
Findings of the Association for Computational Linguistics: ACL 2025, pages 22361–22373
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

A Joint Optimization Framework for
Enhancing Efficiency of Tool Utilization in LLM Agents

Bin Wu 1 Edgar Meij 2 Emine Yilmaz 1

1 Centre for Artificial Intelligence, University College London
2 Bloomberg

{bin.wu.23,emine.yilmaz}@ucl.ac.uk
emeij@bloomberg.net

Abstract

Large Language Models (LLMs) augmented
with external tools have demonstrated remark-
able capabilities in complex problem solving.
Existing efforts for tool utilization typically in-
volve an LLM agent that contains instructions
on using the description of the available tools
to determine and call the tools required to solve
the problem. Inference Scaling techniques,
such as chain-of-thought and tree-of-thought
reasoning, are commonly used but require sig-
nificant computational overhead and render-
ing such methods impractical in real-world ap-
plications. In this work, we recognize and
formalize the critical role of instructions pro-
vided in agent prompts and tool descriptions—
collectively referred to as context—and show
that incomplete context is one of the reasons
for this computational overhead. To fill this
efficiency gap, we propose an optimization
framework that jointly refines both the instruc-
tions provided in the agent prompt and tool
description, enhancing their interaction. Ex-
periments on StableToolBench and RestBench
demonstrate that our optimized agents achieve
superior efficiency while maintaining effec-
tiveness. Our findings underscore the criti-
cal role of context optimization in improving
LLM agents for tool utilization, paving the way
for more responsive and cost-effective LLM
agents. Our code is available at https://
github.com/Bingo-W/ToolOptimization.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have significantly enhanced their ability
to solve complex problems, particularly when inte-
grated with external tools that provide access to pri-
vate or specialized data and operations (Qin et al.,
2024). These tool-augmented LLM agents are ca-
pable of executing multi-step tasks with increasing
effectiveness (Gou et al., 2024).

To further improve LLM agent capabilities when
utilizing tools, existing efforts aim to extend the in-

2 4 6 8 10 12

Average Number of Tool Calls for Pass Query
30

35

40

45

50

55

60

65

Pa
ss

 R
at

e 
(%

)
CoT@1

CoT@1

CoT@1

CoT@5

CoT@5CoT@5

DFS

DFS
DFS

Complete Context
Incomplete Context
OURS

Figure 1: Pass Rate and Average Number of Tool Calls
for Pass Query on G1-instruction between complete
context and incomplete context, among three different
Inference Scaling algorithms (CoT@1, CoT@5, and
DFS). We show that (1) incomplete context easily leads
to inefficiency issues and (2) our proposed optimization
system can improve both efficiency and effectiveness of
incomplete context.

ference ability by adding more steps. For example,
ReAct (Yao et al., 2023) combines the chain-of-
thought (CoT) reasoning and tool interaction, to
maximize the LLM agent’s capabilities (Wei et al.,
2022). Further research extends the CoT approach
to a tree-based structure (Qin et al., 2024; Zhuang
et al., 2023), largely enhancing effectiveness. De-
spite the success of inference scaling methods in
tool utilization, the significant computational over-
head required by these methods makes them less
useful in practical scenarios, leading to poor user
engagement due to high latency in a real-time, end-
user-facing system.

Some recent works aim to further enhance effi-
ciency by adding a backup mechanism to enable
quick restart from the last successful tool call in-
stead of beginning (Qin et al., 2024), or by group-
ing similar tools as a toolkit (Liu et al., 2024). How-
ever, they ignore the critical role of instructions
provided in the agent prompt and tool descriptions,
which together constitute what we refer to as con-
text. Instructions provided in the agent prompt

22361

https://github.com/Bingo-W/ToolOptimization
https://github.com/Bingo-W/ToolOptimization


are usually designed by extensive human effort via
many trials and errors, and tend to guide the in-
teraction between the agent and the tools. Such
human-designed instructions may result in being
incomplete without covering all the necessary guid-
ance (Wu et al., 2024). The tool description is
expected to contain information about the function-
ality of the tool, so that LLM agents can identify
which tool is needed for the current task at hand.
However, tool descriptions may not fully reflect the
exact functionalities of the tool, which is difficult
to capture for tools with broad/complex functional-
ities.

In our work, we first recognize the need to for-
malize the critical role of instructions provided in
agent prompts and tool descriptions. We posit that
an incomplete context often degrades efficiency by
increasing the number of tool calls required to yield
correct responses, leading to the substantial com-
putational overhead of inference scaling methods
(shown in Figure 1).

To address the inefficiency issue caused by an
incomplete context, we introduce an automated
optimization system that optimizes context for
efficient tool utilization. While previous work
has explored improving instructions (Zhang et al.,
2024; Wu et al., 2024) or refining tool descriptions
(Hsieh et al., 2023; Yuan et al., 2024; Fang et al.,
2024), these efforts primarily focus on effective-
ness rather than efficiency. Furthermore, existing
methods tend to optimize only one aspect—either
the instructions provided in the prompt or the tool
descriptions—failing to capture the interaction be-
tween the instructions and tool descriptions. In-
struction optimization often lacks fine-grained tool-
related knowledge, such as criteria that the input
parameters should satisfy or tool availability. This
omission can lead to wrong or unnecessary tool
calls. On the other hand, tool description optimiza-
tion typically focuses on tool-specific details but
neglects task-dependent information, such as inter-
tool dependencies (Liu et al., 2024), which are cru-
cial for efficient multi-tool orchestration. Instead,
our proposed optimization system systematically
refines both instruction and tool descriptions incor-
porating the interaction between them, to meet the
best of both worlds.

