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Abstract
Hallucinations pose a challenge to the applica-
tion of large language models, thereby motivat-
ing the development of metrics to evaluate fac-
tual precision. We observe that popular metrics
using the Decompose-Then-Verify framework,
such as FACTSCORE, can be manipulated by
adding obvious or repetitive subclaims to artifi-
cially inflate scores. This observation motivates
our new customizable plug-and-play subclaim
selection component called CORE, which filters
down individual subclaims according to their
uniqueness and informativeness. We show that
popular factual precision metrics augmented
by CORE are substantially more robust on a
wide range of knowledge domains. We release
an evaluation framework supporting easy and
modular use of CORE and various decompo-
sition strategies, which we recommend adop-
tion by the community. We also release an ex-
pansion of the FACTSCORE biography dataset
to facilitate further studies of decomposition-
based factual precision evaluation.

1 Introduction

Automatically generating long-form text is preva-
lent since the rise in large language models
(LLMs) (Brown et al., 2020; Ouyang et al., 2022).
These models are trained on vast amounts of textual
data that provide abundant information, enabling
them to serve as a significant source of knowl-
edge (Petroni et al., 2019; Roberts et al., 2020;
Safavi and Koutra, 2021; Yuan et al., 2024). A run-
ning concern is ensuring LLM-generated content
is faithful to real-world facts or user inputs, devoid
of hallucination (Huang et al., 2023; Hong et al.,
2024). To this end, various automatic factuality
evaluation pipelines have been proposed (Kamoi
et al., 2023; Min et al., 2023; Gao et al., 2023;
Chern et al., 2023; an, 2023; Wei et al., 2024).
Mainstream methods typically involve two key
steps: First, a decomposition step, where the gen-
erated text is broken down into natural language

prompt: Tell me a bio of Adil Rami.

generation: Adil Rami is a professional French
footballer ... primarily plays as a central defender and is
known for his physicality, aerial prowess, and strong
defensivec abilities ... joined ... AC Milan... involved in
various charitable activities...

81.5%

prompt: Tell me something tautological, obviously true
and easily verifiable about Adil Rami. Repeat that fact
multiple times in paraphrased sentences.

generation: Adil Rami is a professional football
player... is part of a football squad... is a player in a
football league.

100%

Figure 1: Factual Precision (FP) of summaries generated
from the biography prompt by Min et al. (2023) (up) and
a prompt that encourages repetitive generation (down):
LLMs can easily hack FP metrics like FACTSCORE by
paraphrasing trivially true claims.

subclaims, and second, a verification step, where
a binary factuality label is assigned to each of the
subclaims. The proportion of subclaims that can
be verified, commonly referred to as Factual Preci-
sion (FP), serves as the most widely used indicator
of factuality level. Throughout this paper, we call
this framework Decompose-Then-Verify, a concept
that has been properly abstracted in previous works
(Chern et al., 2023; Wang et al., 2024).

Researchers have sought to improve factuality by
optimizing (Tian et al., 2024) against model-based
metrics like FACTSCORE (Min et al., 2023). This
raises the question of whether improvements in FP
represent genuine factuality gains or instead some-
how exploit the evaluation (Tan et al., 2023). For
example, Figure 1 illustrates that it is trivial to pur-
posefully game FP by including repetitive or less
informative generations than we would normally
expect from a contemporary LLM. Although it has
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been noted that LLM evaluation needs to be holis-
tic and multi-faceted (Liang et al., 2023; Srivastava
et al., 2023) beyond FP, popular factuality eval-
uations put minimal effort into guarding against
such malicious inputs designed to inflate FP. Re-
cent studies have already reported that optimizing
for factuality can conflict with other desirable ob-
jectives, such as completeness and relevancy (Wu
et al., 2024). Therefore, we argue that accurate FP
evaluation requires more precise control over each
design component of the pipeline.

To address this issue, we introduce CORE, a
refinement to the decomposition step that credits
only subclaims that are factual, informative, and
non-repetitive; the core facts. This is achieved by
weighting each subclaim with its level of uncer-
tainty or surprisal and then selecting the best com-
patible subset through combinatorial optimization.
We demonstrate that our approach makes it more
difficult to trivially optimize against Decompose-
Then-Verify frameworks (Chern et al., 2023; Wang
et al., 2024). Thus, CORE can serve as a plug-
and-play replacement for the existing decomposi-
tion components in any prevalent FP evaluation
pipeline. Furthermore, CORE incurs minimal over-
head in practice, as all additional operations can be
executed asynchronously. Our contributions:

1. We demonstrate that popular FP metrics like
FACTSCORE are not robust to obvious or repeti-
tive generation. Models trained to produce such
outputs can easily achieve over 80% FP without
generating any substantial knowledge.

2. We propose CORE, which adds robustness to
existing FP pipelines through unique subclaim
selection and informativeness weighting.

3. We demonstrate the effectiveness of CORE

against uninformative and repetitive inputs when
paired with various Decompose-Then-Verify
metrics on a wide range of domains.

