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Abstract

Recent advancements in retrieval-augmented
generation (RAG) have enhanced large lan-
guage models in question answering by inte-
grating external knowledge. However, chal-
lenges persist in achieving global understand-
ing and aligning responses with human ethical
and quality preferences. To address these is-
sues, we propose GraphMPA, a comprehensive
graph-based framework with mode-seeking
preference alignment. Our approach constructs
a hierarchical document graph using a gen-
eral similarity measurement, mimicking human
cognitive processes for information understand-
ing and synthesis. Additionally, we introduce
mode-seeking preference optimization to better
align model outputs with human preferences
through probability-matching constraints. Ex-
tensive experiments on six datasets demonstrate
the effectiveness of our GraphMPA.

1 Introduction

Retrieval-augmented generation (RAG) with large
language models (LLMs) has recently emerged as
a promising approach in question-answering (QA)
(Zhao et al., 2024; Gao et al., 2024). This is mainly
due to its ability to retrieve external documents,
thus increasing the knowledge of the model. How-
ever, despite its advances, existing studies still face
the following challenges at both input and output
levels.

From the representation and understanding of
input external documents, previous works (Bar-
nett et al., 2024; Asai et al., 2024; Xu et al., 2024;
Lewis et al., 2021; Liu et al., 2024) often struggle
with tasks that require comprehensive, global un-
derstanding, as they fail to provide a unified and
holistic view of the relevant external knowledge.
For instance, as shown in Figure 1, if we directly
retrieve effective information across all input docu-
ments for an overarching query like "What about
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Figure 1: (a) Prior entity-based graph and (b) Our hi-
erarchical graph with community summarization. (c)
Prior DPO with large-scale LLMs generated data and
(d) Our MS with small-scale LLMs synthetic data.

Shanghai?", the potential answer may refer to sen-
tence 6, where the pronoun "it" is interpreted as
referring to "Shanghai" (it actually refers to Bei-
jing.) due to the presence of the query words at the
end of this sentence. Only very recently, Guo et al.
(2024) and Edge et al. (2024) introduced a global
graph-based RAG strategy to alleviate this issue,
but it heavily relies on large-scale LLMs (e.g., GPT-
4) to extract entity pairs and their corresponding
relations from each sentence as Figure 1(a). This
not only consumes significant resources but may
also overlook sentences without entities or relations
like the sentence 3 in Figure 1. Therefore, we ar-
gue for the use of smaller, more efficient LLMs
and the construction of sentence relevance using a
more general and comprehensive measurement as
Figure 1(b).
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From the quality of output answers, ensuring
that LLMs generate responses aligned with human
standards and preferences remains a significant sta-
tistical and practical challenge in QA (Oneto et al.,
2016; Cambria et al., 2013), as it involves model-
ing complex patterns of human reasoning, contex-
tual understanding, and nuanced language use. Al-
though approaches like DPO (Rafailov et al., 2024)
have been proposed to mitigate this issue, they lead
to a compromised approximation of optimal distri-
bution (Lin et al., 2021b; Wu et al., 2024) based on
large-scale LLMs (GPT-4) generated corpus, such
as a mean-seeking policy that places large mass to
the mean of different modes (Chan et al., 2022) as
illustrated in Figure 1(c). However, it is insufficient
since we need to estimate the exact and primary
mode of the target distribution (Ji et al., 2024). We
argue that a mode-seeking strategy based on an
auto-constructed corpus with small-scale LLMs,
can more effectively capture the alignment with
human preferences as shown in Figure 1(d).

To address these challenges, in this paper, we
propose a comprehensive hierarchical graph frame-
work with mode-seeking preference alignment
(GraphMPA) based on RAG for QA. Specifically,
we first demolish external knowledge into a hier-
archical graph using a simple but comprehensive
similarity measurement, mimicking human cogni-
tive processes in organizing and synthesizing in-
formation through abstractive summarization from
low-level to high-level (Sweller, 1988; Chandler
and Sweller, 1991). Next, we retrieve the top-K
small documents to construct a human-preferred
dataset by data synthesis for real preference align-
ment. Finally, to achieve better mode-seeking, we
introduce mode-seeking preference optimization to
align the model with human preferences. In gen-
eral, our contributions are summarized as follows:

1) We propose a hierarchical graph with commu-
nity summarization based on a general similarity
measurement, improving comprehensive sentence
relevance and global understanding of external can-
didate knowledge for QA tasks.

2) We introduce a mode-seeking preference opti-
mization strategy by applying probability-matching
constraints between the parametrized policy and
the optimal policy without relying on very large-
scale LLMs to generate human-preferred data.

3) We carry out extensive experiments and
detailed analysis on six representative datasets,
demonstrating the effectiveness of our proposed
GraphMPA.

2 Related Work

LLMs have achieved significant success in a wide
range of QA tasks. However, their notable chal-
lenge is the limited access to specialized or up-
to-date knowledge, which can lead to outdated or
incomplete responses in domain-specific tasks. To
address these issues, RAG has been proposed as
a solution (Gao et al., 2024). Our work is mainly
related to RAG and human preference alignment.

Retrieval-Augmented Generation. RAG en-
hances LLMs with external retrieval, making it
ideal for knowledge-intensive tasks (Huang et al.,
2025). Traditional approaches of QA (Tang et al.,
2024) normally face the "lost in the middle" prob-
lem (Liu et al., 2023), and are expensive and slow.
RAG can alleviate these issues by retrieving rele-
vant documents from external sources and incorpo-
rating this information into the generation process.
However, determining when and which documents
to retrieve and global understanding issues remain
challenging (Gao et al., 2024). Therefore, Edge
et al. (2024) propose a graph-based method for
query-focused summarization by extracting an en-
tity knowledge graph with very large-scale LLMs,
like GPT-4. Meanwhile, Sarthi et al. (2024) suggest
a recursive, hierarchical summarization approach
by a tree structure, but it ignores the internal rela-
tions among nodes in each layer.

Unlike the above studies, we design a com-
prehensive graph structure with simple and fine-
grained document relations to incorporate effective
knowledge, which completely abandons large-scale
LLMs as entity-relation extractors.

Human Preference Alignment (HPA).
Recently, Direct Preference Optimization
(DPO) (Rafailov et al., 2024) has emerged as a
promising alternative to the previously popular
reinforcement learning from human feedback
(RLHF) (Christiano et al., 2023; Ouyang et al.,
2022). It simplifies the training pipeline, elim-
inating the need for separate reward models
and policy optimization (Rafailov et al., 2024).
However, this often results in a mean-seeking
approximation that compromises the optimal
solution and relies on GPT-4 generated data for
optimization. Consequently, the strategy πθ tends
to cover all modes of the target strategy π∗, rather
than concentrating on the most important modes.
As a result, the generated texts or behaviors may
lack clear direction or focus, failing to effectively
capture the key features of human preferences.
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Unlike previous works, to avoid the compro-
mised mean-seeking approximation of the optimal
solution in standard DPO, we introduce the mode-
seeking (MS) loss inspired by (Ji et al., 2024) and
design an intuitive auto-constructed dataset with
small-scale LLMs for training.

