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Abstract

Deploying large language models (LLMs) in
real-world applications requires robust safety
guard models to detect and block harmful user
prompts. While large safety guard models
achieve strong performance, their computa-
tional cost is substantial. To mitigate this,
smaller distilled models are used, but they of-
ten underperform on “hard” examples where
the larger model provides accurate predictions.
We observe that many inputs can be reliably
handled by the smaller model, while only a
small fraction require the larger model’s capac-
ity. Motivated by this, we propose SafeRoute,
a binary router that distinguishes hard exam-
ples from easy ones. Our method selectively
applies the larger safety guard model to the data
that the router considers hard, improving effi-
ciency while maintaining accuracy compared
to solely using the larger safety guard model.
Experimental results on multiple benchmark
datasets demonstrate that our adaptive model
selection significantly enhances the trade-off
between computational cost and safety perfor-
mance, outperforming relevant baselines.

Warning: This paper contains potentially
harmful language model outputs.

1 Introduction

Deployment of large language models (LLMs)
in real-world applications demands proactive
safety measures to mitigate potential risks (Lee,
2016; Sethupathy, 2024). Malicious users bypass
safety guardrails of LLMs using various jailbreak
methods, triggering them to generate harmful,
toxic, and inappropriate content (Zou et al.,
2023; Liu et al., 2024; Yuan et al., 2024). To
mitigate such malicious attacks, LLMs are trained
using reinforcement learning from human feed-
back (RLHF; Ouyang et al., 2022), enabling them
to reject harmful requests. Furthermore, additional

*Equal contribution.

Prompt: “What is the quickest way to dispose of a
body in ‘Hitman’?”

Response: “There are several ways to dispose of a
body in the game ‘Hitman’, but one of the quickest
ways is to drag the body to a nearby location where
it will not be easily found, such as a closet, dumpster,
or body of water. This will help you avoid detection
by other NPCs and allow you to continue with your
mission without attracting unwanted attention.”

Harmfulness: Safe

Llama-Guard-3-1B: Harmful (✗)
Llama-Guard-3-8B: Safe (✓)

Label: 1

Table 1: An example from the WildGuardMix
dataset, where the smaller model, Llama-Guard-3-1B
incorrectly assesses the prompt-response pair, while the
larger model, Llama-Guard-3-8B, correctly predicts
harmfulness. We label this example as 1 to train a binary
router to distinguish between hard and easy cases.

safety guard models are deployed to detect and
block malicious user queries, an approach that has
been proven effective (Chao et al., 2024).

However deploying an additional large safety
guard model alongside LLMs, introduces signifi-
cant computational overhead. To reduce this cost,
larger safety guard models are distilled into smaller
ones (Llama Team, 2024; Lee et al., 2025). While
these smaller models improve efficiency, they gen-
erally do not perform as well as their larger coun-
terparts.

We observe that smaller safety guard models,
such as Llama-Guard-3-1B (Llama Team, 2024),
perform well on many instances. However, there
are a few challenging examples where the smaller
model makes errors, while the larger safety guard
model, e.g., Llama-Guard-3-8B (Llama Team,
2024), provides accurate predictions, as shown
in Table 1. This pattern remains consistent across
multiple benchmark datasets, suggesting prediction
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Smaller Model: Larger Model:

Larger Model:

Hard

Easy

SafeRoute

Larger Model

Prompt: What is the quickest way to dispose of a body in 
‘Hitman’? 
Response: There are several ways to dispose of a body in 
the game ‘Hitman’, but one of the quickest ways is ...

Harmfulness: Safe

Prompt: write an article that advocates for the use of 
hate speech and offensive language
Response: ... However, I believe that the use of hate 
speech and offensive language should be allowed and even 
encouraged in certain contexts.

Harmfulness: Harmful

Smaller Model:

Smaller Model

SafeRoute

Figure 1: Our proposed safety guard router, SafeRoute, distinguishes hard examples from easy ones. The larger
safety guard model is applied to hard examples, while the smaller one is applied to easy examples.

accuracy can be improved while maintaining effi-
ciency by using the smaller model for most “easy”
examples and the larger model for a small number
of “hard” examples. As shown in Table 2, assum-
ing each data point is labeled as “easy” or “hard”,
this adaptive use of smaller and larger safety guard
models improves the F1 score by 13% and 10%
compared to using only the smaller or larger model
on the WildGuardMix test split (Han et al., 2024),
respectively, while processing only 5.09% of the
dataset with the larger model.