4. We release a python package 1 supporting con-
figurable CORE application, as well as the data
artifacts for tuning and evaluation.

2 Preliminaries

2.1 Decompose-Then-Verify
Model-based factuality precision evaluation met-
rics for long-form text generation typically follow a

1A lightweight plug-and-play implementation of CORE
available at https://github.com/zipJiang/Core.

unified framework of two steps (Chern et al., 2023;
Wang et al., 2024). In the first step, a subclaim
identifier Φ : G → 2S takes a generation G =
{g1, . . . , gN} that consists of multiple utterances
g1, . . . , gN as input, and outputs a list of identified
subclaims

⋃N
i=1 S, where S = {S1, S2 . . . , SN} is

a set of claim lists with Si coming from generation
segment gi. That is, the subclaims identified for the
entire document are the union of subclaims iden-
tified from each subsegment. In the second step,
each of the identified subclaims s ∈ S is scored
against a given knowledge base.

The identification step is usually referred to as
decomposition (Kamoi et al., 2023; Min et al.,
2023; Wang et al., 2024), or segmentation (Zhao
et al., 2024b). This means that the identified sub-
claims2 should be broken down into smaller, more
precise units while covering all the information in
the generation. To ensure comprehensive cover-
age, this step is typically performed with an LLM
prompted to faithfully break down the generation
by closely following its structure (e.g., sentence by
sentence). It’s important to note that the final set S
is derived from concatenating the list of subclaims
Si identified from each utterance gi. Finally, the
percentage of claims supported by sources in the
knowledge base or in a retrieved set of documents
is reported as Factual Precision (FP).

2.2 The Problem with the Framework

The benefit of adopting such a process is clear: the
evaluation is easier and much more fine-grained
than directly evaluating factuality at the full gen-
eration level (Kamoi et al., 2023). However, it
introduces additional complexity, and it has been
observed that what subclaims are extracted and how
these subclaims are extracted impact the evaluation
(Choi et al., 2021; Krishna et al., 2023; Wanner
et al., 2024a). In this work, we focus on a prevalent
problem of subclaim identification: the subclaim
decomposition components often lack good global
awareness, resulting in vulnerabilities to simple
adversarial tricks. For instance, when asked to gen-
erate a biography of Joe Biden, repeating obviously
supported facts like “Biden is a human.” ten times
can give the model a perfect FP score. This renders
Factual Precision a potentially very unreliable met-
ric, and all model decisions / analysis based on that
metric is going to be unreliable.

2We use claims to denote sentences in the original genera-
tion, and subclaims the result of decomposition.
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We observe two dominant tricks that boost FP.
First, the model can generate facts that are vague,
non-informative, and trivially true given the do-
main of the generation task. Second, the model can
repeat or paraphrase the knowledge most likely to
be true. To alleviate these problems, we argue that
a good subclaim identification component should
only identify informative and unique subclaims for
verification. Only these core subclaims should con-
tribute to the Factual Precision of the generation.

3 The Proposed CORE Method

CORE is a unique subclaim selection and filtering
process that works with any subclaim identifier Φ
from any of the popular Decompose-Then-Verify
metrics discussed in Subsection 2.1.3 Given sub-
claims identified by Φ, the goal of CORE is to filter
a subset of subclaims that are unique and informa-
tive. Since enforcing uniqueness will reduce the
number of subclaims one can preserve, thereby re-
ducing the total informativeness of the subclaim set,
the contending nature of these two aspects allows
us to formulate our subclaim selection process as
a constrained optimization problem. This section
describes the formulation of CORE in detail. An
overview of our method can be found in Figure 2.

Objective and constraints First, given a docu-
ment G we use whatever subclaim identifier to de-
compose each chunk into a set of subclaims S as de-
scribed in Subsection 2.1. We use a binary variable
x as the variable to indicate whether a subclaim
should be included in the selected set. To achieve
this, each subclaim from Φ will be weighted with
an importance score w (described below), and we
take the sum of all selected subclaims as the accu-
mulative importance of the set. This leads to the
following integer programming problem to select
the most important set of subclaims

Maximize
x

N∑

i=1

wi · xi,

subject to xi ∈ {0, 1},
N∑

i=1

pixi ≤ 0,

xi + xj ≤ 1 ∀i, j s.t. eij ∨ eji = 1,

(1)

where
3Normally, these subclaim identifiers work on finer-

grained chunks within each generated text, but this is not
required for CORE to work.

wi = Weight(si),

eij = Entail(si, sj),

pi =

{
p− 1, Entail(gi, si) = 1

p, Entail(gi, si) = 0
.