3 Methodology

Motivation. To systematically understand the tra-
ditional fragmented pieces of knowledge, we draw
inspiration from human cognitive processes in han-
dling and organizing information, proposing to
summarize closed small documents and organize
them into a hierarchical graph. This also enhances
both the low-level and the high-level comprehen-
sion of external knowledge. Then, we simulate
the human thinking process to derive the final an-
swer through structured reasoning. This method
leverages the mode-seeking preference optimiza-
tion aiming to better fit the optimal pattern (mode)
rather than the overall expectation.

Task Formulation. In RAG, the objective is to
answer a natural language question Q by querying
a set of segmented documents D. Each document d
is typically derived from external text. The question
and the retrieved documents are then passed into
an LLMM to generate the answer A. During the
retrieval process, an embedding model EMBED is
used to transform the text input into dense vector
representations.

3.1 Summarization-based Hierarchical Graph

We expect to capture both low-level and high-level
information in the input ultra-long text, so we in-
tersperse summarization strategies to construct a
hierarchical graph network. This summarization al-
lows retrieval augmentation of context at different
scales. Figure 2 shows the overall iterative process
of building a graph, including graph initialization,
community detection, and hierarchical structuring,
which collectively enhance the organization and
representation of retrieved information.

Document Splitting and Relations. The entire
input candidate text to be retrieved is first divided
into large documents (e.g., the whole of sentences 1,
2 and 3 in Figure 1), each of which is then summa-
rized to produce a summary document denoted as
SD = {D1, · · · , Dl} with LLMs. These large doc-
uments are recursively subdivided into smaller doc-
uments S′

D = {Dk, · · · , Dn} (e.g., the sentence
1 or 2 in Figure 1) with TextSplit(Dlarge, small).
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Figure 2: The process of building the hierarchical graph
with community summarization.

For each small document Di, the document embed-
ding eDi is computed using an embedding model
EMBED, like BGE-M3 (Chen et al., 2024; Al-
waneen et al., 2022), which transforms the textual
content of the document into a dense vector repre-
sentation. The similarity between the embeddings
of documents is then computed by cosine similarity
as,

sim(Di, Dj) =
eDi · eDj

∥eDi∥∥eDj∥
(1)

To incorporate all proper information, we combine
all summary documents SD and small documents
S′
D as D={D1, · · · , Dn}. Then, a document sim-

ilarity matrix M is constructed by calculating the
pairwise relations among all documents’ embed-
dings.

A Layer of Graph Building. For the conve-
nience of graph calculation, we remove a small
number of edges with weak correlation by a thresh-
old τ according to the similarity matrix M . To this
end, we construct a layer of the graph, defined as
G = (V, E):

Vertexes V: v ∈ V represents a small document
or summarization document D from large docu-
ment with its embedding as input. Formally,

v = eD = EMBED(D) (2)
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Edges E: e ∈ E represents a similarity between
two small documents through embeddings. The
weight of edge e is defined:

wij =

{
sij , sim(Di, Dj) ≥ τ
0 , else

(3)

This layer of the graph is then added to the set of
layers.

Community Detection. To better understand
complex and lengthy candidate text, we construct a
hierarchical graph. We cluster nodes in the current
layer to organize segments into cohesive groups,
referred to as community detection (CD). These
groups are then summarized into a new node for
the next layer.

To achieve this, we apply the Leiden algo-
rithm (Traag et al., 2019) to each graph layer, ex-
tracting communities. The algorithm ensures inter-
nal connectivity and finds high-quality partitions
efficiently, making it ideal for large-scale, com-
plex networks. This step clusters related contexts,
aiding the retrieval process. Formally,

C = CommDetect(Gi) (4)

For each detected community, a community sum-
mary SC is generated, forming a new document D′.
This document encapsulates the key aspects of the
community’s content, and a new graph Gi+1 is cre-
ated based on these summaries. The graph is added
to the set of layers layers, and the embedding cal-
culation for each graph is repeated until the desired
depth L is reached.

Iterative Hierarchy Building. At each itera-
tion, document embeddings are recalculated, and
document similarities are updated. This recursive
process refines the system’s understanding of the
document space, improving retrieval and perfor-
mance in tasks like query answering. The whole
process can refer to Algorithm 1. The argument
large denotes the length of large chunks (an in-
teger), small represents small documents length
(an integer), LLM.summary denotes the abstrac-
tive summarization by LLMs, and k indicates the
number of top k nodes retrieved for related node
searching.

3.2 Generating with Preference Alignment
In this section, we introduce a preference align-
ment approach with a novel optimization strategy
that simultaneously emphasizes intermediate rea-
soning steps and the final answer, enhancing the

Algorithm 1 Build Graph Algorithm

1: function BUILD GRAPH( text ▷ Document,
large, small, ▷ Output length
n_layers, ▷ Depth L
τ ▷ Threshold )

2: Dlarge ← TextSplit(text, large)
3: SD ← LLM.summay(Dlarge, small)
4: S′

D ← TextSplit(Dlarge, small)
5: D ← SD ∪ S′

D

6: layers← []
7: while n_layers > 0 do
8: eD ← EMBED(D)
9: M ← sim(eD, e

T
D)

10: sims← sort(M,axis← 0, reverse)
11: V ← arg sort(M,axis← 0, reverse)
12: E ← []
13: for u← 0 to len(V ) do
14: for v in V [u] do
15: w ← sims[u][v]
16: if w ≥ τ then
17: E.append((u, v, w))
18: end if
19: end for
20: end for
21: G ← (V, E)
22: layers.append(G)
23: n_layers← n_layers− 1

▷ Prepare for the next layer
24: C ← CommDetect(G)
25: D ← LLM.summay(C, small)
26: end while
27: return layers
28: end function

model’s understanding of the reasoning process
and enabling more reliable, coherent, and context-
aware outputs. Specifically, we first retrieve the
most query-relevant small documents. Then, based
on these informative documents, we build the con-
trastive dataset with the human-preferred answer
with a reasoning process and the less preferred
answer without any reasoning process. Finally, we
propose to leverage the mode-seeking loss to opti-
mize the model more satisfying against traditional
DPO.

Retrieval with Semantic Ranking. After under-
standing both low- and high-level messages of the
input long candidate text, we select the most rele-
vant information for the specific query by retrieving
top-k small documents on semantic measurement.
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Figure 3: The human preference alignment training
process with MS loss.

To this end, we first calculate the query embed-
ding for subsequent small document matching and
ranking:

eq = EMBED(q) (5)

Next, we calculate the similarity between the
query embedding and all documents at each layer.
The top k most similar documents are then selected:

results = max
Dlayer∈layers

sim(eq, Dlayer) (6)

where the query embedding eq is compared with
each document Dlayer across all layers. The sim-
ilarity function sim measures the semantic close-
ness between the query and the document at each
layer. The k documents with the highest similarity
scores are selected as the most relevant results. This
method enables more efficient retrieval by leverag-
ing the multi-layer structure of the documents.