Specifically, our framework consists of three key
components: (1) a feedback generator, (2) a sug-
gestion coordinator, and (3) a context updater. The
feedback evaluator is employed to generate a sys-
tematic evaluation regarding the effectiveness and

efficiency of tool calling. The suggestion coordina-
tor generates separate improvement suggestions for
instruction and tool description from the feedback
that contains a coupled evaluation. The context
updater processes a batch of suggestions to refine
the context, in order to ensure the stability and
efficiency of updating. The whole optimization
pipeline is operated in a verbalized way (Yuksek-
gonul et al., 2024), utilizing the power of text and
reducing the updating cost by avoiding parameter
weight changes.

Our contributions are summarized as follows.
(1) We highlight the critical role of context, which
encompasses both the instructions provided in the
prompt and the description of the tool, where an
incomplete context would require more inference
steps leading to inefficiency in inference. (2) We
propose an automated optimization framework, re-
fining the instruction and tool descriptions, to en-
hance the efficiency of tool utilization. The op-
timization is performed in a verbalized manner,
benefiting from the expressivity and explainabil-
ity of language. (3) We conduct experiments on
two benchmarks, demonstrating that our optimized
agents achieve up to 70% reduction of required
tool calls on StableToolBench and avoid 47% re-
dundant tool calls on RestBench while maintaining
a comparable or even better performance.

2 Related Work

In what follows, we discuss two lines of related
works, i.e., LLM for tool utilization and verbalized
optimization.

2.1 LLMs for Tool Utilization

Recent studies have leveraged the remarkable lan-
guage understanding and reasoning capabilities of
LLMs to tackle complex problems. Integrating
LLMs with external tools, allowing them to func-
tion as LLM agents, significantly enhances their
problem-solving capacity. To benchmark LLM
agents’ ability to utilize tools, Qin et al. (2024)
introduced ToolBench, which includes a compre-
hensive set of tools. A subsequent variant, Sta-
bleToolBench (Guo et al., 2024), incorporates tool
caching and an LLM simulator to improve bench-
mark stability.

Existing approaches to optimizing LLM agents
for tool utilization can be categorized into training-
based and training-free methods. Training-based
methods focus on fine-tuning LLMs for improved

22362



tool use, employing solution-wise rewards (Patil
et al., 2024; Qin et al., 2024) or process-level re-
wards (Nath et al., 2025). However, considering the
prevalence of closed-source LLMs and resource-
constrained environments, our work focuses on
training-free methods, which optimize LLM agents
without modifying their weights (Zhang et al.,
2024). These methods enhance tool utilization by
refining either the instructions given to the agent
in a prompt (Wu et al., 2024), or in the tools’ doc-
umentation (Yuan et al., 2024; Fang et al., 2024).
Additionally, others employ inference scaling tech-
niques to improve reasoning and decision-making
regarding tool selection (Qin et al., 2024; Zhuang
et al., 2023; Nath et al., 2025; Liu et al., 2024). De-
spite these advancements, most existing studies em-
phasize effectiveness while overlooking efficiency.
The substantial computational overhead of LLM-
based tool utilization poses challenges for more
real-time applications. Our work addresses this
gap by identifying inefficiencies caused by incom-
plete contextual information, including instructions
in agent prompts and tool descriptions. We pro-
pose a verbalized optimization system designed to
reduce unnecessary tool calls while maintaining
effectiveness.

2.2 Verbalized Optimization
Prompts play a crucial role in LLM interactions
(Brown et al., 2020), but designing effective
prompts remains challenging, especially for non-
experts. Early work on prompt tuning (Lester et al.,
2021) established it as a standard technique across
various applications. However, its high compu-
tational cost and reliance on gradient-based opti-
mization make it impractical for large-scale models,
particularly closed-source ones such as GPT.

Recent research has explored verbalized opti-
mization, where LLMs serve as optimizers (Yang
et al., 2024; Opsahl-Ong et al., 2024). In this
paradigm, optimization tasks are described in natu-
ral language, and LLMs iteratively refine prompts
based on performance feedback, resembling an
evolutionary algorithm. Unlike these evolutionary-
based approaches, more recent work introduce tex-
tual gradients (Pryzant et al., 2023; Yuksekgonul
et al., 2024; Xiao et al., 2024; Wu et al., 2024),
which relies on the power of verbalized feedback.
However, most existing optimization techniques
focus solely on instruction refinement (Zhang et al.,
2024), neglecting external environment descrip-
tions such as tool documentation. Furthermore,

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Maximum Number of Tool Calls

0.0

0.1

0.2

0.3

0.4

0.5

Pa
ss

 R
at

e

Incomplete: CoT@5
Complete: CoT@5

(a) CoT@5

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Maximum Number of Tool Calls

0.0

0.1

0.2

0.3

0.4

0.5

Pa
ss

 R
at

e

Incomplete: DFS
Complete: DFS

(b) DFS

Figure 2: Pass Rate with different maximum number of
tool calls for different inference scaling methods.

PR% ↑ # Maximum Tool Calls ↓
- 30% 35% 40% 45%

CoT@1
Incomplete 33.7 5 - - -
Complete 40.2 5 5 7 -

CoT@5
Incomplete 48.1 4 7 11 19
Complete 52.8 4 5 7 11

DFS
Incomplete 58.1 5 6 11 15
Complete 54.9 4 5 6 11

Table 1: Efficiency comparison between complete con-
text and incomplete context across three inference scal-
ing techniques.

prior work primarily enhances effectiveness, leav-
ing efficiency largely unexplored. Our work intro-
duces a novel joint optimization framework that
simultaneously optimizes both agent instructions
and tool descriptions to improve the efficiency of
LLM agents for tool utilization.