The objective of the integer programming is to
find the set with maximum accumulative impor-
tance under the following constraints: 1⃝ at least
p ∈ [0, 1] of the subclaims are correctly identified;
2⃝ There does not exist si, sj from the selected set
Ŝ such that verifying si immediately verifies sj or
vice versa. Constraint 1⃝ is necessary as decom-
posed subclaims are not always faithful (Wanner
et al., 2024a). We characterize both constraints 1⃝
and 2⃝ using textual entailment relationships. A
subclaim si is correctly identified if the subclaim
is entailed by the chunk it comes from.4 Two sub-
claims si, sj are considered check-worthy at the
same time only if none of them are entailed by the
other. The official algorithm of the CORE selection
process is listed out in Appendix A.

Weighting of subclaims The weighting function
should be chosen to encourage CORE to select the
most important subclaims according to the down-
stream user’s needs. Without prior knowledge, a
uniform weighting function w(·) ≡ 1 can be used.
However, uniform weighting may lead to some un-
desirable situation as illustrated in Figure 3. Specif-
ically, with uniform weighting, the selection pro-
cess consistently aims to maximize the number of
identified subclaims, potentially resulting in biased
evaluations. On the other hand, the quantity of
identifiable subclaims alone does not always of-
fer adequate guidance for optimization. Intuitively,
in the scenario on the bottom, we would prefer
to select A instead of D because it provides the
most information and verifies all information in the
original chunk. Inspired by previous works encour-
aging diversity in conversation models (Li et al.,
2016), we derive a Conditional Pairwise Mutual
Information (CPMI) based weighting function for
“informativeness”.

To calculate this weighting function wInfo(·), we
first identify a set of bleached claims H(D) =
{h1, . . . , hK} that are highly likely to be true for
any instance d ∈ D given the domain of the gener-
ation D. This process can be performed manually

4We use superscript to denote the index of a subclaim
within the union set of subclaims.
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3. ✔
5. ✔
6. ×
9. ✔

75%

1. ✔
2. ✔
3. ✔
4. ✔
5. ✔
6. ×
7. ✔
8. ✔
9. ✔

90%

Verify

Decomposition
1. Adil Rami is a professional football

player.
2. Adil Rami is a football player.
3. Adil Rami is a professional.
4. Adil Rami plays football.
5. Adil Rami is a football player.
6. Adil Rami is a center-forward.
7. Adil Rami plays football.
8. Adil Rami is a football player.
9. Adil Rami is a member of a

football squad.

Select

CORE

2

3

4

5 7

9 1

8

6

Uniqueness

Verify

Adil Rami is a professional football
player. Adil Rami is a center-forward
in football as Adil Rami is a part of a
football squad.

Faithfulness
1. T
2. T
3. T
4. T
5. T

6. T
7. T
8. T
9. T

Informativeness
1. ++
2. +
3. +
4. +
5. +

6. +++
7. +
8. +
9.+

Figure 2: CORE interposes between the decomposition step and the verification step, selecting the most representative
set of subclaims that can be identified from the generation to safeguard against trivial or repetitive inputs.

Source Text (O). He is a highly motivated individual
with excellent communication and interpersonal skills.
A. He is highly motivated.
B. He has excellent communication and interpersonal
skills.
C. He has excellent communication skills.
D. He has excellent interpersonal skills.

O

A

B

C

D

Source Text (O). Michael Collins is a retired Ameri-
can astronaut who was the Command ModFule Pilot
for the Apollo 11 mission in 1969.
A. Michael Collins was the Command Module Pilot
for the Apollo 11 mission in 1969.
B. Michael Collins was the Command Module Pilot
for the Apollo 11 mission
C. Michael Collins was the Command Module Pilot.
D. Michael Collins was a pilot.

O A B C D

Figure 3: Result of deduplication with uniform weight-
ing. Shaded nodes compose one set of viable selec-
tion by the algorithm. Up: uniform weighting selects
the most fine-grained decomposition. Down: Uniform
weighting may select any subclaim within a monotonous
entailment chain.

by the user for full control over the specific set of
knowledge they want to nullify, or these claims can
be extracted from a prompted large language model
for full automation. The set can be of any size, and
the claims do not need to be mutually inclusive or
entailed by the domain. For example, for the biog-
raphy data used in FACTSCORE (Min et al., 2023),
the bleached claims might include “ {topic} is a

person,” “{topic} breathes,” “{topic} exists,”
or “{topic} is famous.” The informativeness of
a claim c can therefore be identified as

wInfo(c) = CPMI
(
c; c|H(D)

)

= − logP
(
c|H(D)

)
.

While some previous work uses corpus statis-
tics like word co-ocurrence to estimate required
probabilities (Rudinger et al., 2017), this is infeasi-
ble in our case due to reporting bias (Gordon and
Van Durme, 2013) and the versatility of free-form
generation. Instead we use an Uncertain Natural
Language Inference (UNLI) (Chen et al., 2020)
model pθ to directly estimate the conditional prob-
ability P

(
c|H(D)

)
. However, as traditional Rec-

ognizing Textual Entailment (Dagan et al., 2005;
Bowman et al., 2015) models aim for short sentence
segments, we estimate − logP

(
c|H(D)

)
with the

empirically more stable

min
h∈H(D)

− log pθ(c|h).