Preferred Dataset Preparation. First, unlike
previous works (Wang et al., 2024) use GPT (Ope-
nAI et al., 2024) to generate train data, we yield
reasoning explanations using the query and answer
with multiple small-scale LLMs (i.e. Qwen2.5-
7B (Qwen et al., 2025), LLaMA3-8B (Grattafiori
et al., 2024) and Mistral-8B (Mistral AI, 2025) with
Chain of Thought (CoT) (Wei et al., 2023). Note
that our method of synthesizing data consumes very
few resources compared with the previous direct
use of large-scale GPT-4 to generate data in DPO.

Second, for each query q, we expect it to have
different types and relevant contexts C to construct
more diverse samples for learning. Therefore, we
use k ∈ [0, len(C)] value to select contexts ranging
from strongly correlated to weakly correlated: C1

= [doc9], C2 = [doc9,doc4], C3 = [doc9,doc4,doc1]
· · · as illustrated in Figure 3. We define two types
of outputs: the positive item yw, which includes
both the reasoning process and final answer, and the
negative item yl, which only includes the answer
in the training set. The overall data format is as
follows:

Dpref = {(q(i), C(i), y(i)w , y
(i)
l ) | i ∈ {1, 2, · · · , N}}

(7)
Where N denotes the number of queries in the train-
ing set. An example of train data is in Appendix L.

Preference Alignment Training. With the
above two types of data, we hope that our model
is more inclined to generate answers that are rea-
sonable and well-founded, that is, answers that
are human-preferred. Building on the success of
Direct Preference Optimization (DPO) (Rafailov
et al., 2024) with reinforcement learning in the
training of LLMs, we propose to seek the mode of
real distribution with the mode-seeking loss func-
tion (MS), rather than mean-seeking in DPO (Chan
et al., 2022; Ji et al., 2024). It is defined as:

Lms(πθ) = Ex∼DprefEπsft(y1:K |x)
[

DKL(pfθ(·|y1:K , x)∥prϕ(·|y1:K , x))
]

(8)

where Dpref denotes the preference dataset
which contains human-labeled preference data.
πsft(y1:K |x) indicates the supervised fine-tuned
(SFT) policy and πsft means the probability distri-
bution of responses given a prompt x after the lan-
guage model has undergone supervised fine-tuning.
pfθ(·|y1:K , x) represents the empirical distribution
based on the model policy. prϕ(·|y1:K , x)is the em-
pirical distribution based on the reward model.

4 Experiments

We conduct experiments to evaluate our method on
diverse QA tasks against baselines.

4.1 Experimental Setting

Datasets. We evaluate various QA datasets,
roughly divided into: 1) GenerativeQA:
QASPER (Dasigi et al., 2021), evaluated with the
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QASPER QuALITY RiddleSense PubMedQA MedQA MedMcQA
RAPTOR (Sarthi et al., 2024)

LLaMa 8B 0.3657 45.62 49.66 58.40 53.10 50.84
LightGraphRAG (Guo et al., 2024)

LLaMa 8B 0.3585 45.82 50.83 49.00 45.18 50.91
Reward-RAG (Nguyen et al., 2024)

GPT-3.5-turbo - - - 69.20 59.20 52.40
GPT-4-0613 - - - 70.80 64.50 57.40

LLaMa 8B (Grattafiori et al., 2024)
Basic LLM 0.1040 32.10 62.78 49.60 60.17 50.01
Basic RAG 0.3599 41.73 60.24 68.80 57.34 50.35
GraphMPA (ours) 0.3775 47.05 73.65 73.00 66.54 64.28

Qwen 7B (Qwen et al., 2025)
Basic LLM 0.088 41.54 65.95 28.60 52.00 53.36
Basic RAG 0.2654 47.32 65.95 50.67 50.82 55.15
GraphMPA (ours) 0.3734 47.64 71.79 71.92 61.96 57.61

Mistral 8B (Mistral AI, 2025)
Basic LLM 0.1135 35.32 59.39 47.40 54.28 58.07
Basic RAG 0.3228 43.64 64.29 66.80 56.64 63.93
GraphMPA (ours) 0.3873 51.76 73.92 72.82 68.66 67.06

Table 1: Performance comparison of various models and approaches across different QA datasets. The marker ’-’
denotes the results unavailable in public reports.

Dataset Docs TrainQAs TestQAs Avg Tokens

QASPER 6724 5000 3328 358
QuALITY 5772 4600 2128 365
PubMed 1500 5000 500 398
Riddle 3510 5000 1021 150
MedQA 3765 5000 1273 194
MedMC 16777 5000 4183 175

Table 2: The dataset statistics include the number of
small documents, train QA pairs, test QA pairs, and
average document tokens.

ROUGE score (Recall-Oriented Understudy for
Gisting Evaluation)(Lin, 2004; Ganesan, 2018);
2) ChoiceQA: QuALITY (Pang et al., 2022)
and RiddleSense (Lin et al., 2021a), evaluated
with standard Accuracy; 3) MedicalQA: Pub-
MedQA (Jin et al., 2019), MedQA (Jin et al.,
2020) and MedMCQA (Pal et al., 2022), evaluated
with MIRAGE (Medical Information Retrieval-
Augmented Generation Evaluation) (Xiong et al.,
2024) *. The statistical summary can refer to
Table 2, where TrainQAs represents the original
split of the training set in each dataset. We use
TrainQAs to automatically synthesize 20000
samples for all datasets to conduct subsequent
preference alignment training.

Baselines and Implementation Details. We
compare the following representative SOTA on
RAG and QA: Standard RAG (Lewis et al.,
2021; Gao et al., 2024), RAPTOR (Sarthi et al.,

*https://github.com/mirage-project/mirage

2024), LightGraphRAG (Guo et al., 2024) and
Reward-RAG (Nguyen et al., 2024). In our ap-
proach, we use three backbones: LLaMa-3.1-
8B-Instruct (Grattafiori et al., 2024; Patterson
et al., 2022), (i.e., LLaMa 8B), Qwen2.5-7B-
Instruct (Qwen et al., 2025) (i.e., Qwen 7B), and
Mistral-8B-Instruct-2410 (Mistral AI, 2025) (i.e.,
Mistral 8B). We implement training using the trl
library, configuring the learning rate to 1e-5, the
batch size to 4, and training for 2 epochs.

