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Abstract

Continual pre-training has long been consid-
ered the default strategy for adapting models
to non-English languages, but struggles with
initializing new embeddings, particularly for
non-Latin scripts. In this work, we propose En-
erGIZAr, a novel methodology that improves
continual pre-training by leveraging statisti-
cal word alignment techniques. Our approach
utilizes GIZA++ to construct a subword-level
alignment matrix between source (English) and
target language tokens. This matrix enables in-
formed initialization of target tokenizer embed-
dings, which provides a more effective starting
point for adaptation. We evaluate EnerGIZAr
against state-of-the-art initialization strategies
such as OFA and FOCUS across four typolog-
ically diverse languages: Hindi, Basque, Ara-
bic and Korean. Experimental results on key
NLP tasks – including POS tagging, Sentiment
Analysis, NLI, and NER – demonstrate that
EnerGIZAr achieves superior monolingual per-
formance while also out-performing all meth-
ods for cross-lingual transfer when tested on
XNLI. With EnerGIZAr1, we propose an intu-
itive, explainable as well as state-of-the-art ini-
tialisation technique for continual pre-training
of English models.

1 Introduction

As research into developing better and larger lan-
guage models (LLM) progresses, models for LOTE
(Languages other than English) continue to lag be-
hind. English models are always the first to be in-
troduced to new developments in LLM pre-training.
Sometimes major advancements also include multi-
lingual models as a secondary checkpoint, but this
is seldom the case. This leaves researchers work-
ing on non-English languages with two primary
options. First, to train their own models with the
technological enhancements proposed. This option

*Corresponding Author
1https://github.com/pranaydeeps/EnerGIZAr

comes with restrictions on data sizes and available
compute. Newer methodologies often use large
unstructured English corpora like C4 (Raffel et al.,
2020), OSCAR (Ortiz Suárez et al., 2019), Open-
WebText (Gokaslan et al., 2019), etc. However, the
corpora available for other languages are hardly
comparable in size to the unstructured English
datasets, and therefore the resulting models are
often sub-optimal. Wu and Dredze (2020) showed
that monolingual models trained for certain lan-
guages performed significantly worse than mBERT
despite mBERT having very limited training data
for the languages in question.

The second option, and the more commonly used
one, is to adapt existing English or multilingual
models to a particular target language. This op-
tion is preferable for reasons such as computational
efficiency, low data requirements, etc. The most
commonly accepted methodology in practice for
achieving this has been continual pre-training. Con-
tinual pre-training uses an English or multilingual
model as a checkpoint and continues training for
the pre-training objective. Continual pre-training
decidedly results in a better model and is more
efficient, however, it does come with some restric-
tions. Since an English or multilingual model is
used as the starting checkpoint, it forces one to use
the vocabulary of the source model, which might
not be fit for several languages, especially those
in non-Latin scripts. Even when using a multilin-
gual vocabulary, research by Rust et al. (2021) has
shown that the representation of most medium- and
low-resourced languages is meek at best.

This bottleneck has led to significant work in
optimally initializing new tokenizer entries (Wang
et al., 2019; Tai et al., 2020; Hewitt, 2021) or adapt-
ing models to target language tokenizers (Minix-
hofer et al., 2022; Dobler and de Melo, 2023; Liu
et al., 2024). The challenge arises in finding a
methodology that can consistently initialize new
embeddings with minimal supervision across hun-
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dreds of languages with varying scripts and other
typological factors.

In this research we propose EnerGIZAr, a
methodology for improved continual pre-training.
We show that by tokenizing parallel corpora, fol-
lowed by aligning them with GIZA++ (see exam-
ple in Figure 1), a statistical alignment tool trained
using Expectation Maximisation (EM), we can ini-
tialize an alignment matrix between the source
(English-only) and target language tokens. Using
said alignment matrix to initialize target tokenizer
embeddings results in an excellent initial check-
point for continual pre-training. Moreover, hav-
ing a subword-to-subword alignment matrix makes
the methodology particularly transparent and in-
terpretable allowing for the possibility of manual
or semi-automated modifications to the matrix to
further enhance the initialization. We attempt to
answer the following main research questions in
this work:

• Is it feasible to initialize a model in a target
language using parallel data and a word align-
ment tool?

• Can this initialized model, when continually
trained, compete with other SOTA initiali-
sation strategies like OFA (Liu et al., 2024)
and FOCUS (Dobler and de Melo, 2023) for
monolingual performance?

• Which of the initialisation strategies – SOTA
versus EngerGIZAr – preserves the most
cross-lingual signals, therefore resulting in
the best model for cross-lingual use cases?