3 Incomplete Context Leads to Inefficient
Tool Utilization

Recent efforts have focused on inference scaling
methods by adding additional inference steps to
enhance the effectiveness of LLM agents in tool
utilization (Zhuang et al., 2023; Liu et al., 2024).
However, these approaches overlook the critical
role of agent instructions and tool descriptions. In
real-world scenarios, both elements are often in-
complete. Agent instructions are typically crafted
by engineers through iterative trial-and-error pro-
cesses, making it difficult to provide comprehen-
sive guidance (Wu et al., 2024). Similarly, tool de-
scriptions—provided by developers—may not fully
capture a tool’s functionalities, especially when
dealing with complex or multi-purpose tools. Thus,
in this section, we empirically explore the role of
context in tool utilization and analyze its effect
when equipping the inference scaling methods.

Specifically, we evaluate different inference scal-
ing methods on the StableToolBench dataset (Guo
et al., 2024), including chain-of-thought-based (i.e.,

22363



A Batch of
 User Requests

LLM-based
Agent

Instruction

Toolset Tool
Documentation

Initial Trials

Regarding Solution:
The absence of a meaningful final
response could be due to a failure in
aggregating the tool responses into a
coherent answer.

Regarding Process:
There were redundant tool calls.
Specifically, the tool
'projects_for_squake' was invoked
three times, all returning an empty
response.

Feedback
Generator

Suggestion
Coordinator

Context Refiner

Context Refiner

A Batch of
Suggestion

Refine

Refine

Optimized LLM-
based Agent

Not-Optimized
LLM-based Agent

Toolset

A Batch of
Suggestion

Optimization Phrase Deployment Phrase

Number of Tool
Calls: 3

Number of Tool
Calls: 15

Figure 3: Overview of our optimization framework.

CoT@1 and CoT@5) and tree-of-thought-based
methods (i.e., DFS). To simulate incomplete con-
text, we treat instructions and tool descriptions
from the original dataset as complete context, and
extract only the first sentence as the incomplete
context. We compare Pass Rate based on the fixed
maximum number of tool calls in Figure 2 and the
maximum number of tool calls to achieve a given
Pass Rate in Table 1 (Qin et al., 2024) .

We observe that methods using complete con-
text consistently achieve higher Pass Rate given a
fixed maximum number of tool calls (seen in Figure
2). While methods using incomplete context may
occasionally reach higher Pass Rate, they always
require significantly more tool calls to do so. (seen
in Table 1), and this gap widens as the required
Pass Rate increases.

These findings demonstrate that inference scal-
ing methods perform inefficiently in the presence
of incomplete context. Incomplete instructions and
tool descriptions increase computational overhead,
leading to inefficiencies in tool utilization. This
underscores the importance of optimizing both in-
structions and tool descriptions to improve effi-
ciency without compromising effectiveness.

4 Optimizing LLM Agents for Efficient
Tool Utilization

To address the inefficiency issue of LLM agents for
tool utilization caused by an incomplete context,
we introduce an automated optimization framework
that jointly updates both instructions in the agent
prompt and tool descriptions. Inspired by tool
learning of humans through trial and error (Wang
et al., 2024), our approach begins with a batch of

requests and their initial trials on the system. The
system then generates verbalized feedback based
on the final response and tool call sequence, pro-
viding separate improvement suggestions for in-
structions and tool descriptions. These suggestions
are aggregated to refine both instructions in agent
prompt and tool descriptions. The whole pipeline
is shown in Figure 3. Our optimization framework
consists of three key components: (1) Stepwise
and Pairwise Feedback Generator (Section 4.2) (2)
Improvement Suggestion Coordinator (Section 4.3)
(3) Batch Context Refiner (Section 4.4).

4.1 Problem Definition
Let q be a user request, and let T =
{t1, ..., ti, ...} denote the available tools, each as-
sociated with corresponding tool description set
D = {dt1 , ..., dti , ...}, where dti represents the
documentation for tool ti. An LLM agent that is
guided by a verbalized instruction v is expected to
generate a sequence of tool invocation to produce
a final response:

{a1, ..., ai, ...} = f(q | v, T ,D), (1)

where {a1, ..., ai, ...} represents the tool invocation
sequence. The final response R is then generated
based on the outputs {r1, ..., ri, ...} obtained from
executing these tool invocations.

4.2 Step 1: Generating Verbalized Feedback
on Final Response and Tool Calls

Precise feedback is crucial for optimizing LLM
agents. Inspired by recent work on verbalized opti-
mization (Yuksekgonul et al., 2024), we leverage
LLMs’ natural language understanding to generate

22364



verbalized feedback. Compared to numeric feed-
back (Yang et al., 2024), verbalized feedback offers
greater flexibility and interpretability (Yuksekgonul
et al., 2024; Xiao et al., 2024). Moreover, existing
work focuses on the quality of the final response or
the feedback on the whole tool call trajectory (Qin
et al., 2024; Wu et al., 2024), ignoring the stepwise
feedback that is critical to recognizing specific tool
interactions, and essential for refining tool descrip-
tions (Nath et al., 2025).

Thus, we employ a feedback generator Gfeedback
to generate the verbalized feedback vf regarding
the final response R and the tool-calling process
{(ai, ri)} based on the full interaction history, in-
cluding tool invocations ai and their responses ri:

vf = Gfeedback(R | q, {(ai, ri)}Nq , T ,D), (2)

where Nq represents the length of the tool invoca-
tion sequence for request q. The evaluation con-
sists of two key aspects: effectiveness and effi-
ciency. Effectiveness focuses on the quality of the
final response, considering the user’s task and the
intermediate results generated by the tools. Effi-
ciency assesses the quality of the tool-calling pro-
cess, identifying any redundant tool calls.