4.2 Main Results

The experimental results presented in Table 1
provide a thorough comparison of our proposed
GraphMPA with several representative SOTA
across various datasets. From this table, we can
find that:

It is necessary to design our GraphMPA. With
the same backbone LLaMa 8B, two competitive
methods RAPTOR and LightGraphRAG are in-
ferior to our GraphMPA. This is mainly because
although RAPTOR models external knowledge in a
hierarchical tree, it ignores the associations among
small documents in each layer (sibling and cousin
nodes). Meanwhile, although LightGraphRAG
adopts a graph structure based on extracted enti-
ties and their relationships as Edge et al. (2024), it
overly relies on the ability to extract entities and
relationships and may lose document information
without entities. Additionally, Reward-RAG with
very large-scale LLMs (GPT-3.5 and GPT-4), per-
forms better than RAPTOR and LightRAG though,
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QASPER QuALITY RiddleSense PubMedQA MedQA MedMcQA

w/o Summarization 0.3599 41.73 60.24 68.80 57.34 50.35
↓ 0.0176 ↓ 5.32 ↓ 13.41 ↓ 4.2 ↓ 9.2 ↓ 13.93

w/o Retrieval 0.1040 32.10 62.78 49.60 60.17 50.01
↓ 0.2735 ↓ 14.95 ↓ 10.87 ↓ 23.4 ↓ 6.37 ↓ 14.27

w/o Training 0.3694 46.65 71.79 71.40 63.47 64.16
↓ 0.0081 ↓ 0.4 ↓ 1.86 ↓ 1.6 ↓ 3.07 ↓ 0.12

w/ DPO 0.3599 46.06 73.20 71.60 64.28 64.16
↓ 0.0176 ↓ 0.99 ↓ 0.45 ↓ 1.4 ↓ 2.26 ↓ 0.12

GraphMPA LLaMa 8B 0.3775 47.05 73.65 73.00 66.54 64.28

Table 3: The ablation study results examine the impact of removing the retrieval, summary, and training components
from our model. Performance is evaluated across six datasets: QASPER, QuALITY, RiddleSense, PubMedQA,
MedQA and MedMcQA. The results show that removing the retrieval component causes the largest drop in
performance, followed by the removal of the summary and training components. The full model (ours) achieves
the highest performance on all datasets, highlighting the importance of each component in enhancing model
effectiveness.

it still indicates worse performance than our ap-
proach. This may be due to outdated human prefer-
ence optimization strategies like RLHF. This sug-
gests that we should design a comprehensive graph
framework and employ an advanced human prefer-
ence alignment mechanism.

RAG-based technique is worth further explo-
ration as our GraphMPA. Compared to the basic
LLMs with different backbones, the addition of
RAG technology improves performance. This indi-
cates that RAG is indeed effective for QA. Besides,
as our GraphMPA with improved the RAG-based
technique, the performance has further improved.
This suggests that RAG-based technology is worth
further exploration and improvement.

Our GraphMPA performs robustly in differ-
ent frameworks. We evaluate GraphMPA using
three different LLMs: LLaMa 8B, Qwen 7B, and
Mistral 8B. Among these, the 8B LLMs signifi-
cantly outperform prior models, while Qwen 7B
surpasses all other models, excluding GPT-4. This
improvement is largely attributed to the increased
parameter size of the 8B models, which leads to
better performance. These results indicate that
GraphMPA exhibits strong robustness across dif-
ferent model architectures.

4.3 Analysis and Discussion

Ablation Study. Table 3 displays the results of re-
moving the key components in our approach. From
this table, we can see that removing any module
will result in significant performance degradation.
This indicates that every module designed in our
method is important. Among them, the removal
of the summarization and retrieval modules results
in the most severe performance degradation. This
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Figure 4: Performance comparison of our GraphMPA
on both QuALITY and PubMedQA, as graph layers
Layers changes.

indicates that it is crucial to effectively represent ex-
ternal knowledge and retrieve relevant knowledge.
Therefore, this paper designs a comprehensive hi-
erarchical graph framework to better accomplish
representation and retrieval.

Impact of Layers Scale in Graph. Figure 4 dis-
plays the performance of our GraphMPA as graph
layers increasing, where n_layers = 1 functions
as a basic RAG. From this figure, we can observe
that the performance on each dataset first improves
at layer 2 and then tends to stabilize or even slightly
decrease. This suggests the effectiveness of our de-
signed hierarchical graph with community summa-
rization. However, excessive summarization when
building a deep graph does not always lead to better
results since too many iterations of summarization
may render the document abstract and less mean-
ingful.
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Figure 5: Performance comparison on both trained and
untrained models with varying values of retrieval top-k
regarding both QuALITY and PubMedQA datasets.

Impact of Top-k Scale in Retrieval. In Figure 5,
as the number of retrieved top k increases, the per-
formance of different models generally improves
first and then decreases on each dataset. This is
mainly because the number of unrelated contexts
increases when k increases, which affects the uncer-
tainty of the model’s generation. Additionally, we
observe that the accuracy of the untrained model
decreases fast, while the trained model decreases
slowly. This indicates that the training allows the
model to extract relevant information and discrimi-
nate both related and unrelated contexts for better
answers.

Moreover, statistical analysis of the distribution
of top-k documents across different graph layers
is available in Appendix H. And the importance of
ranking in Appendix I.

Effectiveness of mode-seeking in generation.
The log probability log π (y|x) is used in alignment
tasks to compute the KL divergence or other op-
timization objectives, ensuring that the optimized
policy π (y|x) remains consistent with human pref-
erences (Chan et al., 2022; Ji et al., 2024). In other
words, the higher the value, the more in line with
human preferences. Therefore, for each sample in
PubMedQA, we calculate the log probabilities of
πms(y|x), πdpo(y|x) and πsft(y|x), as illustrated
in Figure 6. From this figure, we can see that the
median of our MS strategy outperforms the other
two, suggesting a better human preference align-
ment. From the perspective of sample distribution,
we can observe that each data point of our MS loss
is concentrated in a small range to seek the main

Figure 6: The log probabilities on PubMedQA with
the trained model using MS, DPO and non-trained SFT
model.
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Figure 7: An example of community summarization
process in our graph building from QuALITY. Layer 1
consists of 69 small documents, Layer 2 is the commu-
nity summary (0-26) derived from Layer 1, and Layer 3
is the community summary (0-19) derived from Layer
2.

mode, rather than being discrete like DPO data
points, striving for a comprehensive (mean) mode.
Meanwhile, SFT discretizes to more remote areas
and cannot even achieve the average mode.

