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Abstract

Recent advances in Large Language Models
(LLMs) have led to remarkable achievements,
making prompt engineering increasingly cen-
tral to guiding model outputs. While man-
ual methods (e.g., “chain-of-thought,” “step-by-
step” prompts) can be effective, they typically
rely on intuition and do not automatically refine
prompts. In contrast, automatic prompt op-
timization employing heuristic-based search
algorithms can systematically explore and im-
prove prompts with minimal human oversight.
This survey proposes a comprehensive taxon-
omy of these methods, categorizing them by
where optimization occurs, what is optimized,
what criteria drive the optimization, which op-
erators generate new prompts, and which itera-
tive search algorithms are applied. We further
highlight specialized datasets and tools that
support and accelerate automated prompt re-
finement. We conclude by discussing key open
challenges for future opportunities for more
robust and versatile LLM applications.

1 Introduction

The rapid evolution of Large Language Models
(LLMs) has catalyzed significant progress in di-
verse tasks (Bubeck et al., 2023; Yang et al., 2023b).
As these models become more capable, the de-
sign of the prompt used to interface with them
has emerged as a crucial factor in terms of both
prompt content and format (Zhu et al., 2023). Man-
ual approaches such as “chain-of-thought” (Wei
et al., 2023) prompting or instructing the model to

“Let’s think step by step” (Kojima et al., 2023) can
yield enhanced performance in certain scenarios,
but these methods remain fundamentally reliant on
human intuition and repeated trial-and-error.

*The corresponding GitHub repository for this paper will
be updated at https://github.com/jxzhangjhu/
Awesome-LLM-Prompt-Optimization. Correspon-
dence to {wendi_cui, jiaxin_zhang}@intuit.com.

In contrast, automatic prompt optimization
aims to systematically discover and refine prompts,
minimizing human efforts and potentially uncov-
ering highly effective solutions that manual ex-
perimentation might overlook (Zhou et al., 2023).
These techniques treat prompt design as a search
problem, wherein a heuristic-based search al-
gorithmic process iteratively evaluates candidate
prompts and adapts them based on performance
feedback or other criteria (Pryzant et al., 2023;
Chen et al., 2024a; Yang et al., 2023a). Other lines
of work applies reinforcement learning (Zhang
et al., 2022; Deng et al., 2022; Sun et al., 2023a)
or ensemble methods (Hou et al., 2023; Pitis et al.,
2023) to optimize prompts dynamically or adap-
tively. This survey focuses on heuristic-based
search methods due to their ability to unify a broad
range of strategies under an interpretable, mod-
ular framework that is compatible with both dis-
crete and soft prompt spaces. We further concen-
trate on instruction-focused approaches, empha-
sizing the clarity and structure of the instruction
while optionally incorporating in-context examples.
Instruction-based prompting continues to be the
dominant paradigm, making it a practical and im-
pactful focus. By narrowing our scope to this in-
tersection, we aim to provide a coherent taxonomy
and detailed analysis of methods that are both theo-
retically grounded and widely applicable.

We begin by examining the fundamental dimen-
sions of where optimization happens (optimization
space) and what is optimized (optimization target).
We then review what criteria to optimize (optimiza-
tion criteria), recognizing that many practitioners
now consider objectives beyond task performance.
Then, we dive into how optimization happens by
categorizing which operators are used to create new
prompt candidates and which iterative algorithm
guides the refinement loop. With a growing body
of literature addressing these topics, we also review
benchmarking datasets covering a wide range of
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domains. Moreover, we survey a range of tools
that can automate or streamline prompt optimiza-
tion workflows, enabling rapid iteration with less
manual effort. We conclude by identifying open
problems. Addressing these challenges will unlock
reliable, adaptable, and ethical LLM applications.

2 Preliminary

2.1 Prompt Composition
Prompts generally contain two main components:

1. Instruction: The instruction is a human-
readable statement describing the task or objec-
tive. An instruction establishes the intent and
context for the model, guiding it toward the de-
sired behavior for the particular task.

2. Examples: In-context examples show the model
how to map specific inputs to outputs. These ex-
amples clarify the nature of the task and can im-
prove model performance (Brown et al., 2020).

Prompts may include several examples or none.
For this survey, we cover the instruction-focused
automatic prompt optimization, excluding research
on example-focused optimization.

2.2 Heuristic-based Search Algorithms
Heuristic-based search algorithms provide a prac-
tical framework for optimization problems such
as automatic prompt optimization (Pryzant et al.,
2023; Zhou et al., 2023; Fernando et al., 2024).
Unlike brute-force methods that evaluate every pos-
sible variation, heuristic methods apply problem-
specific knowledge or strategies to navigate the
search space more efficiently (Blum and Roli, 2003;
Talbi, 2009). Key steps in a heuristic-based ap-
proach typically involve:

1. Initialization: Generating one or more can-
didates (e.g., randomly, using partial domain
knowledge, or by perturbing a known baseline).

2. Evaluation: Measuring the performance of each
candidate with respect to a chosen metric (e.g.,
accuracy on a validation set, or a scoring function
provided by a user).

3. Selection and Update: Applying operators or
transitions to the current set of candidates to cre-
ate new candidates with improved performance,
diversity, or both.

4. Termination: Determining when to stop (e.g.,
after a fixed number of iterations or once perfor-
mance converges).

3 Where does Optimization Happen?

Prompt optimization in LLMs can be broadly cat-
egorized into soft prompt space optimization and
discrete prompt space optimization.

3.1 Soft Prompt Space Optimization

Soft prompt optimization operates in a continu-
ous space, allowing for smooth adaptations with
techniques such as gradient-based optimization.
Different approaches vary in whether they utilize
gradients and how they apply them.

Gradient for Embeddings Using gradients for
optimizing prompt embeddings is a widely used
approach (Li and Liang, 2021; Zhang et al., 2021;
Sun et al., 2022b,a, 2024). Li et al. (2024a) uses
gradient descent to optimize prompts leveraging a
loss function tailored to improve prompts’ general-
ization capability across diverse domains.