We perform experiments on four languages
(Hindi, Basque, Arabic, and Korean) with widely
differing typological features, such as script, ge-
olocation and morphology. We evaluate all models
on downstream tasks with real-world use cases, in-
cluding part-of-speech tagging, sentiment analysis,
natural language inference, and named entity recog-
nition. We also test all the methods’ cross-lingual
performance on the XNLI (Conneau et al., 2018)
dataset. Our results illustrate that EnerGIZAr out-
performs continual pre-training baselines as well
as SOTA initialisation methods FOCUS and OFA,
both in purely monolingual as well as cross-lingual
testing.

The remainder of this paper is organised as fol-
lows. We cover related work in Section 2, with 2.1
covering related embedding initialisation strategies

while 2.2 covers statistical alignment methods. Sec-
tion 3 covers the methodology and formulation of
the work, while Section 4 details the experimental
protocol, hyperparameters, data, models, and ad-
ditional information. Finally, Section 5 details the
results of all experiments including monolingual
and cross-lingual settings.

2 Related Work

2.1 Embedding Initialisation Strategies

Continual pre-training, the most commonly used
practice to adapt pre-trained models to new do-
mains and languages simply uses all the com-
ponents of a transformer and continues training
for MLM objectives with additional monolingual
data (Gururangan et al., 2020). A better alternative
to this can be continual pre-training using a tok-
enizer in the target language to better adapt to the
vocabulary of the target language (Minixhofer et al.,
2022). However, in this case, the embedding layer
from the source model is completely discarded for
a new randomly initialized embedding layer for the
target language tokens. Although training an em-
bedding layer from scratch increases convergence
time, it usually results in a better model than vanilla
continual pre-training, given sufficient data. An-
other advantage is the reduced length of tokenized
text passed to the model since this allows the model
to process more information in a single pass.

However, rather than random initialization, re-
cent developments have proposed ideas for a more
informed initialization of target language embed-
dings. WECHSEL (Minixhofer et al., 2022), FO-
CUS (Dobler and de Melo, 2023) and OFA (Liu
et al., 2024) all rely on multilingual static word em-
beddings in a shared space as auxiliary embeddings.
These methods enhance the transfer of embeddings
by incorporating information from a static embed-
ding space, such as FastText (Mikolov et al., 2018).

The WECHSEL method (Minixhofer et al.,
2022) focuses on efficient initialization of subword
embeddings by utilizing bilingual dictionaries to
enhance knowledge transfer between languages. A
shared static embedding space, aligned with the
help of a bilingual dictionary, is used to compute
the similarity between source and target sub-words.
Next, a set of k-nearest neighbours in the source lan-
guage is used to initialize target sub-words. How-
ever, it relies heavily on the quality and availability
of the bilingual dictionaries as well the static em-
beddings used for alignment.
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Figure 1: An example of two parallel sentences in English (above) and Hindi (below) and their tokenized forms
(using bert-base-cased for English and hindi-bert for Hindi), aligned using GIZA++.

FOCUS (Dobler and de Melo, 2023), which
stands for Fast Overlapping Token Combinations
Using Sparsemax, is an innovative method for
adapting pre-trained models to low-resource lan-
guages. The core idea behind FOCUS is to repre-
sent newly added tokens in a vocabulary as combi-
nations of overlapping tokens found in the source
vocabulary. This overlap is determined based on se-
mantic similarity in an auxiliary token embedding
space (FastText). The similarity computed between
source and target tokens is converted to weights us-
ing SparseMax (Martins and Astudillo, 2016), and
the weights are subsequently used for initialising a
target word with the k-nearest neighbours.

The OFA (Liu et al., 2024) framework em-
ploys factorized embeddings to optimize computa-
tional efficiency while ensuring robust model per-
formance. By dividing embeddings into language-
agnostic and language-specific components, OFA
reduces the number of parameters needed for train-
ing, leading to faster convergence and a lower en-
vironmental impact during pre-training. OFA uses
ColexNet+ (Liu et al., 2023) embeddings as its
source of multilingual information, creating a bipar-
tite graph using a fixed set of neighbours for each
target sub-word. Essentially, OFA builds on the
works of WECHSEL and FOCUS, introducing the
factorisation component and replacing the source
of static embeddings with ColexNet+, which is
more conceptually grounded and potentially a bet-
ter source of cross-lingual signals. Once more,
however, the quality of the static embeddings heav-
ily determines the initialisation.