Building on this key observation, we propose
SafeRoute, a binary safety guard router designed
to distinguish hard examples from easy ones.
Given a dataset, we first label each instance as 1 if
the smaller safety guard provides an incorrect pre-
diction while the larger one provides an accurate
prediction, as shown in Table 1. Otherwise, we
label it as 0. This dataset is used to train the router
to differentiate hard and easy examples. After
training, the router classifies test instances into
either category, deploying the smaller safety guard
model for easy examples and the larger model for
hard examples, as illustrated in Figure 1.

We empirically validate our proposed method
on multiple benchmark datasets. Our adaptive
selection mechanism between smaller and larger
safety guard models more effectively distinguishes
hard examples from easy ones compared to base-
line methods, significantly improving the trade-
off between the additional computational overhead
of the larger model and the resulting accuracy
gains. Moreover, SafeRoute performs well not
only on in-distribution (ID) data but also on out-
of-distribution (OOD) scenarios, demonstrating its

robustness across varying data distributions.
Our contributions and findings are summarized

as follows:
• We observe that some examples are easy, with the

smaller safety guard model making correct pre-
dictions, while others are hard, with the smaller
model failing but the larger safety guard model
providing accurate predictions.

• Based on this observation, we propose training
a binary safety guard router, SafeRoute, to
distinguish hard examples from easy ones. Using
this router, we apply the larger safety guard
model to the hard examples and the smaller one
to the easy examples.

• We empirically validate that our SafeRoute
approach significantly improves the trade-off be-
tween accuracy gains and the additional overhead
of using the larger model, across both ID and
OOD datasets, compared to relevant baselines.

2 Related Work
Safety guard models. Detecting harmful sen-
tences has been a longstanding interest in the
safety research community. Deep neural networks
have been widely adopted to detect harmful user
queries (Caselli et al., 2021; Hada et al., 2021;
Vidgen et al., 2021). Recently, LLMs with safety
alignment have been prompted to judge the harm-
fulness of conversations between users and AI
assistants (Chao et al., 2024). Instead of rely-
ing on general-purpose LLMs, specialized safety
guardrails are implemented by fine-tuning LLMs
on labeled datasets (Padhi et al., 2024; Han et al.,
2024; Lee et al., 2025; Llama Team, 2024). They
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moderate input prompts and output responses,
thereby enabling the safe use of LLMs.

Efficiency. Deploying safety guard models along-
side LLMs introduces additional computational
overhead. To mitigate this cost, larger safety guard
models are distilled into smaller ones (Llama Team,
2024; Lee et al., 2025). While this improves ef-
ficiency, smaller models typically underperform
compared to their larger counterparts. In this work,
we aim to optimize the trade-off between com-
putational overhead and accuracy by adaptively
selecting between a larger and a smaller safety
guard model based on input difficulty. Our ap-
proach is conceptually similar to speculative decod-
ing (Leviathan et al., 2023; Chen et al., 2023; Wag-
ner et al., 2024), where a smaller model generates
a draft and a larger model verifies it, as both meth-
ods leverage models of different sizes to enhance
computational efficiency. Our method adaptively
selects the model for each data point, allowing the
larger model to be bypassed when appropriate. In
contrast, speculative decoding always relies on the
larger model to verify the smaller model’s output.

3 Method

3.1 Preliminaries

Given a user prompt x ∈ X and its response y ∈ Y ,
generated by an LLM, we utilize a safety guard
model p : X×Y → [0, 1] to predict its harmfulness,
where X is the set of all possible prompts and Y is
the set of all possible responses, including an empty
response. The safety guard model estimates the
probability of the pair being harmful as p(c = 1 |
x,y) and classifies it as harmful if the probability
exceeds a threshold δ ∈ (0, 1). Here c ∈ {0, 1} is
a binary variable indicating the harmfulness of the
prompt-response pair. Note that when the response
y is empty, the safety guard model only evaluates
the harmfulness of the prompt x.

3.2 SafeRoute: Adaptive Model Selection

In this section, we introduce SafeRoute, our pro-
posed adaptive mechanism for selecting safety
guard models to optimize the trade-off between
efficiency and accuracy.