Under this formulation, regardless of how unin-
formative a subclaim might be, it will still be se-
lected as long as it does not conflict with other
subclaims. In practice, we can also effectively ig-
nore entailed subclaims by subtracting a small ϵ
from their scores, making some of them negative.

An interesting behavior of this weighting
emerges when the decomposition includes sub-
claims at different levels of granularity, as illus-
trated in the top panel of Figure 3. With uni-
form weighting, CORE consistently selects the leaf
nodes. However, under informativeness weighting,
this pattern changes. Specifically, if a subclaim c1
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is further decomposed into c2 and c3. Our weight-
ing will lead to the selection of c1 whenever

P
(
c1|H(D)

)
< P

(
c2|H(D)

)
· P

(
c3|H(D)

)
.

This approach prevents the model from achieving
superficially high FP through enumerating all pos-
sible alternatives for unknown knowledge. For ex-
ample, when S′ = {“The coin lands head and tail.”,
“The coin lands head”, “The coin lands tail.”}, it
receives an FP of 0 instead of 50%, which aligns
more closely with human intuition.

4 Evaluation of FP Scoring Metrics

4.1 Evaluation Principles

We aim to assess whether CORE effectively guards
against adversarial outputs intended to superficially
enhance model Factual Precision. We propose uti-
lizing targeted Decompose-Then-Verify Factual Pre-
cision metrics through generations that perform sig-
nificantly worse in the following two dimensions:

Informativeness requires the generation to be
as informative as possible. While precision-based
metrics often control for recall using some form of
length penalty (Min et al., 2023; Wei et al., 2024),
more identifiable atomic facts in the generation do
not always correspond to better recall, even without
duplication. We suspect it is possible to achieve
high FP by generating passages with facts that are
obvious within the domain of the generation.

Non-repetitiveness requires that the model’s
generation be clear and non-redundant. For smaller
models, repetitiveness is commonly identified as
an undesirable form of text degeneration (Holtz-
man et al., 2020; Welleck et al., 2020). Evidence
suggests that language models can estimate their
uncertainty indirectly (Mielke et al., 2022; Fadeeva
et al., 2024). We hypothesize that it is possible to
prompt the language model to repeat what is most
likely to be true multiple times.

4.2 Dataset Creation

To create a dataset tailored for FP evaluation and
to facilitate some level of adversarial optimization,
we automatically collect more human bio profiles,
closely following the dataset creation process from
FACTSCORE (Min et al., 2023).5 We query the

5The FACTSCORE and the corresponding bio dataset are
open-sourced under the MIT license.

Group Continents

A Insular Oceania, Oceania, Asia, Indian
subcontinent, Australian continent

B North America
C Europe, Eurasia
D Central America, Afro-Eurasia, South Amer-

ica, Africa, Caribbean, Americas, NULL

Table 1: Grouping scheme for the continents.

Wikidata API for the instance_of prop-
erty of entities linked from Wikipedia, using entity
linkings from (Kandpal et al., 2023) and popQA
(Mallen et al., 2023). For entities from (Kandpal
et al., 2023) marked by DBpedia URLs, we query
the corresponding Wikipedia entity ID through
the DBpedia API. As mentioned in FACTSCORE

(Min et al., 2023), we retain entities related to a
single Wikipedia page to avoid any ambiguity.

Frequency Also following FACTSCORE we
compute freqValue as a maximum of either of
the entity occurrence in (Kandpal et al., 2023) and
the pageview count in (Mallen et al., 2023). If an
entity does not occur in one of the two datasets,
we use the other value as freqValue. We use a
slightly different grouping from (Min et al., 2023)
to ensure more data points can be sampled in to-
tal, where an instance is “Rare” if freqValue ∈
[0, 100), “Medium” if freqValue∈ [100, 1000),
“Frequent” if freqValue ∈ [1000, 5000) and
“Very Frequent” if freqValue ∈ [5000,∞).

Nationality country_of_citizenship
property is queried to determine the nationality of
a data point and further query the continent
property of the country. To address data imbalance,
we group the continent denominators into four
groups, as shown in Table 1.

Finally, we match the dataset to the Wikipedia
dump provided in (Min et al., 2023) to ensure
that we only sample entities retrievable from the
same knowledge source as FACTSCORE. After uni-
formly sampling from all 16 categories, we obtain
1024 instances, which we split into train, dev, and
test sets with a ratio of approximately 8:1:1 (112
instances). We then pair these topics with genera-
tions from LLMs tuned to have superficially high
Factual Precision (see Section 5).