In our work, we present a different take on em-
bedding initialisation by bypassing the need of
pre-trained multilingual embeddings, or orthogo-
nal embedding alignment techniques used in previ-
ous work. Instead, we rely on statistical sub-word
alignment. Our work can be related to Rémy et
al. (2024), which was tested on the Mistral-family
of models for Dutch and Tartu, where parallel data
along with FastAlign was used to find the near-

est neighbours for a target sub-word to be newly
initialized. The key differences being the use of
FastAlign (which prioritizes speed and efficiency
over deep probabilistic modelling in contrast to
GIZA++), the lack of alternate initialisation strate-
gies like direct copying and random normal initiali-
sation, as well as filtering and refinement strategies
for the alignment matrix. In addition, our method
is also thoroughly evaluated for an extensive set of
tasks and languages in comparison with the SOTA
of FOCUS and OFA.

Our approach starts from the intuition that SMT-
based word alignment provides a more raw source
of information overlap between two vocabularies,
even though embedding similarities may be more
granular and contain more information. Different
from previous work, we also hypothesize that work-
ing with an alignment matrix - rather than potential
nearest neighbours - allows for a more exhaustive
solution, since each target sub-word can be influ-
enced by each source sub-word independently and
without constraints due to the k hyper-parameter
for nearest neighbours.

2.2 Statistical Word Alignment Tools

Word alignment tools, such as GIZA and its suc-
cessor GIZA++ (Och and Ney, 2003), run on large
chunks of parallel data and have played a crucial
role in NLP by facilitating the identification of
translational equivalence between words. While
NMT tools like LaBSE (Wang et al., 2022) may
slightly eclipse SMT tools in performance, SMT
tools still remain more efficient, explainable, and
transparent, which is one of our motivations for
using GIZA++ in this research.

GIZA++ is one of the most widely used tools
for statistical word alignment, implementing IBM
models (Brown et al., 1993) for word alignment
tasks, allowing for the extraction of alignment prob-
abilities between words. It operates by running
alignments in both directions, i.e., source to target
and target to source, and then combines the results
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to improve the quality of alignments. This pro-
cess ensures that only one-to-one alignments are re-
tained in the final output, thereby increasing preci-
sion. Its features include the implementation of the
full IBM-4 and IBM-5 alignment models, as well
as the Hidden Markov Model (HMM). GIZA++
implements several key features that distinguish it
from its predecessor, GIZA. The HMM implemen-
tation includes techniques such as Baum-Welch
training and the Forward-Backward algorithm, and
it also applies various smoothing methods for pa-
rameters related to fertility and distortion, which
helps in refining the alignment results.

FastAlign (Dyer et al., 2013), designed for speed
and efficiency in word alignment tasks, utilizes a
simplified version of the GIZA++ algorithm, using
only the IBM Model-2. It is less precise compared
to GIZA++, especially for highly reordered lan-
guages, but since it allows faster processing, it is
often considered more suitable for real-time appli-
cations.

3 Methodology

We begin by defining the problem mathematically.
Let F s be a source transformer with its usual com-
ponents: tokenizer, Toks for vocabulary, W s, em-
bedding layer, Embs of size len(W s) × 768 and
the subsequent encoder Encs. Our goal, given
a monolingual corpus in a target language (M t)
and a source of cross-lingual signals, is to arrive
at the best possible target transformer F t. While
methods like WECHSEL, FOCUS and OFA have
attempted to use multilingual static embeddings as
their source of cross-lingual signals, we use parallel
data as our cross-lingual signal.

To detect corresponding sub-words between the
source and target language, we train GIZA++ on
our parallel corpus. The default training pipeline
runs five iterations each of IBM Model 1, HMM,
Model 3, and Model 4. Model 1 uses word trans-
lation probabilities (p(y|x)), where x is a source
language word and y is a target language word) for
learning alignments. HMM and Model 4 rely on
relative reordering, while Model 3 uses a fertility
model. For our work, we only use Model 4 for
alignment, to make the entire pipeline significantly
more efficient and cut down alignment times by up
to 300%. We use the grow− diag− final− and
heuristic for alignment, which considers align-
ments from both directions, i.e., source-target as
well as target-source.

Given the parallel corpus P s,t, we first tokenize
the respective parts P s using the tokenizer Toks

and P t using the target tokenizer Tokt to obtain
the sub-word tokenized parallel corpora P s,t

tok. We
then use the sub-word tokenized parallel corpora
with IBM Model 4 to train and run an alignment
model on the tokenized parallel data. This results
in a translation probability dictionary which can
be represented as a matrix Dt,s. This matrix indi-
cates the probability a source sub-word x can be
translated into a target sub-word y as p(y|x).