Case Study. Figure 7 illustrates a real exam-
ple from QuALITY, where each line represents the
direction in which each point gathers from left to
right. From this figure, we can see that we can
see that on the second and third layers, whether
they were previously far apart or close together,
they will gather together according to the commu-
nity. This indicates that our approach can effec-
tively organize and understand external knowledge,
meaning that our summarization-based graph struc-
ture is effective. This corresponding textual con-
tent, comparison of output results from different
models (Sec. K.1), and comprehensive compari-
son of graph construction using different methods
(Sec. K.2) can be found in the appendix.
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5 Conclusion

This work explores a summarization-based hierar-
chical graph to comprehensively extract both low-
and high-level information from external knowl-
edge for answering questions (QA). Moreover, we
utilize small-scale LLMs to automatically synthe-
size data on human preferences and employ mode-
seeking loss to capture the main patterns of the
optimal policy, thereby better achieving the output
of human preferences.
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7 Limitations

This study has several limitations, primarily due
to computational resource constraints. Specifically,
we were unable to utilize LLMs with more than 8
billion parameters or state-of-the-art (SOTA) mod-
els such as GPT-4. Consequently, some prior stud-
ies could not be fully reproduced. Nevertheless,
our method achieves superior performance on sev-
eral benchmark datasets compared to approaches
leveraging GPT-4 as the backbone model, demon-
strating its effectiveness despite these limitations.
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A A Simple Example of Graph
Construction

Figure 8 illustrates an example of graph construc-
tion provided using two documents about cities in
China, sourced from Wikipedia. First, we summa-
rize each document. Next, we split the documents
into smaller segments. Then, we embed these seg-
ments into dense vectors and calculate the similar-
ity between them. We treat the segments as nodes,
and based on their similarity, we establish edges
between the nodes. Using this graph, we apply
community detection algorithms to identify com-
munities, which are then summarized to extract
high-level nodes.

B Details of Mode-seeking Preference
Alignment

We provide a simple justification for why our mode-
seeking loss with small-scale auto-synthesized
training data is more satisfying than the mean-
seeking loss of traditional DPO with large-scale
LLM-generated training data.

Optimal Policy π∗ is defined as follows:

π∗ = argmax
π

Ex∼D,y∼π(y|x) [rϕ(x, y)]

− β ·DKL (π(y|x)∥πsft(y|x))
(9)

where rϕ(x, y) is the reward model, πsft(y|x) is the
initial policy, and β is a regularization parameter.

MS minimizes the reverse KL divergence:

πms = argmax
π

DKL(π(y|x)||π∗(y|x)) (10)

DPO minimizes the forward KL divergence:

πdpo = argmax
π

DKL(π
∗(y|x)||π(y|x)) (11)

The reverse KL divergence is defined as follows:

DKL (π(y | x)∥π∗(y | x))

= Ey∼π(y|x)

[
log

π(y | x)
π∗(y | x)

]
(12)

Mode-Seeking: Minimizing reverse KL diver-
gence DKL (π(y | x)∥π∗(y | x)) encourages π(y |
x) to concentrate on the main modes of π∗(y | x).

The forward KL divergence is defined as fol-
lows:

DKL (π∗(y | x)∥π(y | x))

= Ey∼π(y|x)

[
log

π∗(y | x)
π(y | x)

]
(13)
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Beijing,[a] previously romanized as Peking,[b] is the capital city of China. With more than 22 million 
residents,[11] it is the world's most populous national capital city as well as China's second largest city 
after Shanghai.[12] It is located in Northern China, and is governed as a municipality under the direct 
administration of the State Council with 16 urban, suburban, and rural districts.[13] 

The city is located on the Chinese shoreline on the southern estuary of the Yangtze River, with the 
Huangpu River flowing through it.2
Shanghai[a] is a direct-administered municipality and the most populous urban area in China.1

The population of the city proper is the third largest in the world, with around 24.87 million 
inhabitants in 2023, while the urban area is the most populous in China, with 29.87 million residents. 3
Beijing,[a] previously romanized as Peking,[b] is the capital city of China. With more than 22 million 
residents,5
it is the world's most populous national capital city as well as China's second largest city after 
Shanghai.6
It is located in Northern China, and is governed as a municipality under the direct administration of 
the State Council with 16 urban, suburban, and rural districts.7

Shanghai, a direct-administered municipality located on the southern estuary of the Yangtze River 
with the Huangpu River flowing through it, is the most populous urban area in China, boasting an 
urban population of 29.87 million residents as of 2023.

4

Beijing, formerly known as Peking, is China's capital and its second-largest city, situated in 
Northern China. It is the world's most populous national capital, with over 22 million residents, 
and is governed as a direct-administered municipality comprising 16 districts.

8

Shanghai[a] is a direct-administered municipality and the most populous urban area in China. The city is 
located on the Chinese shoreline on the southern estuary of the Yangtze River, with the Huangpu River 
flowing through it.The population of the city proper is the third largest in the world, with around 24.87 
million inhabitants in 2023, while the urban area is the most populous in China, with 29.87 million 
residents. 

I
I

I
I

Shanghai, a direct-administered municipality located on the southern estuary of the Yangtze River 
with the Huangpu River flowing through it, is the most populous urban area in China, boasting an 
urban population of 29.87 million residents as of 2023 and it is the largest city in China.
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Summarize large chunks

Summarize small chunks

We use the summary to replace the demonstrative pronoun with the object it refers to.

Above are two large documents
Split into small documents below

7和8之间没有边,但是8是包含了7的信
息的

Figure 8: The figure shows two descriptions of the cities Shanghai and Beijing form wikipedia. As part of the basic
RAG process, we split the large documents into small chunks (documents) 1 ~3 5 ~7, embed them and store them
in a vector database. During retrieval, the basic RAG process may return incorrect references (Query "Shanghai"
get 6). To address this, we apply abstractive summarization to large documents to eliminate misrepresentation.
Furthermore, we build a graph G based on the similarity between documents. Using this graph, we group similar
documents into the same community and apply abstractive summarization to obtain broader insights.

Mean-Seeking: Minimizing forward KL di-
vergence DKL (π∗(y | x)∥π(y | x)) encourages
π∗(y | x) to cover the entire support of π∗(y | x),
potentially leading to a distribution that is less con-
centrated on the main modes (Ji et al., 2024).

Minimizing the reverse KL divergence
DKL(π(y|x)||π∗(y|x)) causes πms to concentrate
on the main modes of π∗ because it penalizes
πms for assigning high probability to regions
where π∗ has low probability. This mode-seeking
behavior ensures that πms closely approximates
the main modes of π∗, making it an effective way
to optimize policies in alignment tasks.

Simply put, building on the success of Direct
Preference Optimization (DPO) (Rafailov et al.,
2024) based on reinforcement learning in the train-
ing of LLMs, we propose to seek the mode distri-
bution of the optimal policy (Ji et al., 2024) with
the mode-seeking loss function (MS) as follows:

Lms(πθ) = Ex∼DprefEπsft(y1:K |x)
[

DKL(pfθ(·|y1:K , x)∥prϕ(·|y1:K , x))
]

(14)

where Dpref is the preference dataset which con-
tains human-labeled preference data. Each en-
try includes a prompt x and a set of responses
(y1:k), where y1, ...yk are sampled responses and
Labels indicating which responses are preferred or
rejected.
πsft(y1:K |x) is the supervised fine-tuned (SFT)

policy πsft is the probability distribution of re-

sponses given a prompt x after the language model
has undergone supervised fine-tuning.

pfθ(·|y1:K , x) is the empirical distribution based
on the model policy. This distribution is computed
over the sampled responses y1:K and reflects the
model’s current policy πθ. Represents the model’s
belief over the sampled responses y1:K .

prϕ(·|y1:K , x)is the empirical distribution based
on the reward model. This distribution reflects the
reward model’s scoring over the sampled responses
y1:K , based on human preferences. Represents the
"ideal" distribution of responses based on human
preferences.