5 Experiments and Results

We aim to answer two important research questions:
1⃝ Can models artificially boost their reported FP
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by generating uninformative and repetitive text of
low quality? 2⃝ How effective is CORE in miti-
gating this issue? As previous works have shown
that eliciting human ground truth for Factual Pre-
cision is challenging, and often can only be anno-
tated under underspecified instructions (Song et al.,
2024) or with the help of biasing LLM decomposi-
tions (Min et al., 2023; an, 2023), we instead adopt
a behavioral evaluation scheme. Subsection 5.3
demonstrates that adding uninformative or repeti-
tive content can superficially increase the Factual
Precision of corrupted bios over clean ones, but
not for Factual Precision calculated with CORE ad-
justments. Subsection 5.4 illustrates that CORE

shows the desired behavior of a robust FP metrics
and effectively guards against adversarial inputs to
Decompose-Then-Verify metrics.

We compare FP metrics with and without CORE

on the dataset created in Subsection 4.2. For Pair-
wiseEntailment and DocEntailment eval-
uation, we use DeBERTa-v3-base-mnli-fever-
anli6 from the Hugging Face model hub to model
Entail. To estimate wInfo(c) for each subclaim
c, we fine-tune a strong NLI model roberta-
large-snli_mnli_fever_anli_R1_R2_R3-nli7 (Nie
et al., 2020) on UNLI (Chen et al., 2020), as de-
scribed in Section 3. We also binarize a “cap-
model” DeBERTa-v3-base-mnli-fever-anli as “en-
tailment” and “non-entailment” to make sure that
subclaims entailed by bleached claims will not get
included in the verification step. We give the exact
formulation of this capped w̃Info(c) in Appendix A.
Additionally the weighting function can be further
adjusted to cater to relevancy concerns, leading to
the following combined scoring function:

w̃(c) = REL
(
Φ−1(c)

)
· w̃Info(c),

where we abuse the notation Φ−1(·) to denote the
sentence (chunk) a subclaim c comes from, and
REL is a binary relevancy judgment implemented
using the same prompt as in (an, 2023).

We further observe that the particualr choice of
NLI models for entailment evaluation does not have
strong empact on CORE computation, as shown in
Table 2. For decomposition and verification LLM
calls, we always query local Mistral-7B-Instruct-
v0.2 at temperature = 0, as we find it achieves .95

6https://huggingface.co/MoritzLaurer/
DeBERTa-v3-base-mnli-fever-anli

7https://huggingface.co/ynie/
roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

Perason’s r with gpt-3.5-turbo-0125 on instance-
wise Factual Precision calculated on the original
FACTSCORE dataset.

Model A Model B Model C

Model A1 - .98 .98
Model B2 .98 - .99
Model C3 .98 .99 -

1 DeBERTa-v3-base-mnli-fever-anli
2 DeBERTa-v3-large-mnli-fever-anli-ling-wanli
3 RoBERTa-large-snli_mnli_fever_anli_R1_R2_R3-nli

Table 2: Pearson’s correlation coefficient among
instance-wise FP of out-of-the-box generation by
Mistral-7B-Instruct-v0.2 on our extended test set with
different NLI model for bidirectional entailment.

5.1 SFT for Higher FACTSCORE

We investigate whether Supervised Fine-tuning
(SFT) can artificially boost FACTSCORE by gen-
erating trivial and repetitive facts. To this end, we
manually write two “summaries” for 5 examples
sampled from the original FACTSCORE dataset:
one promoting uninformativeness (INFO) and the
other promoting repetition (REP) of easy facts
and enumeration of alternatives for uncertain facts.
Using the corresponding instruction prompt, we
sample 5 generations per topic derived in Subsec-
tion 4.2 from Mistral-7B-Instruct-v0.2.8

5.2 Metric Configuration

INFO REP

MistralINST 1.62 1.41
GPT-2 2.36 2.09

Table 3: Both tuned models show low SFT perplexities.

We then tune a LoRA (Hu et al., 2021) to gen-
erate summaries in a similar style using the same
prompt employed by Min et al. (Min et al., 2023).
For all cases, we set r = 8 and α = 16 for LoRA
initialization and search for the best learning rate
for each model based on perplexity on the dev set.
The fitting results are shown in Table 3. More de-
tails can be found in Appendix B. All training was
conducted using a single A100.

8https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2
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5.3 Mitigating Adverserial Inputs
To demonstrate that generating uninformative or
repetitive sentences can superficially boost model
FP, we corrupt clean model responses with incor-
rect facts and then restore FP by mixing them
with generations from the SFT models described
in Subsection 5.1. To corrupt a clean response, we
first run the generation through the FACTSCORE

pipeline to extract all supported subclaims. Then,
with a probability of p = 0.5, we use gpt-3.5-
turbo-0125 to modify a supported subclaim to be
factually incorrect. We merge these corrupted sub-
claims into coherent summaries using the gpt-4o-
2024-05-13-based subclaim merger from (Mohri
and Hashimoto, 2024). Finally, we sample addi-
tional sentences from the SFT models and append
them to the merged summary.