To improve efficiency, some research chooses to
estimate gradients, rather than directly computing
them. ZOPO (Hu et al., 2024) employs Zeroth-
Order Optimization to refine prompts without ex-
plicit gradient computation. It enables gradient es-
timation by using the Neural Tangent Kernel (Jacot
et al., 2018) in a derived Gaussian process, approx-
imating optimization dynamics in neural networks.

Gradient-Based Target Selection Another line
of research utilizes gradients to identify target to-
kens to replace within a prompt candidate (Zhou
et al., 2024; Zou et al., 2023; Zhao et al., 2024).
Greedy Coordinate Gradient (GCG) (Zou et al.,
2023) leverages gradient information to detect to-
kens that can minimize objective loss. It computes
the gradient of the loss function with respect to the
vector of each token, selecting the top-k tokens with
the highest gradient values for modification. Zhao
et al. (2024) enhance GCG with Probe Sampling,
which accelerates prompt optimization by using
two models: a smaller, faster "draft model" that as-
sesses potential token replacement candidates and
filters out unpromising ones; and a larger, more
powerful "target model" which takes the filtered
candidates for a full evaluation. Probe Sampling
dynamically adjusts how many candidates are fil-
tered by measuring the agreement between the draft
and target models’ rankings of a small "probe set"
of candidates. This adaptive filtering minimizes un-
necessary computation for the large target model,
leading to substantial speed gains.
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Figure 1: Taxonomy of Heuristic-based Search Algorithm in Automatic Prompt Optimization. Additional mapping
of methods to taxonomy can be seen in Appendix Section A.

Gradient for Vocabulary In DPO (Wang et al.,
2024b), gradients are estimated by a Shortcut Text
Gradient approach that continuously relaxes the
categorical word choices to a learnable smooth dis-
tribution over the vocabulary using Gumbel Soft-
max trick. This allows for the computation of gra-
dients through the non-differentiable embedding
lookup table. By ultimately learning a distribution
over the vocabulary, DPO iteratively improves the
quality of the generated prompts.

Non-Gradient Approach Other works optimize
in soft prompt space but do not employ a gradient-
based approach. InstructZero (Chen et al., 2024a)
employs Bayesian Optimization to adjust prompt
representations and propose new soft prompts with-
out calculating gradients.

3.2 Discrete Prompt Space Optimization

Discrete prompt optimization treats prompts as
fixed textual structures and refines them directly
(Diao et al., 2022; Prasad et al., 2023). Unlike soft
prompt methods, which adjust prompts in a contin-
uous space, discrete methods optimize prompts in
a non-differentiable space.

While soft prompt methods leverage gradient-
based optimization, discrete approaches have de-
veloped gradient-like strategies suited for non-
differentiable settings. ProTeGi (Pryzant et al.,
2023) employs an LLM-based feedback system to
generate pseudo-gradients and utilizes beam search
to iteratively refine prompts, effectively mimicking
the refinement process in gradient-based methods.

Beyond gradient-like approaches, other methods
explore alternative optimization strategies. Evo-
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Prompt (Guo et al., 2024) integrates evolutionary
algorithms to iteratively refine prompts, employing
semantic modification, crossover, and difference
mechanisms for optimization. Cheng et al. (2024)
trains a prompt-optimize model to rewrite prompts.

Overall, while soft prompt optimization excels
in flexible and differentiable adjustments, discrete
prompt optimization remains crucial for structured
modifications where interpretability and explicit
textual refinement are necessary.

4 What is Optimized?

4.1 Instruction-only Optimization

Early approaches primarily focused on refining
the instruction itself through techniques such as
rephrasing, adding constraints, or incorporating ad-
ditional context (Yang et al., 2023a; Hsieh et al.,
2024; Pan et al., 2024). After instruction opti-
mization, some approaches introduce examples ran-
domly to enhance task performance (Zhou et al.,
2023; Pryzant et al., 2023). However, this choice
often overlooks the interaction between added ex-
amples and instructions, resulting in suboptimal
solutions (Wang et al., 2024a; Wan et al., 2024).

4.2 Instruction & Example Optimization

Recent research has increasingly focused on opti-
mizing both instructions and examples. Existing
approaches can be classified into three paradigms:

Example to Instruction This approach begins
by selecting and preprocessing examples, which
are then used to generate an appropriate instruction.
MoP (Wang et al., 2024a) adopts this strategy by
clustering examples into Expert Subregions and
deriving specialized instructions for each cluster.
This ensures that the instructions are well-aligned
with the examples, improving task adaptation and
overall effectiveness.

Instruction to Example In this approach, an ini-
tial instruction is used to generate examples that
align with the intended task. MIPRO (Opsahl-Ong
et al., 2024) follows this methodology by employ-
ing a default instruction to create successful input-
output pairs as examples. This ensures that the
examples complement the instruction and reinforce
the model’s understanding of the task.

Concurrent Instruction and Example This cat-
egory focuses on optimizing both instructions and
examples simultaneously. EASE (Wu et al., 2024)

prioritizes selecting the best combination of in-
struction and examples from a pool of pre-defined
candidates, using bandit algorithms to identify the
most effective prompt structure. Whereas Adv-ICL
(Long et al., 2024), dynamically generates new in-
structions and examples, refining both components
iteratively with three models. By optimizing both
elements in tandem, these methods ensure that in-
structions and examples are mutually reinforcing.

4.3 Instruction & Optional Example

Unlike prior approaches that strictly generate exam-
ples with instructions, PhaseEvo (Cui et al., 2024b)
introduces a flexible framework capable of generat-
ing both few-shot and zero-shot prompts depending
on what works best for the task. This adaptability
allows the model to optimize performance dynam-
ically, selecting whether examples are necessary
based on empirical effectiveness.