4.3 Step 2: Improvement Suggestions

Given feedback vf , our optimization system aims
to refine both instructions and tool descriptions.
However, the instruction provided in the agent
prompt and the tool description serve different
roles, where instruction is shared across all re-
quests, while the tool description is considered
more among requests requiring a similar demand.
For example, in a flight booking task, the tool de-
scription might emphasize city-specific constraints,
whereas a tool for scheduling online meetings does
not require city information. Hence, our frame-
work ensures task-agnostic suggestion for instruc-
tions and task-specific suggestion for tool descrip-
tions. To achieve this, we introduce an improve-
ment suggestion coordinator that generates separate
improvement suggestions for instructions va and
tool descriptions vd:

va, vd = Gsugg.(vf | v, {(ai, ri)}Nq , T ,D). (3)

By jointly generating va and vd, we ensure that
modifications maintain holistic consistency be-
tween instructions and tool descriptions.

4.4 Step 3: Batch Context Refining
Individually processing each improvement sugges-
tion can lead to instability due to diverse refine-
ments across requests. Additionally, separate up-
dates for each instance result in computational in-
efficiency. To mitigate these issues, we introduce
a batch-based context refiner, inspired by gradient
accumulation in deep learning (Ott et al., 2018).
The context refiner aggregates multiple improve-
ment suggestions before updating instructions and
tool descriptions:

v′ = Gupdate(v, va
B), d′i = Gupdate(di, vd

B), (4)

where B denotes the batch size of accumulated
suggestions. This approach ensures stable, efficient,
and consistent refinements.

5 Experimental Setup

Following prior work on benchmarking LLM
agents for tool utilization, we employ StableTool-
Bench and RestBench for evaluation. We employ
the more stable version of Toolbench (Qin et al.,
2024), i.e., StableToolBench (Guo et al., 2024),
for evaluation. The ToolBench dataset comprises
diverse user requests across a wide range of pub-
licly available REST APIs from the RapidAPI Hub.
However, ToolBench exhibits instability due to
unsolvable requests, inconsistent tool availability,
and lack of response caching. The subsequent ver-
sion, StableToolBench (Guo et al., 2024), addresses
these issues by removing the unsolvable request,
introducing a tool response cache, and employing
GPT4 as the tool simulator for unavailable tool.
Thus, we use StableToolBench in our experiments.
This benchmark includes 16,464 APIs spanning 49
categories, divided into three subsets: (G1) single-
tool; (G2) multi-tool with the same category; and
(G3) multi-tools with different categories. To eval-
uate our method, we partition the dataset into a
training set for optimization, an Agent Test Set with
unseen requests, and a Tool Test Set with unseen
requests requiring tools overlapped by training set
(details in Table 2).

We also employ another benchmark, RestBench
(Song et al., 2023), for further comparison. Rest-
Bench is a human-annotated benchmark that in-
cludes two realistic scenarios: the TMDB movie
database and the Spotify music player. The queries
in this benchmark are drawn from diverse real-
world user instructions, requiring the use of mul-
tiple APIs to complete. RestBench employs Cor-

22365



#Query
Total G1 G2 G3

Train Set 38 24 11 3
Agent Test Set 258 100 100 58
Tool Test Set 300 100 100 100

Table 2: Number of queries for training and testing on
StableToolBench.

rect Path Rate (CP%) to measure the proportion
of correct paths and ∆ Solution Len to assess the
additional API calls relative to the length of the
gold solutions. We focus on TMDB sub-dataset
following the existing work (Yuan et al., 2024).

5.1 Dataset Split

In our work, we optimize the LLM agent using a
training set. The dataset split is detailed for each
benchmark as follows.
StableToolBench We split the dataset into a small
training set for optimization, an Agent Test Set, and
a Tool Test Set (details seen in Table 2). For the
Training Set, we randomly sample 5% of the test-
ing set in the original dataset as the training set. To
ensure the training set distribution is same as the
original dataset, we maintain the same sampling ra-
tio among G1, G2, and G3. For Agent Test Set, we
randomly select 100, 100, and 58 according to the
limited budget from the original dataset, excluding
the training set, for G1, G2, and G3. To further
examine the quality of the optimized tool docu-
mentation, we select the request from the original
dataset for the Tool Test Set. Considering the re-
maining requests in the original test set have fewer
overlapping tools with our training data, we only
keep requests for Tool Test Set that involve tools
also present in the training set.
RestBench Following existing work (Yuan et al.,
2024), we focus on one subset of RestBench, i.e.,
TMDB, consisting of 50 APIs and 100 user re-
quests. We split 20% for the training set and the
remainder for testing.

5.2 Evaluation

We assess the performance of our approach and
baselines under a simulated incomplete context set-
ting, where we truncate the first sentence of the
instruction and tool description from the original
dataset.

Following prior works in the area, we employ
Pass Rate (evaluated by LLMs) as the primary met-

ric (Qin et al., 2024; Guo et al., 2024). The eval-
uator model used is gpt-4o-mini-2024-07-18. To
measure the efficiency of tool utilization, we ob-
serve that different requests require varying num-
bers of tool calls. Since the maximum number of
tool calls can be influenced by requests that require
more calls, we introduce a normalized cost metric:
(1) Cost: The number of tool calls normalized by
the number of relevant tools in the original dataset.
(2) Cost Threshold: The maximum cost needed to
achieve a given Pass Rate.