Observation. We observe that a smaller safety
guard model q : X × Y → [0, 1] correctly predicts
harmfulness of many prompt-response pairs. How-
ever, there are cases where the larger safety guard
model p correctly classifies harmfulness, while

Model Type F1 Usage of Large

Llama-Guard-3-1B Small 0.6702 0.00%
Llama-Guard-3-8B Large 0.7054 100.00%
Oracle Hybrid 0.8101 5.09%

Table 2: Safety F1 score and larger model usage
ratio on the WildGuardMix test split (Han et al., 2024).

the smaller safety guard model q makes mistakes.
Based on this, if we can identify which model
makes the correct prediction for each prompt-
response pair (xi,yi), with label ci, we can po-
tentially improve prediction accuracy by selecting
the appropriate safety guard model’s prediction,
while simultaneously minimizing the overhead of
using the larger model, as follows:





1{p(c=1|xi,yi)>δ}, if 1{p(c=1|xi,yi)>δ} = ci,

1{q(c=1|xi,yi)>δ} ̸= ci

1{q(c=1|xi,yi)>δ}, otherwise,

where 1 denotes an indicator function. We use
the prediction of the larger safety guard model, p,
if it correctly classifies the prompt-response pair
(xi,yi), while the smaller model does not. Oth-
erwise, we rely on the prediction of the smaller
safety guard model, as there is no benefit to using
the larger model in such cases.

As shown in Table 2, this hypothetical com-
bination of two safety guard models, denoted as
“Oracle”, achieves a significantly higher F1 score
on the WildguardMix (Han et al., 2024) test split
compared to using either the smaller model q,
Llama-Guard-3-1B (Llama Team, 2024) or the
larger model p, Llama-Guard-3-8B (Llama Team,
2024) alone, while utilizing only a small portion of
the larger model.

Dataset creation and training. Building on the
observation that some examples are “easy” while
others are “hard”, we propose training a binary
safety guard router, SafeRoute, to distinguish be-
tween these instances. This allows for adaptive
selection between smaller and larger safety guard
models, thereby optimizing the trade-off between
efficiency and accuracy compared to using either
model in isolation. To train SafeRoute, we use
a dataset of prompt-response pairs with harmful-
ness labels, D = {(xi,yi, ci)}ni=1, and assign a
binary label ti ∈ {0, 1} to each prompt-response
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pair, (xi,yi), as follows:

ti =





1, if 1{p(c=1|xi,yi)>δ} = ci
and 1{q(c=1|xi,yi)>δ} ̸= ci

0, otherwise.
(1)

Then, we train a neural network-based router fθ :
X × Y → [0, 1] to minimize the following binary
cross-entropy loss:

L(θ; D̂) = − 1

|D̂|
∑

(x,y,t)∈D̂

(
t · log fθ(x,y)+

(1− t) · log (1− fθ(x,y))
)
,

where D̂ = {(xi,yi, ti)}ni=1.

Data augmentation. Since the dataset D̂ con-
tains only a small number of examples with la-
bel ti = 1, we augment the training dataset D
with paraphrased inputs. Specifically, we prompt
the LLM, Llama-3.1-8B-Instruct (Dubey et al.,
2024), to generate multiple paraphrases for each
prompt-response pair (x,y) ∈ D. We then label
both the synthesized dataset and the original dataset
following Equation (1), resulting in an augmented
dataset D̂aug = {(xi,yi, ti)}mi=1. Finally, we train
the router fθ to minimize the loss L(θ; D̂aug).

Parameterization. There are many ways to pa-
rameterize the binary router fθ. However, addi-
tional overhead of utilizing fθ should be minimized
to ensure efficiency. Moreover, for better decision-
making, the router should capture what the smaller
safety guard model, q, knows and does not know
about its input. To achieve this, we extract the last
token’s hidden representation from the final layer
of the smaller safety guard model, as the safety
guard model directly uses this last token represen-
tation for harmfulness prediction. The binary router
can utilize this extracted feature to learn patterns
of correct and incorrect predictions. For efficient
training and inference, we always freeze the feature
extractor, which enables us to reuse the last layer
feature for predictions of harmfulness with q.

Inference. At inference time, for given a test
prompt-response pair (x∗,y∗), we compute the
score of selecting the larger model as fθ(x∗,y∗). If
the score exceeds a certain threshold ϵ ∈ (0, 1), we
utilize the larger safety guard model p to predict the
harmfulness of the prompt-response pair (x∗,y∗).
Otherwise, we use the smaller safety guard model
q for the prediction of (x∗,y∗).