5 What Criteria to Optimize

In heuristic-based automatic prompt optimization,
the objectives or criteria for refinement vary widely
depending on the application domain. While early
research predominantly focused on task perfor-
mance, growing interest in real-world deployments
has led to broader optimization goals:

1. Task Performance Most approaches prioritize
task-specific metrics and optimize prompts to
enhance performance on the given task. Some
approaches use a validation set to evaluate can-
didates (Guo et al., 2024), while others use a
surrogate model of the objective function for
candidate evaluation and selection (Opsahl-Ong
et al., 2024; Chen et al., 2024b).

2. Generalizability Some methodologies ex-
tend beyond single-task performance, seeking
prompts that generalize across multiple domains.
Li et al. (2024a) introduce a Concentrate-focused
framework to improve the domain generalizabil-
ity of prompts by leveraging internal information
from deep model layers. Their findings indicate
that prompts receiving higher attention from deep
layers tend to generalize better and that prompts
with stable attention distributions enhance gen-
eralization. Their approach optimizes for gener-
alizability in both soft and discrete spaces.

3. Safety and Ethical Constraints Ensuring safety
is a critical aspect of prompt optimization for
large language models. Studies such as RPO

22096



(Zhou et al., 2024) emphasize the importance of
designing prompt suffixes that resist adversarial
manipulations and mitigate unintended behav-
iors. These safeguards are essential for defend-
ing against jailbreaking attempts.

4. Multi-Objective Optimization Multi-objective
optimization plays a crucial role in balancing dif-
ferent priorities such as accuracy, efficiency, and
safety. SOS (Sinha et al., 2024) employs an inter-
leaved multi-objective evolutionary algorithms
to optimize both task performance and safety
where one objective is optimized first followed
by another. In contrast, other approaches adopt
a parallel optimization strategy of all objectives,
followed by Pareto Optimization to derive the
most effective prompts across multiple objectives
(Menchaca Resendiz and Klinger, 2025; Yang
and Li, 2023; Baumann and Kramer, 2024).

6 Which Operators are Used

For iterative optimization, generating new candi-
date prompts is essential. These generation meth-
ods, referred to as operators, are categorized based
on the number of parent prompts needed. Parent
prompts are existing prompts used to derive new
candidates.

6.1 Zero-Parent Operators

Lamarckian The Lamarckian operator is an
LLM-based operator that emulates the Lamarckian
adaptation process, which refers to the idea of feed-
ing back learned improvements (i.e., successful
outputs or reasoning traces—phenotypes) into the
prompt itself (genotype) to inform future genera-
tions. This mimics the Lamarckian notion of inher-
iting acquired traits (Fernando et al., 2024). By an-
alyzing concrete inputs that yield correct outputs, it
attempts to reverse-engineer the instruction prompt.
This operator is widely adopted in research, espe-
cially during initialization (Zhou et al., 2023; Hu
et al., 2024; Wu et al., 2024; Fernando et al., 2024;
Wang et al., 2024a). MIPRO (Opsahl-Ong et al.,
2024) extends this concept further by incorporating
additional contextual information, such as identi-
fying patterns within raw datasets, which enables
LLMs to better comprehend task intentions. Table
1 presents an example of a Lamarckian operator.

Model-Based This approach uses models to gen-
erate the next candidate. Chen et al. (2024a) and
Sabbatella et al. (2023) build probabilistic models

I gave a friend an instruction and some input.
The friend read the instruction and wrote an
output for every one of the inputs.
Here are the input-output pairs:

## Example ##
{input output pairs}

The instruction was:

Table 1: Lamarckian Operator Prompt Example

of prompt performance using Bayesian Optimiza-
tion. MIPRO (Opsahl-Ong et al., 2024) uses a
Tree-structured Parzen estimator to build a surro-
gate model to select the instruction and example
pair. INSTINCT (Lin et al., 2024b) uses a trained
neural network for score prediction. Although such
models do not take any parent prompts directly,
they do tap into learning from previous prompts to
enhance their performance.

6.2 Single-Parent Operators

Semantic These operators generate candidates
that share semantic meaning with their parent, ei-
ther through the use of LLMs or alternative meth-
ods. Semantic operators can be categorized into:

• Partial Application: Semantic operators selec-
tively modify specific sections of a prompt while
maintaining the overall structure. This targeted
approach enables precise adjustments, allowing
for fine-tuning of particular aspects without al-
tering the entire prompt. In AELP (Hsieh et al.,
2024) and SCULPT (Kumar et al., 2024), partial
application of LLM-based semantic operators is
utilized to systematically adjust key components
of extensive prompts.

• Whole Prompt Application: Other semantic
operators apply transformations to the entire
prompt. PhaseEvo (Cui et al., 2024b) uses an
LLM-based semantic operator to perform the
last-mile optimization in a phased optimization
process. FIPO (Lu et al., 2025) finetunes a model
to perform such rewriting. Xu et al. (2022) trans-
lates a candidate to another language and back as
a way to create new candidates. For soft prompts,
Shen et al. (2023) uses a perturbation kernel to
perturb the sampled candidate embeddings from
the previous iteration to create new prompts.

Feedback These methods utilize feedback from
various sources to optimize prompts. They usually
involve two steps: feedback generation and feed-
back application. Such feedback in a soft prompt
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space can be considered as the gradient. Based on
the feedback generation process, such operators
can be categorized as:

• LLM-Feedback: These operators leverage
LLMs to evaluate and refine prompts. Such an
approach taps into LLMs’ self-reflection (Shinn
et al., 2023) ability to pinpoint deficiencies and
suggest refinements, facilitating the automated
creation of more robust and effective prompts
through continuous self-improvement (Cheng
et al., 2024; Dong et al., 2024; Ye et al., 2024).

• Human-Feedback: Human feedback plays a
crucial role in prompt optimization, providing nu-
anced, context-aware evaluations that automated
systems may miss. PROMPST (Chen et al.,
2024b) integrates human-designed rules to offer
corrective feedback when errors arise, ensuring
more precise refinements. APOHF (Lin et al.,
2024a) leverages human preferences as an indi-
cator for selecting the most effective prompts.