New Metrics: Cost-Aware Pass Rate (CAPR)
Prior works primarily employ Pass Rate to evaluate
whether the generated response meets the query’s
requirements (Qin et al., 2024; Guo et al., 2024).
As shown in our preliminary study, Pass Rate can-
not assess the comprehensive performance of LLM
agents on tool utilization. This is caused by Pass
Rate focusing solely on effectiveness while ignor-
ing the number of tool calls, making it unable to
reflect the comprehensive performance of LLM
agents. Inspired by prior works (Ong et al., 2025),
we introduce Cost-Aware Pass Rate (CAPR),
which measures Pass Rate under different cost con-
straints. Specifically, given a pass evaluation func-
tion f(q,R), which returns 1 if the response passes
and 0 otherwise, we define a cost-aware pass func-
tion as:

CP (α) =

{
f(q,R), if n < α

0, otherwise
(5)

where n represents the number of tool calls, and α
is a hyperparameter specifying the maximum Cost
Threshold. CAPR is computed as the integral of
CP (α) over an allowed range of α:

CAPR =

∫
CP (α)dα, (6)

where the integral spans the required computational
cost, with the lower bound set to the necessary
number of tool calls for a given query and the up-
per bound defined as k times the necessary tool
calls, yielding CAPR@k. Since direct integration
is intractable, we approximate CAPR using Monte
Carlo estimation (Kroese et al., 2014):

CAPR(M) ≈ 1

N

∑
CP (α). (7)

Intuitively, CAPR refers to the area below the curve
of the cost-PR pair (shown in Figure 2). This new
metric takes into account both effectiveness and ef-
ficiency, comprehensively reflecting the systematic
performance of LLM agents on tool utilization.

22366



Pass Rate (%) ↑ Cost Threshold↓
G1 G2 G3 Ave. 25% 30% 35% 40% 45% 50%

CoT@5 47.3±0.5 34.3±0.5 4.0±0.8 32.52 1.67 2.40 - - - -
+Reflexion 44.7±0.5 22.0±0.0 9.2±0.8 27.92 1.67 - - - - -
+EasyTool 40.0±0.0 28.2±0.8 8.6±0.0 25.60 2.00 - - - - -
+OURS 45.0±0.0 35.0±0.4 6.9±0.0 32.55 1.50↓10% 1.67↓30% - - - -

DFS 61.2±0.2 47.7±0.5 26.1±1.5 48.07 1.40 2.00 3.00 5.34 9.00 -
+Reflexion 60.0±0.0 48.0±0.8 37.1±0.0 50.20 1.50 2.00 4.50 6.67 10.34 18.67
+EasyTool 57.0±0.8 44.0±0.8 28.2±0.8 43.07 1.67 2.67 4.75 7.75 17.67 -
+OURS 67.3±0.5 47.7±0.5 35.1±0.8 52.46 1.34↓4% 1.50↓25% 1.67↓44% 3.67↓31% 7.67↓15% 16.67−

Table 3: Effectiveness (i.e., Pass Rate) and efficiency (i.e., Cost Threshold) on the Agent Test Set.

5.3 Baseline and Models

We compare our method against the following base-
lines: (1) CoT@5: It follows ReAct (Yao et al.,
2023) that combines CoT and tool interaction. For
a fair comparison, we allow at most 5 retries when
suffering from failure following the original paper
(Guo et al., 2024). (2) Deep-first Tree Search
(DFS): This method extends ReAct into tree-of-
thought reasoning (Guo et al., 2024). It employs
a depth-first tree search algorithm, which utilizes
a backup mechanism to quickly restart from the
last state when suffering from failure. Compared to
CoT@5 restarting from scratch, DFS is more effi-
cient and effective. (3) Reflexion: Based on (Shinn
et al., 2024), this method employs verbalized feed-
back from trial-and-error learning to enhance tool
utilization efficiency. We generate reflexion on
the training set and evaluate it on the test set. (4)
EasyTool: This method introduces a framework for
transforming raw tool documentation into a more
concise format (Yuan et al., 2024).

We employ gpt-3.5-turbo-16k-0613 as our base
model following previous works (Qin et al., 2024;
Guo et al., 2024), and gpt-4o-mini-2024-07-18 as
the base model for optimization. Regarding the
prompt, we follow the prompt of CoT@5 and DFS
from the original paper (Guo et al., 2024). For
Reflexion, we design a dedicated prompt. The
prompts we used can be found in Appendix A.1.

6 Results and Discussion

In this section, we present and analyze the results to
show the effectiveness of our approach and metrics.

6.1 Enhancing LLM Agents’ Efficiency
Through Context Optimization

We compare our proposed optimization framework
against baseline methods to demonstrate its effec-
tiveness in improving efficiency.

Optimized Instructions Improve Efficiency
and Generalization. As shown in Table 3, opti-
mized instructions noticeably enhance efficiency,
even for user requests unseen in the training set.
Our method achieves a comparable Pass Rate with
CoT@5 and a substantially higher performance
with DFS, while requiring up to 30% fewer tool
calls to reach a given Pass Rate. This demonstrates
that optimized instructions reduce the Cost Thresh-
old while maintaining or improving task success.
Additionally, these results confirm that optimized
instructions generalize well to new user requests.

Optimized Tool Descriptions Further Im-
prove Efficiency. As seen in Table 4, when tested
on unseen requests that require overlapping tools,
optimized tool descriptions further reduce tool calls
while preserving a comparable Pass Rate. The re-
duction in Cost Threshold is noteworthy, with de-
creases of 71% for CoT@5 and 59% for DFS. No-
tably, this efficiency gain is greater than that when
evaluating on unseen requests without overlapping
tools (Table 3 and Figure 4). This confirms that
optimized tool descriptions contribute more to effi-
ciency improvements than optimized instructions.

Efficiency Gains Persist Even for Difficult Re-
quests. Across both datasets, the Cost Thresh-
old gap narrows for higher Pass Rate requirements,
as more tool calls are needed to resolve complex re-
quests. However, our optimized context maintains
an efficiency advantage, demonstrating its robust-
ness even under stringent performance constraints.

Context Optimization Enhances Both Effi-
ciency and Effectiveness. These findings confirm
that context optimization not only improves effec-
tiveness, i.e., Pass Rate, but also largely enhances
efficiency by reducing unnecessary tool calls. More
results on RestBench (Table 5) further confirm
this enhancement. This efficiency aspect has been
largely overlooked in prior studies, highlighting the
novelty and importance of our approach.