DKL(pfθ∥prϕ): Kullback-Leibler (KL) diver-
gence, which aligns the model’s output distribu-
tion pfθ with the distribution defined by the reward
model prϕ .

Ex∼Dpref ensures generalization of the policy πθ
to the entire dataset.

Eπsft(y1:K |x) captures the effect of sampling dif-
ferent response sets on the loss.

The MS loss aligns the model’s policy πθ with
human preferences by minimizing the KL diver-
gence between the model’s empirical distribution
(pfθ ) and the reward model’s empirical distribution
(prϕ) over sampled responses, averaged across all
prompts in the dataset. It effectively optimizes the
policy while maintaining computational efficiency.
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C Details of Baselines

C.1 Baselines

• Standard RAG (Lewis et al., 2021; Gao et al.,
2024) is the most classic method for retriev-
ing external knowledge to augment the perfor-
mance of LLMs.

• RAPTOR (Sarthi et al., 2024) builds a sum-
mary tree with text chunk embedding and clus-
tering and retrieves from the tree to offer LLM
additional information from the outer.

• LightRAG (Guo et al., 2024) incorporates
graph structures into text indexing and re-
trieval processes and allows the system to
remain effective and responsive in rapidly
changing data environments compared to the
Graph RAG (Edge et al., 2024) which builds
a graph using LLM to extract entity-relation
triples form text and makes summaries form
that to build a higher-level graph, then re-
trieves from these graphs to provide LLM
outer knowledge.

• Reward-RAG (Nguyen et al., 2024) aligns
RAG with human preferences by integrating
a reward model to train a higher-performing
embedding model.

D Details of Datasets

D.1 Datasets

QASPER (Dasigi et al., 2021) consists of 5,049
questions over 1,585 Natural Language Process-
ing papers that are often read to seek information
present in the full text to answer specific questions.

QuALITY (Pang et al., 2022), Question Answer-
ing with Long Input Texts, Yes! is a dataset to en-
able training and testing models on long-document
comprehension, which consists of multiple-choice
QA with context passages in English.

RiddleSense (Lin et al., 2021a) consists of 5.7k
examples and aims to build and test the model’s
reasoning about riddle questions consisting of ques-
tions and multiple choice.

PubMedQA (Jin et al., 2019) is a biomedical
question-answering (QA) dataset collected from
PubMed abstracts that have 1k expert annotations.
The task of PubMedQA is to answer research ques-
tions with yes/no/maybe.

MedQA (Jin et al., 2020) collected from the
professional medical board exams, which contain

12,723 questions in English, and each question is
accompanied by its answer and several options with
an alpha index.

MedMCQA (Pal et al., 2022) is a large-scale,
Multiple-Choice Question Answering (MCQA)
dataset built from 194k high-quality medical ex-
ams, designed to address real-world medical en-
trance exam questions. Each sample contains a
question, correct answer(s), and other options.

E Details of Evaluation Metrics

E.1 Evaluation Metrics

We evaluate text generation outputs using the
ROUGE score (Recall-Oriented Understudy for
Gisting Evaluation)(Lin, 2004; Ganesan, 2018)
F1, a standard metric for assessing the quality of
generated text by comparing n-gram overlaps be-
tween the predicted and reference outputs. For
tasks involving discrete responses, such as yes/no,
A/B/C/D, or 1/2/3/4 choices, we report accuracy as
the evaluation metric.

Additionally, for evaluating our model’s perfor-
mance on medical question-answering datasets, we
employ MIRAGE (Medical Information Retrieval-
Augmented Generation Evaluation) (Xiong et al.,
2024) *, a specialized metric designed for assess-
ing retrieval-augmented generation models in the
medical domain. We apply MIRAGE to evaluate
our performance on three benchmark datasets: Pub-
MedQA, MedQA, and MeMCdQA.

F Detailed Metrics of QASPER

Overall, our GraphMPA consistently outperforms
all baselines in terms of F1, Precision, Recall,
BLEU, and Meteor scores, demonstrating the ef-
fectiveness of our approach.

G Impact of τ Value in Graph.

As the value of τ increases, the number of edges
decreases. As illustrated in Figure 9, performance
reaches its maximum around a threshold of 0.5.
Both metrics exhibit an upward trend as the thresh-
old increases from 0.0 to approximately 0.5, peak-
ing at this threshold before declining as the thresh-
old exceeds 0.5. These observations indicate that
both QuALITY and PubMedQA attain optimal val-
ues at a threshold of around 0.5. Performance for
both metrics declines when the threshold is either
too low or too high. The fluctuation induced by τ is

*https://github.com/mirage-project/mirage
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QASPER F1 Precision Recall BLEU Meteor
RAPTOR (Sarthi et al., 2024)

LLaMa 8B 0.3657 0.4660 0.3009 0.1158 0.3338
LightGraphRAG (Guo et al., 2024)

LLaMa 8B 0.3585 0.5781 0.2598 0.1262 0.3834
LLaMa 8B (Grattafiori et al., 2024)

Basic LLM 0.1040 0.1612 0.0767 0.0221 0.0996
Basic RAG 0.3599 0.5307 0.2800 0.1723 0.3519
GraphMPA (ours) 0.3775 0.5645 0.2835 0.1745 0.3982

Qwen 7B (Qwen et al., 2025)
Basic LLM 0.0881 0.1436 0.0813 0.0174 0.0913
Basic RAG 0.2654 0.6645 0.2369 0.1675 0.3321
GraphMPA (ours) 0.3734 0.6420 0.2632 0.1885 0.3921

Mistral 8B (Mistral AI, 2025)
Basic LLM 0.1135 0.1784 0.0832 0.0238 0.1074
Basic RAG 0.3228 0.5919 0.2219 0.1294 0.3824
GraphMPA (ours) 0.3873 0.6314 0.2793 0.1647 0.4135

Table 4: The performance of various models on
QASPER is evaluated across several metrics, including
F1, Precision, Recall, BLEU, and Meteor. We present
results for the RAPTOR (Sarthi et al., 2024), Light-
GraphRAG (Guo et al., 2024), LLaMa 8B (Grattafiori
et al., 2024), Qwen 7B (Qwen et al., 2025), and Mis-
tral 8B (Mistral AI, 2025) models, with a focus on
different configurations: Basic LLM, Basic RAG, and
GraphMPA (our approach).

approximately 1 point, which does not significantly
impact the robustness of our method.
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Figure 9: Impact of τ Value in Graph.

H Contributions Analysis of Layers

Statistical analysis of the top-k document distri-
bution across different graph layers highlights the
respective contributions of both low-level and high-
level documents to the final output generation.

We retrieve 10 small documents (Top-k = 10) on
a graph architecture with only 2 layers (n-layers =
2) for the test sets (LLM = llama3-8b).