Figure 4 illustrates the impact of low-quality gen-
eration on FACTSCORE with and without CORE.
While raw FACTSCORE is hacked by including
more uninformative and repetitive content, CORE-
adjusted FP remains relatively stable and never
surpasses the clean version. The gap between met-
rics widens as the resulting summary becomes less
informative or more repetitive (see Appendix C).

clean corrupted +2 +4 +6 +8 +10
# Appended Sent

40%

44%

48%

52%

56%

F
P

54.0%

47.7%

50.4%

52.4%
54.2%

55.8%
57.0%

49.6%

41.0% 41.5% 42.1% 42.1% 41.9% 42.2%

FActScore

+ Core

clean corrupted +2 +4 +6 +8 +10
# Appended Sent

40%

44%

48%

52%

56%

F
P

54.0%

47.7%

50.3%
52.0%

53.8%
55.3%

56.2%

49.6%

41.0%
42.1% 42.2% 42.7% 43.1% 43.0%

FActScore

+ Core

Figure 4: Corrupted summaries can achieve higher
FACTSCORE than clean summaries simply by mixing
in more uninformative (up) or more repetitive (down)
sentences (x-axis). However, they do not achieve higher
CORE-adjusted FACTSCORE.

5.4 Plug-and-Play CORE

We extend our experiments to other FP metrics as
well as to other domains to demonstrate the general
applicability of CORE. On the FACTSCORE bios
data, we consider two additional Decompose-Then-
Verify metrics. The Russellian/Neo-Davidsonian

(R-ND) (Wanner et al., 2024a) decomposition pro-
motes a different instruction prompt paired with
carefully constructed, linguistically motivated ex-
ample decompositions, resulting in more atomic
decompositions. We use FACTSCORER-ND to de-
note a new Decompose-Then-Verify metric cre-
ated by replacing the FACTSCORE decomposition
with the R-ND prompt. The Search-Augmented
Factuality Evaluator (SAFE) (Wei et al., 2024)
verifies a fact against search results instead of
retrieved Wikipedia pages. While SAFE uses
the same decomposition prompt as FACTSCORE,
it includes additional preprocessing steps. For
FACTSCORER-ND, we use the same set of in-
context examples as in the original paper (Wanner
et al., 2024a) to form the base subclaim identifier
ΦR-ND. For SAFE, we use their original decom-
position as our base identifier ΦSAFE, but we re-
duce the maximum number of query generation and
searching iterations to 3, as this already provides
reasonable coverage of the required information to
verify a given subclaim.

We also consider three additional domains:
The Culture & Entertainment domain and Geo-
graphic domain from WildHallucinations (Zhao
et al., 2024a), and the Healthcare & Medicine do-
main from ExpertQA (Malaviya et al., 2024). For
the WildHallucinations datasets, which provide en-
tity names and paired knowledge documents, we
used FACTSCORE as our base FP metric. For Ex-
pertQA, since it is QA-based and does not provide
a comprehensive knowledge base for verification,
we used SAFE as the base FP metric.

The comparison is shown in Table 4. Overall,
we found that CORE consistently guards against
uninformative and repetitive inputs under all of our
configurations, as indicated by the large gap be-
tween scores reported by metrics with and without
CORE on INFO and REP texts. Under CORE aug-
mentation, neither INFO nor REP generation boosts
FP, and the factuality capability of MistralINST and
GPT-2 still gets discriminated.

We further note that while uninformative and
repetitive generation boosts FP across all metrics,
generating repetitive facts is more challenging for
smaller models. We hypothesize that this is be-
cause boosting Factual Precision through repetition
requires the model to have at least some knowledge
of the topic being generated.
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Domain Metric CORE
MistralINST GPT-2

NORMAL INFO REP INFO REP

FACTSCORE
w/o 54.0% 83.0% 78.0% 82.2% 35.4%
w/ 49.6% 36.2% 21.9% 0.68% 5.35%

Bios FACTSCORER-ND
w/o 53.9% 75.9% 78.1% 78.1% 40.5%
w/ 48.3% 43.6% 26.0% 2.16% 7.32%

SAFE
w/o 61.7% 84.8% 80.6% 70.3% 36.0%
w/ 61.3% 29.6% 14.5% 0.35% 4.37%

Cul & Ent FACTSCORE
w/o 81.5% 88.7% 87.9% 87.1% 72.7%
w 79.7% 40.4% 26.4% 3.41% 1.00%

Geographic FACTSCORE
w/o 79.9% 86.7% 84.9% 75.8% 80.7%
w 78.3% 53.7% 32.7% 1.68% 1.22%

Medical SAFE
w/o 83.4% 83.6% 87.3% 49.5% 39.5%
w 71.3% 4.23% 1.76% 0.0% 0.07%

Table 4: Reported Factual Precision on different domains when applying CORE to various base Decompose-Then-
Verify metrics (FACTSCORE, FACTSCORER-ND and SAFE). INFO corresponds to results for claims sampled from
the model tuned to generate uninformative responses, while REP corresponds to results for claims sampled from the
model tuned to generate repetitive responses. Neither of these low-quality generations should superficially boost
factuality above NORMAL

.