22367



Pass Rate (%) ↑ Cost Threshold ↓
G1 G2 G3 Ave. 20% 25% 30% 35% 40% 45%

CoT@5 37.7±0.5 22.0±0.0 19.2±0.2 26.30 1.67 5.75 - - - -
+Reflexion 42.0±0.0 18.7±0.5 14.7±0.5 25.13 1.67 2.34 - - - -
+EasyTool 38.2±0.5 22.7±0.5 14.0±0.0 24.97 1.67 - - - - -
+OURS 41.0±0.0 20.0±0.0 19.3±0.2 26.77 1.34↓20% 1.67↓71% - - - -

DFS 62.2±0.5 33.5±0.4 39.0±0.8 44.90 1.34 2.00 4.34 7.25 11.67 -
+Reflexion 53.5±1.1 32.0±0.0 38.7±0.5 41.40 1.34 3.25 6.34 10.00 17.50 -
+EasyTool 50.8±0.2 34.7±1.2 39.2±0.8 41.57 1.67 2.34 5.34 9.00 20.34 -
+OURS 60.3±0.5 33.3±0.2 43.5±0.4 45.70 1.34↓0% 1.67↓17% 2.00↓59% 5.00↓17% 8.34↓29% 29.00−

Table 4: Effectiveness (i.e., Pass Rate) and efficiency (i.e., Cost Threshold) on the Tool Test Set.

1 2 3 4 5
Query Count Cost: query count

reference count

10

15

20

25

30

Pa
ss

 R
at

e 
%

Agent Test Dataset

CoT@5
CoT@5+OURS

(a) Agent: CoT@5

1 2 3 4 5
Query Count Cost: query count

reference count

10

15

20

25

30

35

40

Pa
ss

 R
at

e 
%

Agent Test Dataset

DFS
DFS+OURS

(b) Agent: DFS

1 2 3 4 5
Query Count Cost: query count

reference count

5

10

15

20

25

Pa
ss

 R
at

e 
%

Tool Test Dataset

CoT@5
CoT@5+OURS

(c) Tool: CoT@5

1 2 3 4 5
Query Count Cost: query count

reference count

10

15

20

25

30

35

Pa
ss

 R
at

e 
%

Tool Test Dataset

DFS
DFS+OURS

(d) Tool: DFS

Figure 4: Relationship between Cost Threshold (x-axis) and Pass Rate (y-axis) on Agent Test Set and Tool Test Set.

CP (%) ↑ ∆ Solution Len ↓
Incomplete 73.37 +0.38
+ Reflexion 71.20 +0.26
+ EasyTool 73.91 +0.30
+ OURS 76.21 +0.20

Table 5: Effectiveness (i.e., Correct Path Rate (CP%))
and efficiency (i.e., ∆ Solution Len) on RestBench.

6.2 The Effect of Contextual Optimization

We conduct an ablation study to assess the contri-
bution of each component, along with a detailed
analysis to better understand the effectiveness.

Feedback generation, suggestion coordina-
tion, and batch refinement contribute to large
efficiency gains. We individually remove the Feed-
back Generator, Suggestion Coordinator, and Con-
text Refiner components. The results in Table 6
indicate that omitting any of these components not
only leads to a substantial performance drop but
also increases tool calls required to generate an ac-
ceptable response. These findings underscore the
importance of feedback generation over the entire
trajectory, decoupled suggestion coordination, and
batch-based refinement for optimizing efficiency.

More and diverse trials enhance verbalized
optimization. To examine the impact of training
data on verbalized optimization, we consider two
factors: request scale and request difficulty. We
sample 25% and 50% subsets of easy and hard user

1 2 3 4 5
Query Count Cost: query count

reference count

15

20

25

30

35

40

45

Pa
ss

 R
at

e 
%

Tool Test Dataset

iter_0
iter_1
iter_2

Figure 5: Performance over different iterations.

requests to construct varying training scenarios. As
shown in Table 6, smaller and simpler datasets re-
sult in reduced efficiency gains. This highlights that
both the quantity and diversity of training trials play
a critical role in improving verbalized optimization.

Overfitting Risk occurs in Iterative Optimiza-
tion. Similar to traditional machine learning, ver-
balized optimization supports iterative refinements.
However, as shown in Figure 5, the second iteration,
while improving Pass Rate over the non-optimized
baseline, exhibits increased tool calls, suggesting
that over-optimization can lead to overfitting and
reduced generalizability. Thus, exploring regular-
ization techniques for verbalized optimization is
necessary.

6.3 The Effectiveness of CAPR

We analyze the effectiveness of our proposed eval-
uation metric in providing a more comprehensive

22368



Pass Rate (%) ↑ Cost Threshold ↓
G1 G2 G3 Ave. 15% 25% 35% 45%

DFS 61.7±2.4 46.7±2.4 41.7±2.4 50.03 1.34 1.34 4.00 12.67
OURS 70.0±0.0 45.0±0.6 55.8±1.2 56.93 1.00 1.34 1.34 5.00

Training
Set

50% hard 61.7±2.4 50.0±0.0 41.7±6.2 51.13 1.00 1.50 3.00 6.67
25% hard 55.8±3.1 45.0±0.0 40.0±0.0 46.93 1.00 1.34 4.67 8.34
50% easy 60.0±0.0 41.7±2.4 40.0±0.0 47.23 1.34 1.34 5.34 14.67
25% easy 61.7±2.4 36.7±2.4 45.8±1.2 48.07 1.34 1.67 2.00 20.00

Ablation
w/o Coordinator 58.3±2.4 54.2±1.2 45.0±0.0 52.50 1.34 1.34 2.00 6.25

w/o Feedback 60.0±0.0 47.5±2.0 51.7±2.4 53.07 1.34 1.34 3.00 6.34
w/o Refiner 50.0±0.0 53.3±2.4 55.0±0.0 52.77 1.00 1.34 4.00 6.67

Table 6: Effectiveness (i.e., Pass Rate) and efficiency (i.e., Cost Threshold) on a subset (20%) of Tool Test Set.