• Gradient-Feedback: Gradient-feedback in-
volves using optimization techniques that adjust
prompts based on gradient-based signals derived
from the model’s performance metrics. This ap-
proach is particularly effective for soft-prompt
optimization and allows for precise and efficient
adjustments (Wang et al., 2024b; Sordoni et al.,
2023; Zhou et al., 2024).

Add/Subtract/Replace These operators refine
prompts by inserting, removing, or substituting el-
ements (Prasad et al., 2023; Juneja et al., 2024;
Zhang et al., 2024d). DPO (Wang et al., 2024b)
models each word as a genotype and applies these
operators within an evolutionary algorithm frame-
work for end-to-end prompt optimization.

6.3 Multiple-Parent Operators

EDA These operators generate new candidates
from multiple parent prompts. OPRO (Yang et al.,
2023a) adds both parent prompts and their perfor-
mance on the validation set as additional informa-
tion. IPO (Du et al., 2024) applies a similar strategy
but on multimodal tasks. LCP (Li et al., 2024b)
introduces contrastive examples to boost perfor-
mance. Table 2 is an example of an EDA operator.

Crossover This operator follows genetic algo-
rithms and combines components from two-parent
prompts to create new prompts (Baumann and
Kramer, 2024; Yang and Li, 2023; Jin et al., 2024b;

You are a mutator. Given a series of prompts, your
task is to generate another prompt with the same
semantic meaning and intentions.

## Existing Prompts ##
{existing prompt}

The newly mutated prompt is:

Table 2: EDA Prompt Example

Guo et al., 2024). The idea is to mix traits of both
parents to compose a diverse candidate.

Difference These LLM operators analyze differ-
ences between prompts to identify patterns for gen-
erating new candidates. EvoPrompt-DE (Guo et al.,
2024) uses the Differential Evolution algorithm
with such operators.

7 Which Iterative Algorithm is Used

Iterative algorithms are crucial in automatic prompt
optimization. They guide the selection and applica-
tion of operators to refine prompts effectively.

7.1 Bandit Algorithms

Bandit algorithms are a class of decision-making
strategies designed to balance the exploration-
exploitation trade-off. Wu et al. (2024) formulates
automatic prompt selection as a bandit problem,
employing a neural bandit algorithm to predict the
effectiveness of different sets of exemplars based
on their embeddings. Similarly, Shi et al. (2024) in-
troduces the BAI-FB framework, which efficiently
explores and identifies the optimal prompt from
a candidate pool while operating under a con-
strained budget. These approaches demonstrate
the effectiveness of bandit-based methods in refin-
ing prompt selection and improving overall model
performance.

7.2 Beam Search

The Beam Search method systematically expands
a set of promising prompt candidates and prunes
less effective ones, allowing efficient exploration
of large search spaces. ERM (Yan et al., 2024),
ProTeGi (Pryzant et al., 2023) use beam search to
iteratively select candidates for optimization.

7.3 Heuristic Sampling

Heuristic sampling is a method that utilizes rule-
based strategies to efficiently select representatives
from large sets of candidates minimizing computa-
tional resources while maintaining high accuracy.
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Chen et al. (2024b) employs heuristic-based sam-
pling to prioritize the most promising prompts from
an extensive pool, guided by human feedback to
ensure their relevance and effectiveness.

7.4 Monte Carlo Search

Monte Carlo Search Monte Carlo search is a
probabilistic algorithm that uses random sampling
to explore and evaluate possible actions or deci-
sions within a given problem space, enabling the
estimation of optimal strategies through repeated
simulations. APE (Zhou et al., 2023) leverages the
Monte Carlo search to enhance prompt engineering
by systematically exploring a vast array of potential
prompts and assessing their effectiveness.

Monte Carlo Tree Seach Monte Carlo Tree
Search (MCTS) is a search algorithm that builds a
search tree incrementally through a series of selec-
tion, expansion, simulation, and backpropagation
steps. PromptAgent (Wang et al., 2024c) constructs
a search tree where each node represents a potential
prompt. By keeping a state-action value function
that calculates the potential rewards from following
the path, the system iteratively refines prompts to
enhance performance.

7.5 Metaheuristic Algorithms

Metaheuristic algorithms are high-level, problem-
independent optimization strategies designed to ef-
ficiently explore large and complex search spaces
where exact methods are infeasible. Inspired by
natural processes such as evolution, physical sys-
tems, or social behavior, these algorithms guide the
search toward optimal or near-optimal solutions
through iterative improvement, balancing explo-
ration and exploitation (Talbi, 2009).

Evolutionary Algorithms Evolutionary algo-
rithms are widely utilized in prompt optimization,
drawing inspiration from natural selection to it-
eratively refine prompts (Li and Wu, 2023; Jin
et al., 2024b). Two algorithms in this category
are Genetic Algorithm (GA) and Differential Evolu-
tion(DE): GA applies evolutionary principles, in-
cluding mutation, selection, and crossover, to it-
eratively enhance prompts, ensuring gradual im-
provement across successive generations. DE gen-
erates new prompt candidates by utilizing the dif-
ferences between existing solutions, promoting di-
versity while converging toward optimal solutions.
EvoPrompt (Guo et al., 2024) systematically com-

pares both across identical tasks, demonstrating
that each algorithm excels in different scenarios.

General Metaheuristic Additional metaheuris-
tic algorithms such as Hill Climbing, Simulated
Annealing, Tabu Search, Harmony Search, and oth-
ers following metaheuristic principles are widely
adopted for automatic prompt optimization as well
(Zhang et al., 2024a; Sun et al., 2023b; Yang et al.,
2024; Jin et al., 2024a; Lin et al., 2024b; Gao et al.,
2025; Tang et al., 2025). Pan et al. (2024) specifi-
cally conducted a comparison among them.

Phased Algorithms Cui et al. (2024b) proposes
a phased algorithm adopting a metaheuristic frame-
work to increase the efficiency of the optimization
process. By creating four phases balancing explo-
ration and exploitation, they achieve several mag-
nitudes of efficiency improvements compared to
other algorithms in terms of LLM calls.