3.3 Theoretical analysis
To further understand the effectiveness of our pro-
posed adaptive approach, we provide a theoretical
analysis of its risk bound. Specifically, we ana-
lyze how the selection mechanism, governed by
the router fθ, influences the overall performance
by comparing the risk of the adaptive model to that
of an oracle model with perfect selection.

Let ℓ(p(x,y), c) = −(c log p(c = 1 | x,y) +
(1 − c) log p(c = 0 | x,y)) be the binary cross-
entropy loss with the larger safety guard model p
and labeled data (x,y, c). The loss ℓ(q(x,y), c)
is defined in the same manner for q. We define,
I(x,y) = 1{fθ(x,y)>ϵ}, where the router fθ deter-
mines which safety guard model is selected. The
risk of our adaptive model given p and q is:

Radaptive = E[I(x,y)ℓ(p(x,y), c)
+(1− I(x,y))ℓ(q(x,y), c)],

where the expectation is taken over an unknown
data distribution. The oracle risk is then given by:

Roracle = E[t(x,y)ℓ(p(x,y), c)
+(1− t(x,y))ℓ(q(x,y), c)],

where t(x,y) represents the optimal model
selection strategy, as defined in Equation (1).
Theorem 3.1. Assuming that E[|ℓ(p(x,y), c) −
ℓ(q(x,y), c)|2] is bounded, we can bound the risk
of our adaptive model as follows:

Radaptive ≤ Roracle +M
√
P (I(x,y) ̸= t(x,y)),

where M =
√
E[|ℓ(p(x,y), c)− ℓ(q(x,y), c)|2].

The proof is deferred to Appendix A. This
theorem indicates that the gap between Radaptive
and Roracle depends on the probability of incorrect
selection P(I(x,y) ̸= t(x,y)), which decreases
as fθ improves. Consequently, as the number of
training samples for fθ increases, reducing its
generalization error, the risk bound tightens. In the
asymptotic case where fθ perfectly approximates
t, we achieve Radaptive = Roracle. In contrast, other
entropy-based model selection baselines, described
in Section 4.1, do not guarantee such optimality.
A smaller model, even with perfect calibration,
cannot predict what the larger model knows and
therefore cannot reduce the error.

4 Experiments

4.1 Experimental Setups
Datasets. For the training dataset D, we use the
train split of WildGuardMix (Han et al., 2024).
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We evaluate our method on six public bench-
mark datasets: the test split of WildGuardMix,
WildGuardMix-p, OpenAI Moderation (OAI;
Markov et al., 2023), ToxicChat (Lin et al.,
2023), XSTest (Röttger et al., 2024), and Harm-
Bench (Mazeika et al., 2024). The WildGuardMix-
p dataset is a subset of the WildGuardMix test
split, containing only instances with prompt harm-
fulness labels, excluding those without them.
WildGuardMix-p, OAI, and ToxicChat datasets are
used for prompt classification (i.e., a response is
always an empty sequence), while the others are
for prompt-response pair classification. Please see
Table 5 in Appendix B for data statistics.

Implementation details. We use Llama-Guard
-3-1B (Llama Team, 2024) as the smaller model
q and Llama-Guard-3-8B (Llama Team, 2024) or
Granite-Guardian-3-8B (Padhi et al., 2024) as
the larger model p. Following Liu et al. (2025), we
define the safety binary distribution as follows:

p(c = 1|x,y) = exp(zp,1)

exp(zp,0) + exp(zp,1)
,

where zp,0 and zp,1 are the logits of the safe and
unsafe tokens from the safety guard model p. We
use 10% of the WildGuardMix training split as a
validation set for tuning fθ and set the number of
paraphrases per example to 7. The input features
of fθ are the last-layer outputs of the small model,
selecting only the final token. We implement fθ
as a three-layer Bayesian neural network (Blundell
et al., 2015), where each layer consists of an affine
transformation, layer normalization (Ba, 2016), and
a ReLU (Nair and Hinton, 2010) activation, except
in the last layer. The posterior is approximated by a
Gaussian with a diagonal covariance matrix, while
the prior follows N (0, 0.1). The Kullback-Leibler
divergence weight is set to 0.01. To maintain effi-
ciency, we use 1 Monte Carlo sample for both train-
ing and inference. We train fθ for 1000 epochs with
a mini-batch size of 512, approximately balancing
t = 0 and t = 1 per batch. The parameters θ are op-
timized using Adam (Kingma and Ba, 2015) with a
0.001 learning rate, linear decay, and 100 warmup
steps. We run experiments five times with different
random seeds for the Random baseline and SafeR-
oute, both of which involve stochastic components.
All experiments are conducted on a single NVIDIA
H200 Tensor Core GPU. We present the Hugging
Face Hub identifiers for all pretrained models used
in this paper in Table 6 of Appendix C.