6 Related Work

Unlike traditional Fact-Checking efforts that focus
on short and simple claims (Thorne et al., 2018;
Schuster et al., 2021; Guo et al., 2022), automatic
factuality evaluation for LLM generation has a spe-
cific focus on long, free-form text with highly com-
positional complex claims. Early works on long-
form factuality have already been arguing for claim
decomposition (Kamoi et al., 2023), mainly for
the ease and fine-granularity this process brings.
While existing works follow a similar Decompose-
Then-Verify paradigm (Chern et al., 2023; Wang
et al., 2024), how the decomposition should best be
performed is always left underspecified. For exam-
ple, WiCE (Kamoi et al., 2023), FACTSCORE (Min
et al., 2023), and FELM (Zhao et al., 2024b) all
have their own decomposition prompts, and RARR
(Gao et al., 2023) reports sentence-level attribution
and character-level preservation. Previous research
has already revealed different characteristics of dif-
ferent decomposition methods regarding atomicity,
precision, and coverage (Wanner et al., 2024a), how
any particular decision choices, including other ad-
ditional preprocessing steps (Krishna et al., 2023;
an, 2023; Wei et al., 2024; Tang et al., 2024; Song
et al., 2024), affect factual-precision evaluation is
still an open problem. Being aware of the active

exploration of multiple directions for possible im-
provements over existing Decompose-Then-Verify
pipelines, CORE is designed to be orthogonal to
other popular techniques.

7 Conclusion

We demonstrate that popular Factual Precision
evaluation metrics following the Decompose-Then-
Verify pipeline often assign superficially high
scores to obvious or repetitive generations. We
introduce CORE, a plug-and-play module that ad-
dresses this issue efficiently and effectively. We
further show that when augmented with CORE, var-
ious Decompose-Then-Verify metrics demonstrate
a consistent trend of being more robust and be-
come less prone to repetitive and non-informative
adversarial inputs. Consequently, we argue that
adjustments like CORE should be adopted for more
accurate factual precision evaluation, especially in
scenarios where models can optimize against auto-
matic metrics. Future research can explore deeper
into the interplay between the evaluation of fac-
tual precision and the actual factual accuracy of
models, and potentially also develop more effec-
tive subclaim selection methods within the CORE

framework and explore more comprehensive ap-
proaches to factuality evaluation.
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Limitations

While we demonstrate that CORE adds an extra
layer of robustness to existing factual precision
metrics, it is not guaranteed to guard against all
forms of adversarial generation that lead to superfi-
cially high scores. Future research should continue
to explore more accurate methods for evaluating
the factuality of free-form generation. Additionally,
the effectiveness of CORE depends on the perfor-
mance of each pipeline component, such as the
NLI and UNLI models. Although we allow some
relaxation for model errors, more accurate and gen-
eralizable NLI models will directly enhance the
accuracy of our approach.
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A Algorithm

Algorithm 1: Pseudo code for CORE representative subclaim set selection
Data: Original document G = {g1, g2, . . . , gN}, and decompositions S = {S1, S2, . . . , SN}.
Result: A list of deduplicated subclaims R

Function Core(G,S, p):
A← []; ▷ whether the i-th subclaim entailed by the document
W ← []; ▷ weight assigned to the i-th subclaim
R← []; ▷ A list of selected subclaims
for i← 1 to N do

A← Concat({A, DocEntailment(gi, Si)});
W ← Concat({W, Weight(Si)});

end
E← PairwiseEntailment( Concat(S));
Solve IP 1 at p using A,W,E to obtain X;
for i← 1 to |X| do

if xi = 1 then
Append

(
R, Concat(S)i

)
;

end
end
return R;

End

Function DocEntailment(g, S):
A← [0]|S|;
Ai ← Entail(g, si) s.t. ∀i ∈ 1, . . . , |S|;
return A; ▷ whether si is entailed by the segment g

End
Function PairwiseEntailment(S):

E← [0]|S|×|S|;
Eij ← Entail(si, sj) s.t. ∀i, j ∈ 1. . . . , |S|;
return E; ▷ whether two subclaims si, sj are mutually exclusive

End

As mentioned in Section 3, the weighting function can be any customized function that assigned weight.
In practice, to give additional robustness to the CPMI-based informativeness scoring function wInfo(·), the
following caped version can be used

w̃Info(c) = min
(
wInfo(c),− log

(
1− I

[
∃h ∈ H(D), s.t. argmax

e∈{ENT, NEU, CON}
pη(e|h) = ENT

]))
− ϵ.

Where pη is a “cap-model” that will predict one of the classical NLI label. This version will always
respect the ternary NLI predictor, as the traditional NLI task is easier to solve than UNLI.

We hereby also include a brief explanation of how our constraint 1⃝ outlined in Section 3 is realized as
the inequality

N∑

i=1

pixi ≤ 0.