7.6 Iterative Refinement

Iterative Refinement refers to the other algorithms
that repeatedly use different operators to refine
prompts. Gradient descent is a widely-adopted
example (Hu et al., 2024; Wang et al., 2024b; Zhou
et al., 2024).

8 Common Datasets Used

Considering the broad applicability of prompt op-
timization, a variety of databases across different
domains were used, as shown in Table 4 in the
Appendix. The two most common ones are:

• BBH (Big-Bench Hard) (Aarohi and bench au-
thors, 2023): A subset of the broader Big-Bench
project, BBH is designed to probe the limits of
language models with especially challenging or
nuanced tasks.

• Instruction Induction (Honovich et al., 2022):
This dataset explicitly focuses on inferring new
task instructions from examples, making it partic-
ularly relevant for evaluating instruction-based
prompt optimization approaches.

9 Common Tools

Automatic prompt optimization tools aim to ac-
celerate and streamline the optimization process.
Below, we provide an overview of notable tools and
their key characteristics. Table 3 gives a high-level
overview of these tools.

22099



Tool Optimization Space Key Features Open Source

PromptPerfect Discrete Web-based, optimized for user queries No

PromptIM Discrete Iterative refine with human in the loop Yes

Dspy (Khattab et al., 2024) Discrete Task decomposition and example bootstrap Yes

OpenPrompt (Ding et al., 2021) Soft/Discrete Predefined templates for prompt learning Yes

Vertex AI (Wan et al., 2024) Discrete Google Cloud-based optimization No

PromptBench (Zhu et al., 2023) Discrete Test prompt robustness Yes

AWS Bedrock Discrete Playground with evaluation and A/B testing No

Anthropic Claude Discrete Interactive editor with live feedback No

Table 3: Comparison of automatic prompt optimization tools.

PromptPerfect PromptPerfect is a commercial
platform that offers automated prompt optimiza-
tion services. It allows users to input a prompt
and target a specific LLM. The platform then uses
its internal algorithms to refine and improve the
prompt. It provides a user-friendly interface and
is designed to be accessible even to users without
deep technical expertise.

PromptIM PromptIM is an experimental open-
source library. Given an initial prompt, a dataset,
and evaluators, PromptIM iteratively refines the
prompt using a meta prompt to suggest improve-
ments based on evaluation scores. It integrates with
LangSmith for data and prompt management and
supports optional human feedback. Contrary to
other tools, PromptIM prioritizes keeping humans
in the loop throughout the optimization process.

DSPy DSPy is a framework developed by Stan-
ford researchers that takes a more declarative ap-
proach to building complex LLM applications. In-
stead of directly writing prompts, users define
the desired "program" as a series of declarative
steps. DSPy implements MIPRO (Opsahl-Ong
et al., 2024) and uses LLMs to generate and opti-
mize the underlying prompts to fulfill the program’s
goals. This approach allows for more structured
and modular development of LLM applications
and facilitates prompt optimization as part of the
program execution. DSPy emphasizes the decom-
position of complex tasks into simpler sub-tasks
and is widely used in research (Soylu et al., 2024).

OpenPrompt OpenPrompt (Ding et al., 2021)
is an open-source toolkit specifically designed
for prompt-learning. It provides a standardized
framework for implementing and experimenting
with various templating, verbalizing, and optimiza-
tion strategies. OpenPrompt offers pre-defined

templates for different prompting methods, such
as prefix-tuning and P-tuning. Its combinability
across different Pretrained LMs, task formats, and
optimization methods makes it a valuable tool.

Vertex AI Prompt Optimizer Google Cloud’s
Vertex AI platform offers a Prompt Optimizer as
part of its suite of tools. This service allows users
to experiment with and optimize prompts follow-
ing learning from Wan et al. (2024). Integrated
within the Vertex AI ecosystem, the Prompt Opti-
mizer benefits from Google’s cloud infrastructure
and provides a scalable solution for prompt opti-
mization tasks.

PromptBench PromptBench (Zhu et al., 2023)
is an open-source benchmark designed to evalu-
ate the robustness of prompts under adversarial
perturbations. Rather than introducing new task
datasets, PromptBench applies systematic trans-
formations—such as instruction negation or para-
phrasing—to existing prompts across a variety of
standard NLP datasets. It helps researchers assess
how well prompt optimization methods preserve
model performance under distributional shift.

AWS Bedrock AWS Bedrock includes a Prompt
Engineering Playground within its cloud platform,
allowing users to prototype and evaluate prompts
across multiple foundation models. The interface
supports A/B testing, real-time inference, and eval-
uation metrics. While not open-source, it provides
a practical environment for optimizing and compar-
ing prompt variants in production-ready workflows.

Anthropic Claude Prompt Tools Anthropic’s
Claude platform offers interactive tools for prompt
optimization directly through its web interface.
These tools provide live feedback, suggest rewrites,
and support prompt experimentation tailored specif-
ically to Claude models. While proprietary, they
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are useful for developers seeking to iteratively
refine instructions with guidance grounded in
Claude’s internal safety and helpfulness principles.

10 Open Challenges

Soft to Discrete Projection Soft prompt spaces
enable continuous optimization but often lack in-
teroperability provided by discrete prompts. To
address this, some methods project soft embed-
dings back into discrete space. Hu et al. (2024),
Wen et al. (2023) and Zhao et al. (2024) adopt a
pre-generated finite set of unique candidates, where
gradient-updated embeddings are mapped back to
the closest entry in this set. However, this approach
heavily depends on the quality of the pre-generated
set. Another approach leverages an open-source
LLM as a converter to translate soft prompts into
discrete instructions (Chen et al., 2024a; Lin et al.,
2024b), offering a more flexible and adaptive solu-
tion. Further research in this area could enhance
both optimization effectiveness and interpretability.

