codecot and beyond: Learning to program and test
like a developer. arXiv preprint arXiv:2308.08784.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck,
and Heming Cui. 2023b. Agentcoder: Multi-agent-
based code generation with iterative testing and opti-
misation. arXiv preprint arXiv:2312.13010.

Md Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent
code generation for competitive problem solving.
arXiv preprint arXiv:2405.11403.

Sajed Jalil, Suzzana Rafi, Thomas D LaToza, Kevin
Moran, and Wing Lam. 2023. Chatgpt and software
testing education: Promises & perils. In 2023 IEEE
international conference on software testing, veri-
fication and validation workshops (ICSTW), pages
4130–4137. IEEE.

23276

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024.
Self-planning code generation with large language
models. ACM Transactions on Software Engineering
and Methodology, 33(7):1–30.

Bryan F Jones, HH Sthamer X Yang, and DE Eyres.
2024. The automatic generation of software test data
sets using adaptive search techniques. WIT Transac-
tions on Information and Communication Technolo-
gies, 14.

Chao Lei, Yanchuan Chang, Nir Lipovetzky, and
Krista A Ehinger. 2024. Planning-driven program-
ming: A large language model programming work-
flow. arXiv preprint arXiv:2411.14503.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2024a. Struc-
tured chain-of-thought prompting for code genera-
tion. ACM Transactions on Software Engineering
and Methodology.

Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruim-
ing Tang, Yasheng Wang, Yong Yu, and Weinan
Zhang. 2024b. Rethinkmcts: Refining erroneous
thoughts in monte carlo tree search for code genera-
tion. arXiv preprint arXiv:2409.09584.

Tsz-On Li, Wenxi Zong, Yibo Wang, Haoye Tian,
Ying Wang, Shing-Chi Cheung, and Jeff Kramer.
2023. Finding failure-inducing test cases with chat-
gpt. arXiv preprint arXiv:2304.11686.

Yue Liu, Thanh Le-Cong, Ratnadira Widyasari,
Chakkrit Tantithamthavorn, Li Li, Xuan-Bach D Le,
and David Lo. 2024a. Refining chatgpt-generated
code: Characterizing and mitigating code quality is-
sues. ACM Transactions on Software Engineering
and Methodology, 33(5):1–26.

Yuhan Liu, Xiuying Chen, Xiaoqing Zhang, Xing Gao,
Ji Zhang, and Rui Yan. 2024b. From skepticism to
acceptance: simulating the attitude dynamics toward
fake news. In Proceedings of the Thirty-Third Inter-
national Joint Conference on Artificial Intelligence,
pages 7886–7894.

Yuhan Liu, Zirui Song, Xiaoqing Zhang, Xiuying Chen,
and Rui Yan. 2024c. From a tiny slip to a giant leap:
An llm-based simulation for fake news evolution.
arXiv preprint arXiv:2410.19064.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro Von Werra, and
Shayne Longpre. 2023. Octopack: Instruction tun-
ing code large language models. arXiv preprint
arXiv:2308.07124.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. 2024.
Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint
arXiv:2401.08500.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu,
Song Wang, and Qing Wang. 2024. Software testing
with large language models: Survey, landscape, and
vision. IEEE Transactions on Software Engineering.

Huan Zhang, Wei Cheng, Yuhan Wu, and Wei Hu. 2024.
A pair programming framework for code generation
via multi-plan exploration and feedback-driven re-
finement. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software En-
gineering, pages 1319–1331.

Juntian Zhang, Yuhan Liu, Wei Liu, Jian Luan, Rui Yan,
et al. 2025. Weaving context across images: Improv-
ing vision-language models through focus-centric
visual chains. arXiv preprint arXiv:2504.20199.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024. Opencodeinterpreter: Integrating code
generation with execution and refinement. arXiv
preprint arXiv:2402.14658.

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen
Zhang, Dewu Zheng, Mingxi Ye, and Jiachi Chen.
2023. A survey of large language models for code:
Evolution, benchmarking, and future trends. arXiv
preprint arXiv:2311.10372.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024.
Ldb: A large language model debugger via verify-
ing runtime execution step-by-step. arXiv preprint
arXiv:2402.16906.

23277

A Appendix

A.1 Algorithm of ThinkCoder

Algorithm 1 shows the pseudo-code of ThinkCoder.