P t
tok = Tokt(P

t), P s
tok = Toks(P

s) (1)

Dt,s(P t
tok, P

s
tok) = [p(y|x)] ∀ y ∈ Wt, x ∈ Ws

(2)
The following post-processing is applied to the
matrix Ds,t. First, probabilities below a hyper-
parameter δ are set to 0. Furthermore, if the prob-
abilities for a target word y are too widely dis-
tributed, i.e., all probabilities 0 ≤ py,x∀x ∈ Ws ≤
0.1, we initialize the word’s embedding using a nor-
mal distribution centered at the mean of all source
embeddings, Embs. Finally, we also find source
and target sub-words that are identical (numbers,
special characters and reserved tokens) and explic-
itly set the probabilities of these matching words
to 1.0 while setting all other probabilities for the
source word to 0.0, thus effectively ensuring identi-
cal sub-words are not newly initialized.

Finally, to initialize the target tokenizer embed-
dings Embt, we simply use the cross product,

Embt = Dt,s × Embs (3)

Essentially, each target sub-token embedding is
initialized as a weighted average of all relevant
source sub-tokens embeddings. With the newly ini-
tialized Embt the encoder Encs can be trained for
MLM with target language data M t, while using
the appropriate tokenizer Tokt. An overview of the
proposed methodology is presented by Figure 2.

4 Experimental Setup

We perform experiments for a set of four languages:
Hindi, Basque, Korean, and Arabic. The languages
were selected based on diversity in scripts, geolo-
cation and language families. Table 1 presents an
overview of the resources for each target language.
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Figure 2: A summary of the proposed methodology of EnerGIZAr.

Language Wiki (tokens) Opus-100 (tokens) Tokenizer Tasks
Hindi 42.10 M 7.29 M Hindi-BERT UDPOS, Sentiment, Topic
Basque 69.01 M 7.15 M BertEUS UDPOS, Sentiment, Topic
Arabic 278.60 M 8.58 M CAMeLBERT-msa NER, Stance, Emotion
Korean 133.66 M 5.17 M KorBERT NER, NLI, Topic

Table 1: Overview of the target languages used for the experiments, their available resources – both monolingual
(Wiki) and parallel (Opus-100) – the target tokenizer used for the transfer, and downstream tasks used for testing.

4.1 Pre-training

For each language bert-base-cased was used as
the starting monolingual model F s. As can be
observed from Table 1, all languages can be con-
sidered medium-resourced based on the available
monolingual and parallel corpora sizes. For each
language, their respective Wikipedia dump was
used as the monolingual resource M t,M s, and
Opus-100 as the source of all parallel data P s,t.
Wikipedia was chosen over CommonCrawl, C4 or
OSCAR as it significantly reduces the duration of
experimentation, allowing us to iterate and tune
parameters such as δ. For example, the Wiki size
of Hindi (see Table 1) is approximately 42.10 mil-
lion tokens, whereas the size of Common Crawl for
Hindi is approximately 1.8 billion tokens – roughly
40 times larger. While models trained on the Com-
mon Crawl dump would undoubtedly result in bet-
ter overall target language models, the experimen-
tation time for each language would be 40-50 times
slower. Moreover, reducing the amount of pre-
training data helps us to better simulate a lower-
resource setting.

As the source language tokenizer Toks we used
the standard tokenizer of bert-base-cased, while as
Tokt we used the appropriate tokenizer from the
baseline monolingual models available to stream-
line comparison with the respective models. We
used Hindi-BERT2, BERTeus3, KR-Medium4 and
CAMeLBERT5 for Hindi, Basque, Korean and Ara-

2https://huggingface.co/monsoon-nlp/hindi-bert
3https://huggingface.co/berteus-base-cased
4https://huggingface.co/snunlp/KR-Medium
5https://huggingface.co/CAMeL-Lab/bert-base-arabic-

camelbert-msa

bic, respectively.

To align the tokenized English and target lan-
guage instances, we use GIZA++ with IBM Model
4, with grow − diag − final − and as the sym-
metrization heuristic, maximum fertility of 10 and
maximum sentence length of 101. After obtaining
the matrix Dt,s, we apply the post-processing as
described in the previous section. Based on prelim-
inary experimentation on Hindi we found a δ of 0.1
to be the best-performing one; however, this could
vary slightly depending on the language and the
tokenizer sizes. For the continual training, we train
with M t, with early stopping, with a learning rate
of 1e− 4, and a maximum sequence length of 512.