Dynamic N-shot Selection While Instruction &
Example paradigms have shown significant im-
provements by jointly optimizing examples and
instructions (Wan et al., 2024; Menchaca Resendiz
and Klinger, 2025), recent findings indicate that
few-shot prompting does not always enhance per-
formance and can "consistently degrades its perfor-
mance" (DeepSeek-AI et al., 2025). This highlights
the necessity of Instruction & Optional Example
paradigm which dynamically selects between few-
shot and zero-shot prompting based on empirical
effectiveness rather than a fixed strategy. Initial
steps in this direction have been explored by Cui
et al. (2024b), and future optimization approaches
should emphasize adaptability, tailoring prompt
structures to specific tasks for optimal performance.

Concurrent Optimization For complex tasks
using LLMs, multiple agents might be involved
(Zhang et al., 2024c; Cui et al., 2024a; Zhang et al.,
2024b). Traditionally, humans will define the scope
of each agent and optimize them separately. Re-
cent research has introduced automated concurrent
optimization, which optimizes multiple prompts
concurrently. DLN-2 (Sordoni et al., 2023) allows
concurrent optimization of two prompts by consid-
ering both LLMs as probabilistic layers in a net-
work. It treats the first prompt’s output as a latent
variable. Using variational inference to approxi-
mate the latent variable with a simpler distribution,

DLN-2 optimizes the Evidence Lower Bound to
refine both prompts. MIPRO (Opsahl-Ong et al.,
2024) extends this concept to multi-stage optimiza-
tion, treating each stage as a module and using
Bayesian Search to identify the best prompt combi-
nations. These methods represent a shift towards
concurrent prompt optimization, reducing human
effort while improving adaptability for complex
task scenarios.

Additional Challenges Beyond the challenges
discussed earlier, several open issues remain criti-
cal. Multi-objective optimization continues to be a
complex area, requiring methods that can balance
performance, safety, generalizability, and efficiency
simultaneously (Sinha et al., 2024; Menchaca Re-
sendiz and Klinger, 2025; Yang and Li, 2023). Re-
cent work explores Pareto-front approximations,
but reliable aggregation of heterogeneous metrics
remains unsolved. In addition, Scalability across
Domains and Tasks is limited by overfitting to spe-
cialized datasets. General-purpose optimizers must
learn transferable representations or search strate-
gies applicable in diverse settings. Another area
is On-line fashion optimization. Existing methods
take thousands of API calls (Cui et al., 2024b) or
require specific training (Hu et al., 2024), making
it impractical for online optimization. Incremental
update rules and memory-efficient surrogate mod-
els could empower near real-time regimes.

11 Conclusion

This survey has explored heuristic-based search
algorithms for Automatic Instruction-Focused
Prompt Optimization, organizing methods along
five key dimensions: the optimization space, the
optimization target, the optimization criteria, the
operators, and the iterative algorithms. The goal
was to allow mixing and matching components
like a toolkit, enabling the design of new prompt
optimization pipelines by combining different op-
erators with various search or learning algorithms.
To make this more concrete, one might think of
our framework like a recipe book: operators are
the ingredients (e.g., "add", "replace", "rephrase"),
and the iterative algorithms are the cooking meth-
ods (e.g., "bake" with genetic algorithms, "slow
simmer" with beam search). Different combina-
tions yield different flavors—and innovations. We
hope this survey could jump-start researchers in
understanding the existing landscape and inspire
new research on the practical application of LLMs.
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12 Limitations

The work does not cover In Context Learning opti-
mization or methods using reinforcement learning.
We also focus on works after 2023 so previous work
is not fully covered. Such space can be expanded
for future works.
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A Methods Categorization based on Taxonomy

Below are the categorizations for methods surveyed in this paper based on the taxonomy.

Where does Optimization Hap-
pen (§3)

Discrete Prompt (§3.2)

GPS (Xu et al., 2022), APE (Zhou et al., 2023), GrIPS (Prasad et al.,
2023), ProTeGi (Pryzant et al., 2023), AutoHint (Sun et al., 2023b),
PREFER (Zhang et al., 2024a), OPRO (Yang et al., 2023a), EvoPrompt
(Guo et al., 2024), PromptBreeder (Fernando et al., 2024), SPELL (Li
and Wu, 2023), PromptAgent (Wang et al., 2024c), InstOptima (Yang
and Li, 2023), BPO (Cheng et al., 2024), PE2 (Ye et al., 2024), Plum (Pan
et al., 2024), AELP (Hsieh et al., 2024), Adv-ICL (Long et al., 2024),
EMO (Baumann and Kramer, 2024), EOT (Jin et al., 2024b), PROMPST
(Chen et al., 2024b), EPO (Shi et al., 2024), PhaseEvo (Cui et al., 2024b),
FIPO (Lu et al., 2025), GPO (Tang et al., 2025), PACE (Dong et al.,
2024), EASE (Wu et al., 2024), APOHF (Lin et al., 2024a), UniPrompt
(Juneja et al., 2024), MIPRO (Opsahl-Ong et al., 2024), APEER (Jin
et al., 2024a), DLN (Sordoni et al., 2023), MoP (Wang et al., 2024a),
Soylu et al. (2024), LCP (Li et al., 2024b), AMPO (Yang et al., 2024),
SoS (Sinha et al., 2024), SPRIG (Zhang et al., 2024d), IPO (Du et al.,
2024), SCULPT (Kumar et al., 2024), ERM (Yan et al., 2024), MOPO
(Menchaca Resendiz and Klinger, 2025), MAPS (Gao et al., 2025)

Soft Prompt (§3.1)

Non-Gradient Approach

InstructZero (Chen et al.,
2024a), INSTINCT (Lin et al.,
2024b), Sabbatella et al. (2023),
DLN (Sordoni et al., 2023)

Gradient for Vocabulary DPO (Wang et al., 2024b)

Gradient for Targets
GCG (Zou et al., 2023), RPO
(Zhou et al., 2024),Probe Sam-
pling (Zhao et al., 2024)

Gradient for Embedding
Wen et al. (2023), Shen et al.
(2023), ZOPO (Hu et al., 2024),
Li et al. (2024a)