A.2 Exploration Budget Control

1 2 3 4 5 6 7 8 9
Optimal Refinement Iteration

0.55

0.60

0.65

0.70

0.75

Ex
pl

or
at

io
n

Bu
dg

et

=0.7
=0.8
=0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pa
ss

@
1

=0.7
=0.8
=0.9

Figure 5: The relationship between the computational
cost and performance of ThinkCoder at different budget
control thresholds, where ‘Pass@1’ indicates the perfor-
mance on the MBPP dataset, and ‘θ’ refers to the budget
control threshold that allows the task to execute the next
exploration process. ‘Exploration Budget’ represents
the ratio of total requests during each iteration.

Figure 5 outlines the number of tasks for the ex-
ploration agent per iteration and the overall Pass@1
metric under different budget control thresholds.
By increasing the exploration budget control thresh-
old θ, the number of tasks requiring correction in
each iteration is significantly reduced, leading to a
notable decrease in ThinkCoder’s runtime. How-
ever, this approach risks leaving some incorrectly
validated tasks uncorrected, which could negatively
impact performance. In our experiments, we set
θ = 0.8, as this value not only progressively im-
proves Pass@1 but also reduces the number of tasks
per iteration by nearly half.

A.3 Exploration for Tests

Metrics
Tests m/Exploration

1 3 5 10
Pass@1 80.0 81.7 81.7 86.7

Overload(s) 28.7 86.0 112.3 364.5

Table 8: The variation in the Pass@1 metric and the
CodeVerifier’s overload is influenced by changes in the
number of test cases m during each exploration.

Algorithm 1 ThinkCoder
1: Initialize the testing pool TP=[], set the globally max pass

rate gp = 0 and best solution gs = None
2: Set the hyperparameters t = 0.5, k = 5, n = 5,m =

3, θ = 0.8
3: Set the instruction prompt for code generation task and

instruction for task p as I = [p, prompt]
4: for each iter ∈ n do
5: Initialize the locally max pass rate lp = 0 and best

solution ls = None for iteration iter
6: Randomly select m successful test cases from TP as

tests
7: Select a new type of error feedback for test ft from

TP as f
8: if ft and f is not None then
9: Update the instruction I =

[p, gs, ft, f, tests, prompt]
10: end if
11: Get code solutions G′ and test cases TP′ from explo-

ration agent for the instruction I within k iterations
12: Deduplicate testing pool TP’ by AST
13: for each i ∈ |G′| do
14: Get the pass rate rgi for solution gi from CodeV-

erifier with the input TP′

15: if rgi > lp then
16: Set lp = rgi , ls = gi
17: end if
18: end for
19: if lp > gp then
20: Set gp = lp, gs = ls
21: Add TP’ to TP
22: end if
23: if gp > θ then
24: return gs as the best solution
25: Terminate optimal refinement iteration
26: end if
27: end for

We randomly selected 60 tasks from the MBPP
test data to observe the performance improvement
and code execution overhead as the number of test
cases m increases during each exploration. Table
8 illustrates this trend. The base model we used is
Kimi. We observed that increasing m leads to im-
proved Pass@1 performance and results in longer
execution times due to the additional effort required
for self-verification. We set m for all experiments
to balance time efficiency and performance.

A.4 Prompts for Exploration Agent

Figure 6 illustrates the input received by the ex-
ploration agent, including the problem, the best
solution, the test cases from the ground truth, the
generated test cases from testing pooling, and feed-
back on test failures.

A.5 Inputs for CodeVerifier

Figure 7 shows the input of the executable Python
environment, including the code and all test cases
from the testing pool.

23278

Figure 6: ThinkCoder exploration agent prompt example.

A.6 Example of Thorough Exploration
Figure 8 illustrates multiple solutions explored by
the exploration agent.

A.7 Example of Optimal Refinement
To better understand the process of optimal refine-
ment, Figure 9 illustrates a single refinement iter-
ation. Before refinement, we leveraged the best
solution output from the previous iteration, along
with failed tests and unmet feedback sampled from
the testing pool. Using this reflection information,
the solution was updated and revalidated on the test
cases in the testing pool. The success rate improved
from 0.217 to 0.356, leading us to select the current
solution as the best solution.

A.8 Example of Testing Pool
Figure 10 illustrates the test cases in the testing
pool generated through multiple explorations by
ThinkCoder.

23279

Figure 7: ThinkCoder CodeVerifier input example.

Figure 8: ThinkCoder exploration examples.

23280

Figure 9: ThinkCoder refinement examples.

Figure 10: ThinkCoder testing pool examples.

23281