For adequate comparison with the state of the
art, we also train our own OFA and FOCUS mod-
els using the identical resources as described for
EnerGIZAr for the languages under consideration,
and by relying on the official codebase of each
project. For OFA, we used the OFA-768 mod-
els since these are, in terms of parameters, iden-
tical to the other models with which they are be-
ing compared. This is a significant contribution,
as FOCUS and OFA-768 are both state-of-the-art
embedding initialization methods which have not
been directly compared before. We also compare
all models with the standard baseline of a bert-
base-cased model trained with LAPT (Language
Adapted Pre-training) as introduced by Chau et
al. (2020) for all target languages. For cursory test-
ing of the pre-trained models, we evaluate for the
standard Masked Language Modelling (MLM) loss
on a held-out validation set for the target language.
Since the tokenizers for each target language model
are identical (Tokt), the MLM loss should be di-
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rectly comparable. We define the MLM loss as,

Lmlm(xi) = −logP (xi|hLi ) (4)

where for a single masked token xi the loss is
calculated as the cross-entropy between xi and hLi ,
where hLi is the output vector from the last trans-
former layer (L) for each masked token i.

4.2 Downstream Testing

For each language we target 3 varied tasks for
downstream testing, covering a wide range of lan-
guage understanding, from syntactic tasks like
Part-of-Speech (POS) tagging and Named Entity
Recognition (NER) to affect-based subjective tasks
like Sentiment and Stance Detection, as well as
reasoning-based tasks like Natural Language Infer-
ence (NLI). To this purpose we referred to each
language’s respective standard language evalua-
tion benchmarks i.e., Indic-GLUE (Kakwani et al.,
2020) for Hindi, BasqueGLUE (Urbizu et al., 2022)
for Basque, ALUE (Seelawi et al., 2021) for Arabic
and KLUE (Park et al., 2021) for Korean.

Tasks were considered as long as sufficient train-
ing data was available (some tasks had less than
1000 training samples available and were there-
fore not considered). We use the Universal Depen-
dencies (Nivre et al., 2017) project for the POS
data (HDTB Treebank For Hindi, BDT Treebank
for Basque). For Sentiment Detection in Hindi
we use the IITP-PR (Akhtar et al., 2016) dataset,
while for topic classification we use the WSTP
(Wikipedia Section Title Prediction) dataset formu-
lated as a Multiple Choice Question Answering
Task. For Sentiment Detection in Basque, we use
the BEC dataset (Agerri et al., 2020), while for
topic classification we use the BHTC dataset from
the same benchmark. For Arabic, we use the pop-
ular WikiANN (Rahimi et al., 2019) dataset for
NER, for Stance detection we use the ANS-stance
dataset (Khouja, 2020), and for multi-label Emo-
tion we use the Arabic subset from the SemEval
2018 Task 1 data (Mohammad et al., 2018). Fi-
nally, for Korean, all 3 tasks, NER, NLI & Topic
Classification were introduced in the KLUE bench-
mark (Park et al., 2021).

For each downstream task we use the provided
validation and test splits. We perform model selec-
tion on the validation set to pick the best model.
All tasks were trained with an initial learning rate
of 5e-5 with a weight decay of 0.01 with around
10% of the total steps being used for warmup. We

run each experiment 3 times and report the mean
performance along with the standard deviation. For
comparisons with the current SOTA, we also eval-
uate the downstream tasks for the OFA-768 and
FOCUS models trained in the previous setup. For
each language, we also test with the original mono-
lingual BERT model whose tokenizer we use as
Tokt for the embedding transfer.

4.3 Cross-lingual Testing
An often used feature of multilingual models is
their capacity for cross-lingual transfer. Barring
availability of annotated data in the target lan-
guage, an English (or other high-resource language)
dataset can be used to train the model while in-
ferring on the target language. While not as ef-
fective as training on the same language, cross-
lingual transfer has proven an excellent alternative
for non-English languages for which hardly any
annotated data is available. In order to evaluate
the cross-lingual capabilities of our approach, we
also perform basic cross-lingual testing. We use
the popular XNLI (Conneau et al., 2018) dataset to
this purpose, training each model in English with
40,000 samples from the training set, while testing
it for the 4 target languages under consideration.
For consistency, we used the same settings as de-
scribed in the previous section.