Tables 5 and 6 show the proportion of test set
samples with 10 retrieved relevant documents dis-
tributed across two layers of the graph network. For

PubMedQA 0-2 3-5 6-8 9-10
layer 1 (low-level) 0 0.032 0.73 0.238
layer 2 (high-level) 0.592 0.394 0.014 0.0

Table 5: Contributions Analysis of the distribution of
top-k documents across different graph layers on Pub-
MedQA.

QuALITY 0-2 3-5 6-8 9-10
layer 1 (low-level) 0.013 0.170 0.633 0.184
layer 2 (high-level) 0.415 0.505 0.079 0.001

Table 6: Contributions Analysis of the distribution of
top-k documents across different graph layers on QuAL-
ITY.

example, 0.592 means that out of the 10 retrieved
documents, 0-2 of them fall on the second layer, ac-
counting for 59.2% of the test set samples. From 5
and 6, we can observe that the retrieved relevant
documents may appear at any level. Some samples
obtain more documents on the second layer than
on the first layer after ranking, while others do the
opposite. This indicates both low- and high-level
information is important, which aligns with our mo-
tivation. Besides, the retrieved documents appear
more in the first layer in general. This is mainly
because the nodes in the second layer are usually
fewer than those in the first layer.

I The Importance of Ranking

PubMedQA QuALITY
only llm w/o graph 49.60 32.10
only layer 1 (low-level) 68.80 41.73
only layer 2 (high-level) 62.60 40.23
both layers 73.00 47.05

Table 7: Generating outputs using different levels of
layers.

From table 7, we can see that compared to not
using a graph structure (only llm w/o graph), using
only one layer of nodes (only layer 1 or layer 2)
produces better results. Additionally, using only
layer 1 (low-level) produces relatively better per-
formance than using only layer 2 (high-level). Of
course, using both low- and high-level information
simultaneously (both layers) will achieve signif-
icant performance improvements. This indicates
that: 1) It is necessary to design comprehensive
graph networks and retrieval mechanisms to model
external information, which is consistent with the
motivation of this paper; 2) The amount of low-
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level information is greater, which is consistent
with the distribution we calculated above. 3) Both
low-level and high-level information have their
own advantages, and utilizing them can achieve
optimal performance. This motivates the design of
our approach.

J Details of Building Graph Algorithm

In the practical implementation, to save compu-
tational costs, we also select the top k edges by
similarity measurement of the current node that
connects to other nodes. The detailed process can
refer to Algorithm 2.

Algorithm 2 Build Graph Algorithm

1: function BUILD GRAPH( text ▷ Document,
large, small, ▷ Output length
k, ▷ Top K to build graph
n_layers, ▷ Depth L
τ ▷ Threshold )

2: Dlarge ← TextSplit(text, large)
3: SD ← LLM.summay(Dlarge, small)
4: S′

D ← TextSplit(Dlarge, small)
5: D ← SD ∪ S′

D

6: layers← []
7: while n_layers > 0 do
8: eD ← EMBED(D)
9: M ← sim(eD, e

T
D)

10: sims← maxk(M,axis← 0)
11: V ← arg maxk(M,axis← 0)
12: E ← []
13: for u← 0 to len(V ) do
14: for v in V [u] do
15: w ← sims[u][v]
16: if w ≥ τ then
17: E.append((u, v, w))
18: end if
19: end for
20: end for
21: G ← (V, E)
22: layers.append(G)
23: n_layers← n_layers− 1

▷ Prepare for the next layer
24: if n_layers > 0 then
25: C ← CommDetect(G)
26: D ← LLM.summay(C, small)
27: end if
28: end while
29: return layers
30: end function
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K Case Study

K.1 A case of PubMedQA question answering

Question:

Treadmill testing of children who have spina bifida and are ambulatory: does peak oxygen uptake
reflect maximum oxygen uptake?

Our GraphMPA:

Context:[’The aim of this study was to determine whether the Vo(2)peak measured during an
incremental treadmill test is a true reflection of the maximum oxygen uptake ((.)Vo(2)max) in
children who have spina bifida and are ambulatory.’,
’Earlier studies have demonstrated low peak oxygen uptake in children with spina bifida. Low peak
heart rate and low peak respiratory exchange ratio in these studies raised questions regarding the
true maximal character of peak values obtained with treadmill testing...’,
’Twenty children who had spina bifida and were ambulatory participated. ...’, ’The results of this
study suggest that the peak measured during an incremental treadmill test is a valid indicator
of max in children who have spina bifida and are ambulatory.’,
"The study was conducted in a pediatric emergency department (PED) in an urban hospital. ..", ]
Reason: The study aimed to determine if peak oxygen uptake during treadmill testing in children
with spina bifida accurately reflects their maximum oxygen uptake, considering previous studies
raised questions about the true maximal character of peak oxygen uptake values obtained with
treadmill testing in these children.
Answer: Yes ✓

RAPTOR:

Context: Here’s a summary of the study: **Study Background and Objective:** The study aimed
to determine whether the peak oxygen uptake (VO2peak) measured during an incremental treadmill
test is a true reflection of the maximum oxygen uptake (VO2max) in children with spina bifida who
are ambulatory. **Methodology:** A cross-sectional study was conducted with 20 children with
spina bifida who were ambulatory. The VO2peak was measured during a graded treadmill exercise
test...
Answer: maybe ×

LightRAG:

Answer: Maybe ×
The inverse equity hypothesis suggests that new health interventions are initially primarily accessed
by the rich, but that inequalities narrow with diffusion to the poor. However, the applicability of this
hypothesis to coverage of cancer screening in middle-income countries is uncertain.
According to the data, a study examined the relationship between overall coverage and economic
inequalities in coverage of cancer screening in four middle-income countries. The results showed
that economic inequalities in screening participation were substantially lower or non-existent in
countries with higher aggregate coverage, for both breast cancer screening and cervical cancer
screening. ...

Above are case study comparisons of answering models. The responses from three different models:
Ours, RAPTOR, and LightRAG to the question from PubmedQA (Jin et al., 2019). The keywords are
highlighted. Our model (highlighted in green) correctly answers "Yes", In contrast, both RAPTOR
and LightRAG provide uncertain and incorrect responses ("maybe"), demonstrating the difference in
performance and confidence between the models.
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K.2 A case of graph constructing

(a) LightRAG (b) Our GraphMPA

Figure 10: An example of QuALITY, LightRAG extracts nodes and edges from documents compared to our
GraphMPA build graph by node similarity. GraphMPA generates nodes with rich edges while LightRAG extracts
many isolated nodes.

We randomly select a paper from QuALITY to construct a graph using LightRAG and our GraphMPA.
Notably, LightRAG extracts many isolated nodes, while GraphMPA generates nodes with rich edges.
Then we use two methods to choose the option corresponding to the question (below) based on the graph.
Due to the limited ability of LightRAG to accurately capture node relations, it struggles with relation
leakage to generate the correct answer . In contrast, our GraphMPA effectively captures and generates
with greater accuracy. The key reason is highlighted.