Pass Rate (%) CAPR

CoT@1
Incomplete 33.7±0.0 31.34
Complete 40.2±0.9 37.57 ↑

CoT@5
Incomplete 48.1±0.3 37.42
Complete 52.8±0.5 41.42 ↑

DFS
Incomplete 58.1±0.4 37.14
Complete 54.9±0.4 43.17↑

Table 7: CAPR@5 for long context and short context
among different inference scaling algorithms.

G1 G2 G30

10

20

30

40

50

CA
PR

@
5

39.69

29.84

3.60

41.09

35.00

6.74

45.84

31.36

8.56

50.09

32.85

15.52

CoT@5
CoT@5+OURS
DFS
DFS+OURS

Figure 6: CAPR@5 comparison on Agent Test Set.

assessment of LLM agent performance.
CAPR Reflects Efficiency More Accurately.

As shown in Table 7, the CAPR metric aligns with
efficiency assessments from Table 1. For DFS,
while incomplete context yields a higher Pass Rate,
it does so inefficiently, requiring significantly more
tool calls, as reflected by our CAPR metric. Fur-
ther evaluations as visualized in Figure 6 show
that our optimized context consistently outperforms
baselines across various inference scaling methods
and datasets. Notably, even when using a sim-
ple retry strategy (CoT@5), our method outper-
forms backup-based methods (DFS) on the G1 of
Tool Test Set. These results not only validate the
efficiency-focused nature of CAPR but also further
confirm the superiority of our method.

CAPR Captures Task Difficulty. Request diffi-

culty increases from G1 to G3 based on tool count
and diversity. However, Table 4 shows that for DFS,
Pass Rate on G2 is lower than on G3, contradicting
the design. This is because PR ignores efficiency.
In contrast, CAPR aligns with increasing difficulty,
showing a performance decline from G1 to G3.
This indicates CAPR better evaluates both effec-
tiveness and efficiency, making it a superior metric
for LLM agent performance.

7 Conclusion

In this work, we recognize and formalize the criti-
cal role of instructions provided in agent prompts
and tool descriptions in efficient LLM agents for
tool utilization. Our findings reveal that incomplete
context, involving instructions and tool descrip-
tions, often degrades the efficiency of inference
scaling methods on tool utilization, by increasing
the number of tool calls required to yield a correct
response. To fill this efficiency gap, we propose
an automated optimization system that jointly re-
fines both instructions and tool descriptions, en-
abling more efficient LLM agents for tool utiliza-
tion. This optimization process leverages verbal-
ized feedback, capitalizing on the power of lan-
guage. The experiments show that our approach
leads to a remarkable reduction of tool calls by up
to 70% on the StableToolBench dataset and avoids
47% redundant tool calls on RestBench, demon-
strating the effectiveness of our optimization sys-
tem in improving the efficiency of tool utilization.

Acknowledgments

Bin Wu is supported by a Bloomberg Data Science
Ph.D. Fellowship. We thank the ARR reviewers
for their feedback.

22369



Limitations

Due to budget constraints, our experiments were
conducted using the StableToolBench and Rest-
Bench. Since ToolBench and RestBench offer a di-
verse set of tools and requests, our findings are both
interesting and valuable to the community. Future
work will explore the effectiveness of our approach
by testing it on other datasets, which could offer
broader insights and further validate the effective-
ness of our optimization system across different
domains.

References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Proceedings of the 34th International
Conference on Neural Information Processing Sys-
tems, pages 1877–1901.

Wei Fang, Yang Zhang, Kaizhi Qian, James R Glass,
and Yada Zhu. 2024. Play2prompt: Zero-shot tool
instruction optimization for llm agents via tool play.
openreview.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al. 2024.
Tora: A tool-integrated reasoning agent for mathemat-
ical problem solving. In The Twelfth International
Conference on Learning Representations.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. 2024. Stabletoolbench: Towards stable
large-scale benchmarking on tool learning of large
language models. Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models. arXiv preprint arXiv:2308.00675.

Dirk P Kroese, Tim Brereton, Thomas Taimre, and
Zdravko I Botev. 2014. Why the monte carlo method
is so important today. Wiley Interdisciplinary Re-
views: Computational Statistics, 6(6):386–392.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Yanming Liu, Xinyue Peng, Yuwei Zhang, Jiannan Cao,
Xuhong Zhang, Sheng Cheng, Xun Wang, Jianwei
Yin, and Tianyu Du. 2024. Tool-planner: Dynamic

solution tree planning for large language model with
tool clustering. arXiv preprint arXiv:2406.03807.

Vaskar Nath, Pranav Raja, Claire Yoon, and Sean
Hendryx. 2025. Toolcomp: A multi-tool reasoning
& process supervision benchmark. arXiv preprint
arXiv:2501.01290.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chi-
ang, Tianhao Wu, Joseph E Gonzalez, M Waleed
Kadous, and Ion Stoica. 2025. Routellm: Learning
to route llms from preference data. In The Thirteenth
International Conference on Learning Representa-
tions.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David
Broman, Christopher Potts, Matei Zaharia, and Omar
Khattab. 2024. Optimizing instructions and demon-
strations for multi-stage language model programs.
arXiv preprint arXiv:2406.11695.

Myle Ott, Sergey Edunov, David Grangier, and Michael
Auli. 2018. Scaling neural machine translation.
arXiv preprint arXiv:1806.00187.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. 2024. Gorilla: Large language model
connected with massive apis. Advances in Neural
Information Processing Systems.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with" gradient descent" and
beam search. In The 2023 Conference on Empiri-
cal Methods in Natural Language Processing.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2024. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
In The Twelfth International Conference on Learning
Representations.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con-
necting large language models with real-world restful
apis. arXiv preprint arXiv:2306.06624.