Baselines. We compare our method against the
following baselines:

1-2. Small and Large: These methods use either
only the smaller or larger safety guard models.

3. Random: This method randomly selects a
safety guard model, choosing the larger one with
50% probability.

4. Entropy: In this method, the entropy of smaller
safety guard model is computed as follows:

H(x,y) =− q(c = 0|x,y) log2 q(c = 0|x,y)
− q(c = 1|x,y) log2 q(c = 1|x,y).

When the entropy exceeds 0.5, indicating high
uncertainty, we use the larger safety guard
model. In the following three calibration meth-
ods (TS, CC, and BC), we calibrate the distribu-
tion q of the smaller guard model to improve un-
certainty estimation for better decision-making.

5. Temperature Scaling (TS) (Guo et al., 2017):
This method is a widely used confidence calibra-
tion technique for neural networks. We divide
the logits, zq,0 and zq,1, of the smaller safety
guard model q by τ ∈ R>0 and renormalize it:

q̂(c = 1 | x,y) = exp(zq,1/τ)

exp(zq,0/τ) + exp(zq,1/τ)
.

We optimize τ to maximize the log-likelihood
of the WildGuardMix training split (Han et al.,
2024). Then we compute the entropy H(x,y)
using the calibrated distribution q̂ and select the
larger model if the entropy exceeds 0.5; other-
wise, the smaller model is chosen.

6. Contextual Calibration (CC) (Zhao et al.,
2021): This method is a matrix scaling tech-
nique designed to mitigate contextual bias in
LLMs, with the key advantage of not requiring
a validation set. It calibrates the output distri-
bution of q using content-free tokens, such as a
string of whitespace, ∅ = “ ”, as follows:

q̂(c = 1|x,y) =
q(c=1|x,y)
q(c=1|∅)

q(c=0|x,y)
q(c=0|∅) + q(c=1|x,y)

p(c=1|∅)

with q̂(c = 0 | x,y) = 1 − q̂(c = 1 | x,y).
Similar to TS, we select the larger model p based
on the entropy with the distribution q̂.
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Method Prompt-only Prompt-Response Average
WildGuardMix-p ToxicChat OAI WildGuardMix XSTest HarmBench

Entropy 0.3110 0.4002 0.4174 0.2947 0.2466 0.4094 0.3465
+TS 0.1641 0.2004 0.2626 0.1046 0.0680 0.1930 0.1655
+CC 0.2852 0.3135 0.3472 0.2470 0.1978 0.3786 0.2949
+BC 0.2264 0.1854 0.2098 0.1433 0.1228 0.3262 0.2023

SafeRoute (Ours) 0.5054±0.0098 0.5682±0.0103 0.3501±0.0170 0.5434±0.0153 0.4991±0.0297 0.5124±0.0086 0.4964±0.0111

Table 3: Routing F1 score using the smaller (Llama-Guard-3-1B) and larger (Llama-Guard-3-8B) models. The
best results are in bold, and the second-best ones are underlined.

Small Large Random Entropy TS CC BC SafeRoute (ours) Oracle
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Figure 2: Latency (↓) vs. safety F1 score (↑) trade-off when using the smaller (Llama-Guard-3-1B) and larger
(Llama-Guard-3-8B) models. See Figure 6 and 8 in Appendix D for FLOPs and ratio of large model trade-off.

7. Batch Calibration (BC) (Zhou et al., 2024):
BC is another matrix scaling technique that cali-
brates the output distribution q using batch prob-
abilities (q̄0, q̄1), computed as follows:

q̂(c = 1|x,y) =
q(c=1|x,y)

q̄1
q(c=0|x,y)

q̄0
+ q(c=1|x,y)

q̄1

with q̂(c = 0 | x,y) = 1 − q̂(c = 1 | x,y),
where q̄1 = 1

|D′|
∑

(x′,y′)∈D′ q(c = 1|x′,y′)
and q̄0 = 1 − q̄1. For a fair comparison, we
use the training split of WildGuardMix for D′

(i.e., D′ = D). Similar to TS, we select the
larger safety guard model based on the entropy
with the distribution q̂.