5 Results

5.1 Pre-training
We evaluate the effectiveness of pre-training using
MLM loss on a held-out validation set. Figure 4
shows the validation loss for the models trained for
Hindi. The baseline model represents the bert-base-
cased model, an English-only model, continually
pre-trained by using the tokenizer Tokt from hindi-
bert6. The OFA-768 and FOCUS models represent
the respective state-of-the-art models described in
the previous section, initialized for Hindi using
the given Tokt. From the figure it is evident that
EnerGIZAr not only initialized a better starting
model, but also resulted in a better final model
post continual training. The validation loss plots
for the other languages show similar trends (see
Appendix B).

Before looking at the results of downstream test-
ing, we first examine the initializations made by
each method. All tested initialisation methods fol-
low three stages. First, identical tokens are directly

6https://huggingface.co/monsoon-nlp/hindi-bert
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Figure 3: An overview of the different types of initialisations, i.e., Copied, New, and Random, performed by OFA,
FOCUS and EnerGIZAr, on all 4 tested languages (Hindi, Basque, Arabic, Korean). Y-axis shows the number of
tokens initialized by each methodology.

Figure 4: Illustration of the validation MLM loss for the
baseline, OFA, FOCUS and our EnerGIZAr models.

initialised from their source counterparts. Next,
the respective methodology is applied, i.e., using
the OFA multilingual static embeddings in the case
of OFA, the FastText auxiliary embeddings in the
case of FOCUS and the GIZA++ alignment using
parallel data in the case of EnerGIZAr. Finally,
embeddings identified as poor quality during the
main initialisation step, are initialised using a nor-
mal distribution centred at the mean of all source
embeddings. In most cases, copied embeddings are
expected to have the highest quality, newly initial-
ized the next best quality, and randomly initialized
embeddings the lowest.

Figure 3 shows the results of the analysis. For
Hindi and Basque, EnerGIZAr initialises the largest
amount of new embeddings, followed by FOCUS.
However, for Arabic and Korean, FOCUS ini-
tialises the highest amount of new embeddings
while EnerGIZAr does second best. OFA always
initialises the lowest amount of new embeddings.
Among all languages, Basque had the highest ini-
tialisations by copying, potentially because this lan-
guage shares the Latin script with English, while
Korean had the fewest copied embeddings, result-

ing in more than 90% of the embeddings being
newly or randomly initialised for all methods.

To further understand the impact of the amount
of available parallel data on the methodology, we
experiment with varying amounts of parallel data
in Appendix A.

5.2 Downstream Testing

The results of the tests on all downstream tasks
(measured in Macro-F1) are provided in Table 2.
All methods result in an identical model in terms of
parameters and architecture, allowing a fair com-
parison. From the results, it is evident that Ener-
GIZAr consistently outperforms the continual pre-
training monolingual baseline and both state-of-the-
art initialization methods, OFA and FOCUS, with
only one exception: for Part-of-Speech tagging for
Basque, OFA leads to the best result. The per-
formance difference between OFA, FOCUS, and
EnerGIZAr is minimal but consistent across all lan-
guages and tasks. Due to the closeness of these
results as well as the overlap of the standard devia-
tions we performed a one-tailed paired t-test first
between FOCUS and EnerGIZAr with N=36 (3
seeds, 3 tasks, 4 languages) to test statistical sig-
nificance. We find that the results are extremely
significant with a p-value of 0.0002 with a 95%
confidence interval of 0.379 to 1.112, with a mean
difference of +0.7460. We perform a second one-
tailed paired t-test between OFA-768 and Ener-
GIZAr. The outcome was identical with a p value
of 0.0003, making the results statistically signifi-
cant. The mean difference was even larger with
+0.8572 with a 95% confidence interval of 0.4269
to 1.2875. This makes EnerGIZAr the state-of-the-
art method for embedding initialization for contin-
ual pre-training for monolingual use cases, with
FOCUS being the second-best option in most sce-
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Hindi Basque
Method UDPOS Sentiment Topic UDPOS Sentiment Topic
Bert (LAPT) 97.28 ± 0.02 72.57 ± 1.98 79.20 ± 0.35 95.49 ± 0.10 69.40 ± 0.28 57.20 ± 1.84
OFA-768 97.37 ± 0.05 75.61 ± 0.78 80.95 ± 0.37 95.65 ± 0.08 67.40 ± 0.77 59.66 ± 0.74
FOCUS 97.43 ± 0.03 74.68 ± 1.63 80.86 ± 0.35 95.61 ± 0.16 68.49 ± 0.47 59.50 ± 1.03
EnerGIZAr 97.46 ± 0.04 76.08 ± 0.67 82.68 ± 0.21 95.61 ± 0.07 69.76 ± 0.47 60.15 ± 0.77