Figure 2: "Where does optimization happen" Categorization
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What is Optimized (§4)

Instruction & Optional Example
(§4.3) PhaseEvo (Cui et al., 2024b)

Instruction & Example (§4.2)

Concurrent Instruction and Ex-
ample

InstOptima (Yang and Li, 2023),
EASE (Wu et al., 2024), Adv-
ICL (Long et al., 2024)

Instruction to Example MIPRO (Opsahl-Ong et al.,
2024)

Example to Instruction MoP (Wang et al., 2024a)

Instruction-only (§4.1)

GPS (Xu et al., 2022), APE (Zhou et al., 2023), Wen et al. (2023), GrIPS
(Prasad et al., 2023), Shen et al. (2023), ProTeGi (Pryzant et al., 2023),
InstructZero (Chen et al., 2024a), AutoHint (Sun et al., 2023b), PREFER
(Zhang et al., 2024a), OPRO (Yang et al., 2023a), EvoPrompt (Guo
et al., 2024), PromptBreeder (Fernando et al., 2024), SPELL (Li and Wu,
2023), INSTINCT (Lin et al., 2024b), PromptAgent (Wang et al., 2024c),
BPO (Cheng et al., 2024), PE2 (Ye et al., 2024), Plum (Pan et al., 2024),
AELP (Hsieh et al., 2024), Sabbatella et al. (2023), EMO (Baumann
and Kramer, 2024), EOT (Jin et al., 2024b), PROMPST (Chen et al.,
2024b), EPO (Shi et al., 2024), FIPO (Lu et al., 2025), GPO (Tang et al.,
2025), PACE (Dong et al., 2024), Zhao et al. (2024), ZOPO (Hu et al.,
2024), APOHF (Lin et al., 2024a), UniPrompt (Juneja et al., 2024), Li
et al. (2024a), APEER (Jin et al., 2024a), DLN (Sordoni et al., 2023),
DPO (Wang et al., 2024b), Soylu et al. (2024), LCP (Li et al., 2024b),
AMPO (Yang et al., 2024), SoS (Sinha et al., 2024), SPRIG (Zhang et al.,
2024d), IPO (Du et al., 2024), SCULPT (Kumar et al., 2024), ERM (Yan
et al., 2024), MOPO (Menchaca Resendiz and Klinger, 2025), MAPS
(Gao et al., 2025)

Figure 3: "What is optimized" Categorization

What Criteria to Optimize (§5)

Multi-Objective

InstOptima (Yang and Li, 2023),
EMO (Baumann and Kramer,
2024), MOPO (Menchaca Re-
sendiz and Klinger, 2025), SOS
(Sinha et al., 2024)

Safety and Ethical Constraints GCG (Zou et al., 2023), RPO
(Zhou et al., 2024)

Generalizability Li et al. (2024a)

Task Performance

GPS (Xu et al., 2022), APE (Zhou et al., 2023), Wen et al. (2023), GrIPS
(Prasad et al., 2023), Shen et al. (2023), ProTeGi (Pryzant et al., 2023),
InstructZero (Chen et al., 2024a), AutoHint (Sun et al., 2023b), PREFER
(Zhang et al., 2024a), OPRO (Yang et al., 2023a), EvoPrompt (Guo
et al., 2024), PromptBreeder (Fernando et al., 2024), SPELL (Li and
Wu, 2023), INSTINCT (Lin et al., 2024b), PromptAgent (Wang et al.,
2024c), BPO (Cheng et al., 2024), PE2 (Ye et al., 2024), Plum (Pan et al.,
2024), AELP (Hsieh et al., 2024), Sabbatella et al. (2023), EOT (Jin
et al., 2024b), PROMPST (Chen et al., 2024b), EPO (Shi et al., 2024),
FIPO (Lu et al., 2025), GPO (Tang et al., 2025), PACE (Dong et al.,
2024), Zhao et al. (2024), ZOPO (Hu et al., 2024), APOHF (Lin et al.,
2024a), UniPrompt (Juneja et al., 2024), Li et al. (2024a), APEER (Jin
et al., 2024a), DLN (Sordoni et al., 2023), DPO (Wang et al., 2024b),
Soylu et al. (2024), LCP (Li et al., 2024b), AMPO (Yang et al., 2024),
SPRIG (Zhang et al., 2024d), IPO (Du et al., 2024), SCULPT (Kumar
et al., 2024), ERM (Yan et al., 2024), MAPS (Gao et al., 2025)

Figure 4: "What criteria to optimize" Categorization
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Which Operators are Used (§6)

Multi-Parent (§6.3)

Difference EvoPrompt (Guo et al., 2024)

Crossover

EvoPrompt (Guo et al., 2024),
PromptBreeder (Fernando et al.,
2024), InstOptima (Yang and
Li, 2023), EMO (Baumann and
Kramer, 2024), EOT (Jin et al.,
2024b), PhaseEvo (Cui et al.,
2024b), SoS (Sinha et al., 2024),
MOPO (Menchaca Resendiz
and Klinger, 2025)

EDA

PREFER (Zhang et al., 2024a),
OPRO (Yang et al., 2023a),
PromptBreeder (Fernando et al.,
2024), SPELL (Li and Wu,
2023), PhaseEvo (Cui et al.,
2024b), GPO (Tang et al., 2025),
LCP (Li et al., 2024b), IPO (Du
et al., 2024), ERM (Yan et al.,
2024)

Single-Parent (§6.2)

Add/ Subtract/ Replace

GrIPS (Prasad et al., 2023),
Plum (Pan et al., 2024), RPO
(Zhou et al., 2024), UniPrompt
(Juneja et al., 2024), DPO
(Wang et al., 2024b), UniPrompt
(Juneja et al., 2024), SPRIG
(Zhang et al., 2024d)

Feedback

Gradient-Feedback

Wen et al. (2023), Shen et al.
(2023), RPO (Zhou et al., 2024),
Zhao et al. (2024), ZOPO (Hu
et al., 2024), Li et al. (2024a),
DPO (Wang et al., 2024b)