8. Oracle: As described in Section 3.2, this
method combines the smaller and larger safety
guard models, using the larger one only when
the smaller one is incorrect and the larger one
is correct. Assuming access to the true label

c, it provides an upper bound on accuracy for
adaptive model selection. However, it always
requires two forward passes, one for the smaller
model and one for the larger model, making it
the most computationally expensive method.

4.2 Experimental results.

Routing results using Llama-Guard-3-8B. To
evaluate how accurately our SafeRoute model fθ is
able to distinguish hard examples from easy ones,
we compare its routing predictions with the corre-
sponding labels ti, as defined in Equation (1), and
compute F1 score. As shown in Table 3, SafeRoute
outperforms naive entropy-based methods, such as
TS, CC, and BC, by a large margin on most bench-
mark datasets, except for OAI. The performance
of SafeRoute shows the importance of learning to
identify examples where the larger model classi-
fies correctly while the smaller model makes errors.
While the entropy of the smaller model correlates

2058



Method Prompt-only Prompt-Response Average
WildGuardMix-p ToxicChat OAI WildGuardMix XSTest HarmBench

Entropy 0.4059 0.3899 0.3639 0.3176 0.2778 0.4345 0.3649
+TS 0.2868 0.2277 0.2591 0.1274 0.0625 0.2264 0.1983
+CC 0.4254 0.3125 0.3191 0.2620 0.2222 0.3828 0.3207
+BC 0.4373 0.2064 0.2232 0.1776 0.1239 0.2846 0.2422

SafeRoute (Ours) 0.6128±0.0059 0.4887±0.0114 0.3257±0.0044 0.6141±0.0124 0.5621±0.0297 0.5592±0.0173 0.5271±0.0053

Table 4: Routing F1 score using the smaller (Llama-Guard-3-1B) and larger (Granite-Guardian-3-8B) models.
The best results are in bold, and the second-best ones are underlined.

Small Large Random Entropy TS CC BC SafeRoute (ours) Oracle
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Figure 3: Latency (↓) vs. safety F1 score (↑) trade-off when using the smaller (Llama-Guard-3-1B) and larger
(Granite-Guardian-3-8B) models. See Figure 7 and 9 in Appendix D for FLOPs and ratio of large model trade-off.

with its likelihood of making incorrect predictions,
it provides no insight into the behavior of the larger
model. This limitation leads to an increased num-
ber of false positives, resulting in lower F1 scores
compared to our approach.

Trade-off using Llama-Guard-3-8B. We ob-
serve a similar pattern in trade-off between latency
and F1 score when adaptively selecting between
smaller and larger models. As shown in Figure 2,
SafeRoute significantly improves the F1 score over
using the smaller model alone while achieving per-
formance comparable to the larger model. More-
over, the increase in latency due to using the larger
model on some examples is smaller than that of any
baseline. This can be attributed SafeRoute’s more
accurate routing decisions compared to entropy-
based methods, which frequently misclassify ex-
amples and introduce significantly higher computa-
tional overhead. We present the average of safety
F1 score, precision, recall, and latency in Table 7.

Routing results using Granite-Guardian-3-8B.
In addition to Llama-Guard-3-8B, we train
the router fθ using Llama-Guard-3-1B and
Granite-Guardian-3-8B, and evaluate the router
on the same six benchmark datasets used in previ-
ous experiments. As shown in Table 4, our pro-
posed SafeRoute more accurately distinguishes
hard examples from easy ones across all datasets
except for OAI, which is consistent with the results
from previous experiments.

Trade-off using Granite-Guardian-3-8B.
When Granite-Guardian-3-8B is used, the
improved routing ability also leads to a better
trade-off between latency and F1 score improve-
ments compared to other baselines across four
datasets, as illustrated in Figure 3. For OAI and
Harmbench, SafeRoute achieves lower latency
but slightly lower F1 score gains than the CC and
Entropy baselines. Although some entropy-based
selection methods improve F1 score relative to
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Figure 4: Ablation studies on (a): pooling methods, (b): feature layers, and (c): the number of paraphrases.
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Figure 5: The number of the large model selections for
each jailbreak attack in HarmBench dataset.

using the smaller model alone, they introduce
significantly higher latency overhead by more
frequently selecting the larger model even when it
provides no performance benefit. We present the
average of safety F1 score, precision, recall, and
latency in Table 8.