Arabic Korean
Method NER Stance Emotion NER NLI Topic
Bert (LAPT) 90.21 ± 0.25 68.91 ± 1.58 58.64 ± 2.43 80.64 ± 1.20 71.44 ± 0.63 83.70 ± 0.60
OFA-768 91.04 ± 0.77 68.70 ± 1.41 61.91 ± 0.58 81.74 ± 0.47 73.30 ± 0.83 82.94 ± 0.30
FOCUS 91.08 ± 0.34 69.30 ± 1.99 61.77 ± 0.44 81.18 ± 1.04 73.67 ± 0.55 84.02 ± 0.26
EnerGIZAr 91.58 ± 0.64 69.42 ± 1.96 62.08±0.54 81.87± 0.40 75.43± 0.45 84.75± 0.40

Table 2: Results for downstream testing of Baseline, OFA-768, FOCUS and our EnerGIZAr models for Hindi and
Basque (above), and Arabic and Korean (below).

Hindi Basque Arabic Korean
Bert (LAPT) 42.61 ± 0.39 46.00 ± 2.22 44.00 ± 1.14 45.36 ± 0.52
OFA-768 54.74 ± 0.50 55.21 ± 2.58 51.68 ± 2.01 52.95 ± 0.29
FOCUS 55.29 ± 0.83 54.27 ± 2.50 51.96 ± 2.05 47.51 ± 0.99
EnerGIZAr 59.36 ± 0.76 58.19 ± 2.08 52.52 ± 1.34 53.41 ± 0.70

Table 3: Results for Cross-lingual testing with the XNLI benchmark (trained on English, tested on the four target
languages) for the baseline as well as OFA-768 and FOCUS compared to EnerGIZAr.

narios.
Regarding the tasks itself we observe that the im-

provement is more apparent for the more semantic
tasks such as Sentiment Classification and Natural
Language Inference (NLI), while it is minor for the
more syntactically informed tasks such as NER and
POS. Concerning the latter, we can argue that both
POS and NER are highly mature tasks with lim-
ited potential for further significant advancements
due to saturation. The language with the lowest
noticeable improvements on the downstream tasks
compared to the baseline and state-of-the-art mod-
els is Arabic. Looking back at Table 1, we see
that Arabic was also the language with the high-
est amount of available data for continual training.
We thus hypothesize that the initialization might
not have been that impactful, i.e., when there is
sufficient pre-training data, the model will proba-
bly be able to better converge, irrespective of poor
initialization.

5.3 Cross-lingual Testing

Table 3 shows the results of cross-lingual testing
for all 4 target languages with every model. It is
clear that EnerGIZAr surpasses other methods in
terms of cross-lingual capabilities when applied to
the task of NLI. We hypothesize that this is due to
the direct source of cross-lingual signals grounded
in the parallel data, in contrast to the multilingual

embeddings used for the other methods which are
a more indirect source of cross-lingual information.
Moreover, the alignment matrix ensures that little
to no information is lost for a sub-word, compared
to nearest-neighbour approaches. Moreover, we
observe that the difference is more pronounced for
languages where we have lower amounts of pre-
training data available, such as Hindi and Basque,
whereas the gap is smaller for a language with more
extensive pre-training data, such as Arabic.

6 Conclusion

We introduce a new embedding initialisation strat-
egy, EnerGIZAr, which uses the statistical align-
ment tool GIZA++ along with parallel data to ini-
tialise embeddings for a target language given an
English-only model. Through extensive experi-
ments on both monolingual downstream tasks as
well as cross-lingual testing, we demonstrate that
our method outperforms standard baselines as well
as state-of-the-art initialisation methods. While the
results for monolingual testing are close, requiring
paired t-tests to confirm the superiority of Ener-
GIZAr, in cross-lingual testing, EnerGIZAr clearly
surpasses current state-of-the-art methods, making
it the clear choice for cross-lingual deployment
scenarios. Although EnerGIZAr requires small
amounts of parallel data and even works adequately
in a setting with only very limited parallel data (see
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Appendix A), it does not require pre-trained multi-
lingual static embeddings or auxiliary embeddings
in any form. This may not be a direct advantage
since all methods discussed require the availability
of some form of cross-lingual signals, however, the
requirements for EnerGIZAr differ in ways that
could be useful in scenarios where availability of
pre-trained embeddings is particularly sparse. Fur-
thermore, EnerGIZAr offers more interpretability
due to the transparency of the alignment matrix and
GIZA++, in contrast to using pre-trained static em-
beddings for alignment which are relatively more
opaque. While we have not yet explored this as-
pect of EnerGIZAr, we intend to investigate it in
future work, and utilize the transparency aspect
to perform selected manual edits to the alignment
matrix. Additionally, we aim to demonstrate the ef-
fectiveness of EnerGIZAr for decoder models and
compare with the work of Remy et al (2024).