Boshi Wang, Hao Fang, Jason Eisner, Benjamin
Van Durme, and Yu Su. 2024. Llms in the imag-
inarium: tool learning through simulated trial and
error. arXiv preprint arXiv:2403.04746.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

22370



Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang,
Michihiro Yasunaga, Kaidi Cao, Vassilis N Ioanni-
dis, Karthik Subbian, Jure Leskovec, and James Zou.
2024. Avatar: Optimizing llm agents for tool-assisted
knowledge retrieval. Advances in Neural Information
Processing Systems.

Tim Z Xiao, Robert Bamler, Bernhard Schölkopf, and
Weiyang Liu. 2024. Verbalized machine learning:
Revisiting machine learning with language models.
arXiv preprint arXiv:2406.04344.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
2024. Large language models as optimizers. In
The Twelfth International Conference on Learning
Representations.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and De-
qing Yang. 2024. Easytool: Enhancing llm-based
agents with concise tool instruction. arXiv preprint
arXiv:2401.06201.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen,
Sheng Liu, Zhi Huang, Carlos Guestrin, and James
Zou. 2024. Textgrad: Automatic" differentiation" via
text. arXiv preprint arXiv:2406.07496.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song,
Chi Wang, Ranjay Krishna, and Qingyun Wu. 2024.
Offline training of language model agents with func-
tions as learnable weights. In Forty-first Interna-
tional Conference on Machine Learning.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra,
Victor Bursztyn, Ryan A Rossi, Somdeb Sarkhel,
and Chao Zhang. 2023. Toolchain*: Efficient action
space navigation in large language models with a*
search. In The Twelfth International Conference on
Learning Representations.

22371



A Appendix

The appendix is structured as follows. We first
show the prompts used in our experiments, fol-
lowed by reports on additional experimental re-
sults.

A.1 Prompts

We show the prompts used for our proposed opti-
mization system as follows:

Prompt for Feedback Generator

You are part of an optimization system
that improves the given agent prompt and
tool documentation. You are the feedback
engine. Your only responsibility is:
Given the following user query, and the
answer consisting of the final response,
and tool invocation and its response, to
generate the detailed feedback based on the
following consideration:

1. Regarding the effectiveness of the solu-
tion,

a. Did the response correctly and fully
answer the query?

b. If no response was generated, analyze
the possible reasons why.

c. If a final response is provided, evaluate
whether it effectively utilizes the tool
responses to construct a complete and
accurate answer.

2. Regarding the efficiency of the solution:

a. Were the tool calls necessary, or could
the same result have been achieved
with fewer tool invocations?

b. Were there redundant or inefficient tool
calls that could have been optimized?
Please point the specific name and the
reason.

Query:
{QUERY}
Answer:
{ANSWER}

Prompt for Suggestion Coordinator

You are part of an optimization system
that improves the given text (i.e., task
description and tool descriptions). Your
only responsibility is:
Given the feedback on effectiveness and
efficiency, the conversation history, and
the current task desciption as well as each
tool documentation, please explain how to
improve the text one by one.

Feedback:
{FEEDBACK}

Converstaion History:
{CONVERSATION_HISTORY}

Task Description:
{TASK_DESCRIPTION}

Tool Descriptions:
{TOOL_DESCRIPTION}

Prompt for Context Refiner.

You are part of an optimization system
that improves the given text (i.e., task
description and tool descriptions). Your
only responsibility is:
Given the text (i.e., agent prompt or
tool documentation) and its associated
improvement suggestion, update the context
by adding new words or rewriting it. Please
focuses more on the shared suggestion.
Note that the optimized text should be in
English even if the original text is not in
English.

Text:
{TEXT}

Improvement Suggestion:
{IMPROVEMENT_SUGGESTION}

A.2 More Experimental Results
We include additional results comparing perfor-
mance under scenarios with incomplete agent
instructions and tool descriptions, as well as
CAPR@5 results on Tool Test Set. As shown in

22372



Pass Rate (%) ↑ Cost Threshold ↓
G1 G2 G3 Ave. 15% 25% 35% 45%

Incomplete
Agent Instruction

DFS 55.0±0.0 40.0±0.0 45.0±0.0 46.67 1.34 2.00 6.00 16.34
OURS 60.0±0.0 40.0±0.0 53.3±4.7 51.10 1.34 1.67 6.00 11.34

Incomplete
Tool Description

DFS 55.0±0.0 40.0±0.0 50.0±0.0 48.33 1.34 1.34 2.00 5.75
OURS 60.0±0.0 53.3±2.4 50.0±0.0 54.43 1.00 1.34 2.00 4.50

Table 8: Effectiveness (i.e., Pass Rate) and efficiency (i.e., Cost Threshold) on a subset (20%) of Tool Test Set, with
only optimizing on incomplete agent instructions / tool descriptions.

G1 G2 G30

10

20

30

40

CA
PR

@
5

32.42

16.18
14.63

38.09

17.91 17.27

34.93

21.39 20.18

43.73

23.88
21.89

CoT@5
CoT@5+OURS
DFS
DFS+OURS

Figure 7: The CAPR@5 comparison on Tool Test Set.

Table 8, our proposed optimization system con-
sistently outperforms baselines, achieving better
performance with fewer tool calls, even under in-
complete agent instructions or tool descriptions.
These findings further demonstrate the robustness
and effectiveness of our optimization framework.
Similarly, the CAPR@5 results in Figure 7 indicate
that our framework maintains superior performance
on Tool Test Set, reinforcing the advantages of our
approach.

22373