Question:
Why is Si retirement so significant to the Space Exploration Team?
Options:
1. There aren’t enough working people in the world. They won’t be able to find a replacement.
2. As one of two remaining spacemen, it would likely mean the defunding and shut down of the
Space Exploration Team.
3. Training new spacemen is costly and time consuming. They won’t have anyone else ready after
him.
4. His retirement may inspire others to stop working as well, which would be hugely detrimental
as most people don’t feel the drive to work as is.
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LightRAG

Process:
high_level_keywords: ["Significance of retirement", "Space Exploration Team", "Workforce
impact", "Team dynamics"]
low_level_keywords: ["Si retirement", "Spacemen", "Defunding", "Shut down", "Training costs",
"Replacement", "Workforce shortage", "Motivation"]
Local query uses 60 entites, 38 relations, 3 text units.
Global query uses 38 entites, 38 relations, 2 text units.

Output:
**The Significance of Si’s Retirement to the Space Exploration Team**’s retirement is a significant
event for the Space Exploration Team, and it’s not just because he’s a skilled space pilot. The team
is facing a critical shortage of working people, and Si’s retirement would exacerbate this issue. Here
are some reasons why his retirement is so crucial to the team: 1. **Lack of Replacement**team
is struggling to find a replacement for Si, and his retirement would only worsen the situation.
With a dwindling pool of skilled workers, the team would be left without a capable pilot to take
on the challenges of space exploration. 2. **Defunding and Shutdown**one of the last two
remaining spacemen, Si’s retirement would likely lead to the defunding and shutdown of the
Space Exploration Team. The team’s existence relies on the availability of skilled pilots like Si,
and without him, the program would become unsustainable. 3. **Costly and Time-Consuming
Training**new spacemen is a costly and time-consuming process. The team has invested significant
resources in Si’s training, and his retirement would mean that those resources would be wasted.
Moreover, it would take years to train a new pilot to Si’s level of expertise, and even then, there’s
no guarantee that they would be as skilled or dedicated as Si. 4. **Inspiring Others to Stop
Working**’s retirement may also have a ripple effect, inspiring others to stop working as well. In a
society where most people don’t feel the drive to work, Si’s decision to retire could be seen as a
validation of their own apathy. This could lead to a further decline in productivity and a worsening
of the already dire situation.Space Exploration Team is facing a perfect storm of challenges, and
Si’s retirement would be the final blow. His decision to retire is not just a personal choice; it has
far-reaching consequences for the team and the future of space exploration.**The Consequences
of Si’s Retirement**’s retirement would have significant consequences for the Space Exploration
Team, including:* **Loss of expertise**: Si’s retirement would mean the loss of his expertise
and experience, which would be difficult to replace.* **Defunding and shutdown**: The team’s
existence would be threatened, and it may be forced to shut down due to the lack of a skilled
pilot.* **Inspiring others to stop working**: Si’s retirement could inspire others to stop working,
exacerbating the already dire situation.* **Impact on the economy**: The loss of a skilled pilot
like Si would have a ripple effect on the economy, leading to a decline in productivity and a
worsening of the already dire situation.Space Exploration Team is facing a critical moment, and
Si’s retirement is a significant factor in this crisis. The team needs to find a way to convince Si to
stay on or find a suitable replacement to avoid the consequences of his retirement.",
Extract Answer: 2 ×
Global Truth: 3
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Our GraphMPA

Context:
["Si Pond was a space pilot, and he was retiring. He was at a bar with a woman who was clearly
still in shock from meeting him. She had cried when he was given an antique watch, and was
now avoiding his face. She mentioned a speech by Doctor Girard-Perregaux, who had praised
Si for his accomplishments as a space pilot. Si downplayed his achievements, saying that two of
his runs were only to the Moon. The woman was not amused by Si’s attitude, and he offered to
buy her another drink. The woman was clearly still in awe of Si, and was struggling to come to
terms with the fact that he was retiring. Si, on the other hand, seemed to be taking his retirement in
stride, and was more concerned with the politics of the Space Exploration department than with his
own accomplishments. He mentioned that the department was in danger of being dropped by the
Appropriations Committee, and that his retirement was part of a larger scheme to pressure him into
taking on more trips. The woman was not impressed by Si’s cynicism, and the conversation ended
with him offering to buy her another drink. Key details: * Si Pond is a space pilot who is retiring.",
’ There you stood, so fine and straight in your space-pilot uniform, the veteran of six exploration
runs to the planets " "Well," Si said modestly, "two of my runs were only to the Moon " " and he
said all those things about manś conquest of space And the dream of the stars which man has held
so long And then the fact that you were the last of the space pilots The last man in the whole’,
" They also had a banquet for him, complete with speeches by such bigwigs of the Department of
Space Exploration as Academician Lofting Gubelin and Doctor Hans Girard-Perregaux There was
also somebody from the government who spoke, but he was one of those who were pseudo-elected
and didn’t know much about the field of space travel nor the significance of Seymour Pond’s
retirement Si didn’t bother to remember his name",
’ Si said, "Look, how about another drink " Natalie Paskov said, "Oh, Id́ love to have a drink with
you, Mr " "Si," Si said He motioned to the bartender with a circular twist of the hand indicating
their need for two more of the same "How come you know so much about it You dont́ meet many
people who are interested in space any more’,
" They hadn’t figured he had enough shares of Basic to see him through decently Well, possibly
he didn’t, given their standards But Space Pilot Seymour Pond didn’t have their standards He’d
had plenty of time to think it over It was better to retire on a limited crediting, on a confoundedly
limited crediting, than to take the two or three more trips in hopes of attaining a higher standard"]

Reason: Si’s retirement marks the end of an era in space exploration, and he is the last of a breed
of space pilots.
Answer: The significance of Si’s retirement is that it marks the end of an era in space exploration
and the last of a breed of space pilots.
Extract Answer: 3 ✓
Global Truth: 3
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L Details of Train Data Example

Question q
Does histologic chorioamnionitis correspond to clinical chorioamnionitis?
Context C
[ ’To evaluate the degree to which histologic chorioamnionitis, a frequent finding in placentas
submitted for histopathologic evaluation, correlates with clinical indicators of infection in the
mother.’, ’A retrospective review was performed on 52 cases with a histologic diagnosis of acute
chorioamnionitis from 2,051 deliveries at University Hospital, Newark, from January 2003 to
July 2003. Third-trimester placentas without histologic chorioamnionitis (n = 52) served as
controls. Cases and controls were selected sequentially. Maternal medical records were reviewed
for indicators of maternal infection.’, ’Histologic chorioamnionitis was significantly associated
with the usage of antibiotics (p = 0.0095) and a higher mean white blood cell count (p = 0.018).
The presence of 1 or more clinical indicators was significantly associated with the presence of
histologic chorioamnionitis (p = 0.019).’ ]

Chosen answer yw
###Reason: Histologic chorioamnionitis is a reliable indicator of infection whether or not it is
clinically apparent.
###Answer: yes
Rejected answer yl
yes
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