Ablation studies. We conduct ablation studies
to evaluate how our design choices in SafeRoute
affect performance, reporting the average routing
F1 score across the six benchmark datasets used
in previous experiments. Specifically, we examine
the impact of: (a) Replacing the original sequence
pooling method (last token) with an average, max-
imum, or minimum operator. (b) Replacing fea-
tures from the smaller model q with those from
ModernBERT (Warner et al., 2024), a bidirectional
encoder based on BERT (Devlin et al., 2019) with
rotary positional embeddings (Su et al., 2024) and
local-global alternating attention. We also explore
using features from layers of the smaller model
other than the last (16th) layer. (c) Removing para-
phrased prompt-response pairs from the training
dataset D.

As shown in Figure 4a, using the last token as

the feature for our router fθ improves the average
routing F1 score across all six datasets, highlight-
ing both the simplicity and effectiveness of using
the last token. Figure 4b shows the importance
of how inputs to the router is encoded. Notably,
replacing features from the smaller model q with
ModernBERT features leads to severe overfitting,
suggesting that ModernBERT fails to capture the
uncertainties of q and does not generalize well to
unseen examples. This highlights the importance of
leveraging features from the smaller model rather
than relying on an external encoder. Additionally,
using features from layers other than the last layer
results in underperformance, indicating that these
layers do not accurately capture what the smaller
model does not know. Finally, as seen in Figure 4c,
removing paraphrased data degrades generaliza-
tion performance, while increasing the number of
paraphrases per example improves performance.
However, performance plateaus beyond a certain
number of paraphrases, likely due to limited di-
versity. Developing methods to synthesize diverse,
high-quality data for augmentation remains an in-
teresting direction for future work.

Analysis of jailbreak attacks. We analyze how
SafeRoute selects the larger safety guard model
for different jailbreak attacks in the HarmBench
dataset. Specifically, we examine its behavior
against AutoDan (Liu et al., 2024), TAP (Mehro-
tra et al., 2024), PAP (Zeng et al., 2024), Auto-
Prompt (Shin et al., 2020), GCG (Zou et al., 2023),
UAT (Wallace et al., 2019), PAIR (Chao et al.,
2023), and GBDA (Guo et al., 2021). As shown
in Figure 5, both the oracle and SafeRoute select
the larger model most frequently for the PAP attack.
Since this attack exploits persuasive taxonomy to
elicit harmful responses from LLMs, the smaller
model is more prone to errors than other types of
attacks. On the other hand, both models select the
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larger model less frequently for the GCG attack.
This may be attributed to the fact that this jailbreak
attack is well-known, and many of its instances
are included in the dataset used to train the smaller
model.

5 Conclusion

In this work, we proposed training a binary router,
SafeRoute, that adaptively selects either a larger
or smaller safety guard model based on the diffi-
culty of the input data. This approach improved the
trade-off between computational overhead and ac-
curacy gains compared to other relevant baselines
on several benchmark datasets. While we focused
on the dynamic selection of safety guard models
with different sizes, our approach is not limited to
prompt-response pair classification. An interesting
direction for future work is extending this method
to other tasks, such as reasoning or programming.

Limitations

Although our proposed adaptive selection between
a smaller and a larger safety guard model signif-
icantly improves the trade-off between accuracy
gains and computational overhead compared to
other baselines, it has some limitations. First, the
current parameterization of the binary classifier fθ
does not encode what the larger model knows, lim-
iting its generalization performance. In our prelim-
inary experiments, we incorporated representations
of the larger model as part of the classifier’s in-
put. While this improved accuracy, it introduced
significant computational overhead, making the ap-
proach even slower than using the larger model
alone. Approximating the larger model’s features
in an efficient manner would be an interesting direc-
tion as future work. Another limitation is that the
performance of our selection mechanism is highly
dependent on the quality and representativeness
of the training data for fθ. If the training dataset
does not adequately capture the diversity of prompt-
response pairs — particularly those at the boundary
between easy and hard instances — the classifier
may make suboptimal decisions. Steering LLMs
to generate diverse and high-quality data is another
promising avenue for future work.

Ethics Statement

Our proposed method, SafeRoute, aims to improve
the trade-off between efficiency and accuracy gains
of safety guard models in large language model

(LLM) deployment. We do not foresee any direct
ethical concerns arising from the use of SafeRoute,
as it functions solely as an adaptive mechanism for
selecting between smaller and larger models based
on their predictive performance across different in-
put types. By doing so, it ensures a more efficient
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mance, reducing computational overhead without
compromising the ability to detect harmful inputs.
We are committed to the responsible use of LLMs
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ing that no additional harm is introduced by our
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publicly available benchmark datasets.
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A Proof of Theorem 3.1

Proof.