Human-Feedback PROMPST (Chen et al., 2024b),
APOHF (Lin et al., 2024a)

LLM-Feedback

ProTeGi (Pryzant et al., 2023),
AutoHint (Sun et al., 2023b),
PREFER (Zhang et al., 2024a),
PromptAgent (Wang et al.,
2024c), BPO (Cheng et al.,
2024), PE2 (Ye et al., 2024),
Adv-ICL (Long et al., 2024),
PROMPST (Chen et al., 2024b),
PhaseEvo (Cui et al., 2024b),
PACE (Dong et al., 2024),
UniPrompt (Juneja et al., 2024),
AMPO (Yang et al., 2024), SoS
(Sinha et al., 2024), SCULPT
(Kumar et al., 2024), ERM (Yan
et al., 2024), MAPS (Gao et al.,
2025)

Semantic

Whole Prompt Application

GPS (Xu et al., 2022), GrIPS
(Prasad et al., 2023), Shen et al.
(2023), InstructZero (Chen et al.,
2024a), EvoPrompt (Guo et al.,
2024), PromptBreeder (Fer-
nando et al., 2024), InstOptima
(Yang and Li, 2023), EMO (Bau-
mann and Kramer, 2024), EOT
(Jin et al., 2024b), PhaseEvo
(Cui et al., 2024b), SoS (Sinha
et al., 2024), MOPO (Men-
chaca Resendiz and Klinger,
2025)

Partial Application AELP (Hsieh et al., 2024),
SCULPT (Kumar et al., 2024)

Zero-Parent (§6.1)

Model-Based

InstructZero (Chen et al.,
2024a), INSTINCT (Lin et al.,
2024b), BPO (Cheng et al.,
2024), Sabbatella et al. (2023),
FIPO (Lu et al., 2025), MIPRO
(Opsahl-Ong et al., 2024)

Lamarckian

GPS (Xu et al., 2022), APE
(Zhou et al., 2023), Prompt-
Breeder (Fernando et al., 2024),
PhaseEvo (Cui et al., 2024b),
EASE (Wu et al., 2024), ZOPO
(Hu et al., 2024), MoP (Wang
et al., 2024a)

Figure 5: "Which operators are used" Categorization
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Which Iterative Algorithm is
Used (§7)

Iterative Refinement (§7.6)

Wen et al. (2023), Shen et al.
(2023), BPO (Cheng et al.,
2024), Sabbatella et al. (2023),
Adv-ICL (Long et al., 2024),
FIPO (Lu et al., 2025), ZOPO
(Hu et al., 2024), Li et al.
(2024a), DPO (Wang et al.,
2024b)

Metaheuristic Algorithm (§7.5)

Phased Algorithm PhaseEvo (Cui et al., 2024b)

General Metaheuristic

InstructZero (Chen et al.,
2024a), AutoHint (Sun et al.,
2023b), PREDER (Zhang
et al., 2024a), OPRO (Yang
et al., 2023a), PE2 (Ye et al.,
2024), Plum (Pan et al., 2024),
RPO (Zhou et al., 2024), GPO
(Tang et al., 2025), Zhao et al.
(2024), Uniprompt (Juneja et al.,
2024), MIPRO (Opsahl-Ong
et al., 2024), APEER (Jin et al.,
2024a), DLN (Sordoni et al.,
2023), LCP (Li et al., 2024b),
AMPO (Yang et al., 2024), SoS
(Sinha et al., 2024), IPO (Du
et al., 2024), MAPS (Gao et al.,
2025)

Evolutionary Algorithm

Differential Evolution EvoPrompt (Guo et al., 2024)

Genetic Algorithm

GPS (Xu et al., 2022), Shen
et al. (2023), EvoPrompt (Guo
et al., 2024), PromptBreeder
(Fernando et al., 2024), SPELL
(Li and Wu, 2023), INSTINCT
(Lin et al., 2024b), InstOptima
(Yang and Li, 2023), EMO (Bau-
mann and Kramer, 2024), EOT
(Jin et al., 2024b), PACE (Dong
et al., 2024), DPO (Wang et al.,
2024b), SPRIG (Zhang et al.,
2024d), MOPO (Menchaca Re-
sendiz and Klinger, 2025)

Monte Carlo Search (§7.4)

Monte Carlo Tree Search PromptAgent (Wang et al.,
2024c)

Monte Carlo Search APE (Zhou et al., 2023)

Heuristic Sampling (§7.3)
INSTINCT (Lin et al., 2024b),
PROMPST (Chen et al., 2024b),
MoP (Wang et al., 2024a)

Beam Search (§7.2)

GrIPS (Prasad et al., 2023),
ProTeGi (Pryzant et al., 2023),
AELP (Hsieh et al., 2024),
SCULPT (Kumar et al., 2024),
ERM (Yan et al., 2024)

Bandit Algorithm (§7.1)
EPO (Shi et al., 2024), EASE
(Wu et al., 2024), APOHF (Lin
et al., 2024a)

Figure 6: "Which iterative algorithm is used" Categorization

22110



B Datasets and Tools

Dataset Name Dataset Category

BBH (Aarohi and bench authors, 2023) NLP Benchmark
Instruction Induction (Honovich et al., 2022) NLP Benchmark
GSM8K (Cobbe et al., 2021) Mathematical Reasoning
Ethos (Mollas et al., 2022) Bias and Ethics Evaluation
SST-2 (Socher et al., 2013) Sentiment Analysis
HotpotQA (Yang et al., 2018) Question Answering
Iris (Li et al., 2024c) Scientific Classification
SVAMP (Patel et al., 2021) Mathematical Reasoning
Subj (Pang and Lee, 2004) Subjectivity Detection
CR (Hu and Liu, 2004) Sentiment Analysis
MR (Pang and Lee, 2005) Sentiment Analysis
TREC (Voorhees and Tice, 2000) Question Answering
Liar (Wang, 2017) Misinformation Detection

Table 4: Commonly used datasets
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