Limitations

While EnerGIZAr demonstrates strong improve-
ments in embedding initialization for continual pre-
training, several limitations must be acknowledged.
Firstly, EnerGIZAr relies on the availability of high-
quality parallel corpora for subword alignment us-
ing GIZA++. This dependence makes it less appli-
cable to languages with extremely limited or non-
existent bilingual resources, potentially reducing
its effectiveness in extremely low-resource scenar-
ios. Secondly, while the study covers four typolog-
ically diverse languages (Hindi, Basque, Arabic,
and Korean), further validation is needed for other
language families, especially those with agglutina-
tive or polysynthetic structures. The methodology
may require adaptation to maintain its effective-
ness across these linguistic typologies. Lastly, the
current experiments focus on encoder-based mod-
els (e.g., BERT-like architectures) due to computa-
tional constraints. Each pre-training iteration can
take up to 60 hours on 4X NVIDIA A100 (80GB)
GPUs. However, the effectiveness of EnerGIZAr
for initializing embeddings in decoder-based mod-
els, such as GPT-style autoregressive transform-
ers, remains unexplored and warrants further re-
search especially considering the recent success of
decoder-based models.
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A Impact of Parallel Data Availability

An apt criticism of EnerGIZAr and related methods like FOCUS and OFA has been that they rely
on external sources of cross-lingual signals for assistance in the initialisation process. In some cases
these resources are bilingual dictionaries or separately trained static embeddings, while in the case of
EnerGIZAr, they are parallel corpora. While this work focuses on medium-resourced languages with
sufficient parallel and monolingual data availability, we hope to provide an indicator for performance on
low-resource languages with some additional testing. We repeat the EnerGIZAr experiments as detailed in
Section 4 for Hindi by varying the amount of parallel data used for the GIZA++ alignments. We selected
Hindi, which uses a different script than English, to ensure that a shared script does not result in good
initialisations by default due to identical sub-words.

We keep the rest of the experimental protocol intact, to not create other confounding variables, there-
fore following an identical pre-training procedure, as well as downstream evaluations. In the original
experiment, we used 538K samples of parallel data for the alignment. For this experiment we iterate
with the following settings for parallel data: 75% (403K instances), 50% (269K instances), 25% (134.5K
instances) and 5% instances (27K instances). The last setting was used to illustrate the performance in
extremely low-resource settings, such as Scottish-Gaelic (19K available instances), Northern Sami (36K
available instances), Oria (17K available instances), etc.

Figure 5 illustrates the result of these experiments. The task of UDPOS does not show any valuable
insights due to the high saturation for the POS tagging task (around 0.97 micro-F1 in each case). However,
for Sentiment Detection and News Topic Classification, while the trend is evident, the decrease in
performance is minimal. Even at the 5% setting, the lowest drop is around 1.25%. This suggests that the
availability of parallel data may be less impactful on the methodology than other resources, particularly
the monolingual data used for continual training. Even though the initialisations with low amounts of
parallel data might result in poorer initial embeddings, sufficient monolingual data availability likely
corrects the embeddings significantly to arrive at a similar result.

Figure 5: Drop in F1 performance when using smaller amounts of parallel data for Hindi.

B Validation Loss for Basque, Korean & Arabic

We provided the validation loss for masked language modelling on the held-out dev set below for each
of the 3 remaining languages, i.e. Basque (Figure 6), Arabic (Figure 7) and Korean (Figure 8). All the
graphs, show a promising trend for the EnerGIZAr set of models, having the lower initial as well as final
loss in most comparisons. The FOCUS set of models are often second-best, followed by OFA-768, finally
followed by the continual pre-training baseline.
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Figure 6: Figure showing the validation masked language modelling loss for Basque wrt. the steps on a held-out dev
set for the continual pre-taining baseline, OFA, FOCUS and our EnerGIZAr models.

Figure 7: Figure showing the validation masked language modelling loss for Arabic wrt. the steps on a held-out dev
set for the continual pre-training baseline, OFA, FOCUS and our EnerGIZAr models.
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Figure 8: Figure showing the validation masked language modelling loss for Korean wrt. the steps on a held-out dev
set for the continual pre-training baseline, OFA, FOCUS and our EnerGIZAr models.
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