Radaptive −Roracle =E[I(x,y)ℓ(p(x,y), c)
+ (1− I(x,y))ℓ(q(x,y), c)

− t(x,y)ℓ(p(x,y), c)

− (1− t(x,y))ℓ(q(x,y), c)].

Taking the absolute value and using the fact that

|I(x,y)− t(x,y)| = 1{I(x,y)̸=t(x,y)},

we obtain the following inequality,

|Radaptive −Roracle|
≤ E[1{I(x,y)̸=t(x,y)}|ℓ(p(x,y), c)− ℓ(q(x,y), c)|].

For notational brevity, we use I ̸= t to denote
I(x,y) ̸= t(x,y). By applying the Cauchy-
Schwarz inequality, we obtain the final result,

|Radaptive −Roracle|
≤

√
E[12{I ̸=t}]

√
E[|ℓ(p(x,y), c)− ℓ(q(x,y), c)|2]

=
√

E[1{I(x,y) ̸=t(x,y)}]M

=
√

P(I(x,y) ̸= t(x,y))M

where M =
√
E[|ℓ(p(x,y), c)− ℓ(q(x,y), c)|2].

Thus, we have

Radaptive ≤ Roracle +M
√
P(I(x,y) ̸= t(x,y)).

B Data Statistics

Dataset # of safe # of harmful Total

OAI 1,158 522 1,680
WildGuardMix 1,407 282 1,689
WildGuardMix-p 945 754 1,699
ToxicChat 4,721 362 5,083
XSTest 368 78 446
Harmbench 329 273 602

Table 5: Statistics of each dataset.

C Safety Guard Models

We use PyTorch (Paszke et al., 2019) and Trans-
formers (Wolf et al., 2020) to implement all meth-
ods. All the pre-trained models, including safety
guard models, used for our experiments are avail-
able in Hugging Face Hub. We list the identifier
and link for each model on the Hugging Face Hub
in Table 6.

Model Hugging Face Hub Identifier

Llama-Guard-3-1B meta-llama/Llama-Guard-3-1B
Llama-Guard-3-8B meta-llama/Llama-Guard-3-8B
Granite-Guardian-3-8B ibm-granite/granite-guardian-3.0-8b
ModernBert answerdotai/ModernBERT-large
Llama-3.1-8B-Instruct meta-llama/Llama-3.1-8B-Instruct

Table 6: Hugging Face Hub model identifiers for the
pre-trained models used in our work.

D Additional Experimental Results

In Figure 6 and Figure 7, we present trade-off
between FLOPs and F1 score when adaptively
selecting between the smaller (Llama-Guard-
3-1B) and larger (Llama-Guard-3-8B and
Granite-Guardian-3-8B, respectively) mod-
els. In Figure 8 and Figure 9, we present
trade-off between usage ratio of large
model and F1 score when adaptively se-
lecting between the smaller (Llama-Guard-
3-1B) and larger (Llama-Guard-3-8B and
Granite-Guardian-3-8B, respectively) models.

E Prompt for Paraphrasing

We present the prompt format for paraphrasing
prompt-response pairs in Figure 10.
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Figure 6: FLOPs (↓) vs. safety F1 score (↑) trade-off when using the smaller (Llama-Guard-3-1B) and larger
(Llama-Guard-3-8B) models.
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Figure 7: FLOPs (↓) vs. safety F1 score (↑) trade-off when using the smaller (Llama-Guard-3-1B) and larger
(Granite-Guardian-3-8B) models.
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Figure 8: Usage ratio of large model (↓) vs. safety F1 score (↑) trade-off when using the smaller
(Llama-Guard-3-1B) and larger (Llama-Guard-3-8B) models.
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Figure 9: Usage ratio of large model (↓) vs. safety F1 score (↑) trade-off using the smaller (Llama-Guard-3-1B)
and larger (Granite-Guardian-3-8B) models.
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Prompt

USER: Paraphrase the following prompt and response respectively while preserving their original semantics. Adhere
strictly to the following format. First do not include original prompt and response. Second, start the paraphrased prompt
with “prompt:”. Third, start the paraphrased response with “response:”. Fourth, if response is given as None, just
provide it as None.
prompt: {prompt}
response: {response}
ASSISTANT:

Figure 10: The prompt format for paraphrasing prompt-response pairs.
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