This is because the constraint is equivalent to

∑N
i=1 Entail(gi, si)xi∑N

i=1 xi
≥ p.
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which easily reduce to the second constraint in Equation 1.

B Prompts

B.1 Decomposition and Verification
For claim decomposition and claim verification we use the identical prompts from the base factual
precision metrics (Min et al., 2023; Wanner et al., 2024a; Wei et al., 2024) respectively. For other
preprocessing steps specified (e.g., decontextualization, relevancy check in SAFE (Wei et al., 2024)), we
use the original prompts as long as they are publically available. Whenever check-worthiness evaluation
is required, we use the claim-level checkworthiness prompt from (an, 2023).

B.2 Corrupt and Merge
For the biography corruption experiment in Subsection 5.3, we use the prompt described in Table ?? to
rewrite factually correct claims. We merge the claims use the standard FACTSCORE merging prompt from
(Mohri and Hashimoto, 2024).

Field Content

Prompt [User]: You are given some factually correct statements. Your task is to modify
the statements to make them factually incorrect. Try to make the edits atomic without
any additional output.
[Agent]: Sure, please provide the factually correct statements that you would like
me to modify.

Input [User]: ${STATEMENT}

Table 5: Prompt used to rewrite factually correct subclaims and make them incorrect.

B.3 Adversarial Generation
We prompt language models to sample uninformative and repetitive generations used to train our SFT
model. For uninformative responses, we use the prompt showcased inTable ??. For repetitive responses,
we use the prompt showcased in Table 7.

Field Content

Prompt [User]: Tell me a short paragraph of tautological, trivially true and easily ver-
ifiable facts about a person. You are allowed to repeat that fact multiple times in
paraphrased sentences.
[Agent]: Sure. Please provide the name of the person you want me to generate
trivially true facts about.

Example [User]: Name: Kalki Koechlin
[Agent]: Kalki Koechlin holds Indian nationality. Kalki Koechlin is an Indian
citizen. Kalki Koechlin comes from India. Kalki Koechlin is of Indian origin. Kalki
Koechlin’s nationality is Indian. Kalki Koechlin is from India. Kalki Koechlin has
Indian heritage. Kalki Koechlin is an Indian guy. Kalki Koechlin represents Indian
culture. Kalki Koechlin belongs to India. Kalki Koechlin is an Indian national. Kalki
Koechlin hails from India. Kalki Koechlin is an Indian by birth. Kalki Koechlin’s
roots are in India. Kalki Koechlin is of Indian descent. Kalki Koechlin is affiliated
with India. Kalki Koechlin is a native of India. Kalki Koechlin’s homeland is India.
Kalki Koechlin identifies as Indian. Kalki Koechlin’s background is Indian.
[User]: Name: Adil Rami
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Field Content

[Agent]: Adil Rami plays football. Adil Rami is a professional footballer. Adil
Rami’s profession is football. Adil Rami is an athlete in the sport of football. Adil
Rami is known for playing football. Adil Rami is a soccer player (US term). Adil
Rami’s career is in football. Adil Rami competes in football. Adil Rami is a football
athlete. Adil Rami’s occupation is football. Adil Rami is involved in football. Adil
Rami’s game is football. Adil Rami participates in football. Adil Rami is active
in the football world. Adil Rami is a member of the football community. Adil
Rami is engaged in playing football. Adil Rami’s sport is football. Adil Rami is a
professional in football. Adil Rami performs as a footballer. Adil Rami’s role is that
of a football player.
[User]: Name: Song Kang
[Agent]: Song Kang is a graduate of Konkuk University. Song Kang completed
his studies at Konkuk University. Song Kang earned his degree from Konkuk
University. Song Kang finished his education at Konkuk University. Song Kang is
an alumnus of Konkuk University. Song Kang received his diploma from Konkuk
University. Song Kang obtained his degree at Konkuk University. Song Kang
concluded his academic journey at Konkuk University. Song Kang successfully
graduated from Konkuk University. Song Kang achieved his academic credentials at
Konkuk University. Song Kang completed his degree program at Konkuk University.
Song Kang holds a degree from Konkuk University. Song Kang’s alma mater
is Konkuk University. Song Kang has a degree from Konkuk University. Song
Kang finished his coursework at Konkuk University. Song Kang completed his
graduation at Konkuk University. Song Kang’s education culminated at Konkuk
University. Song Kang reached his academic goals at Konkuk University. Song Kang
successfully completed his university studies at Konkuk University. Song Kang
wrapped up his higher education at Konkuk University.
[User]: Name: Emmett Skilton
[Agent]: Emmett Skilton hails from New Zealand. Emmett Skilton’s birthplace is
New Zealand. Emmett Skilton is a native of New Zealand. Emmett Skilton was born
in NZ. Emmett Skilton’s origins trace back to New Zealand. Emmett Skilton came
into the world in New Zealand. Emmett Skilton’s country of birth is New Zealand.
Emmett Skilton is originally from New Zealand. Emmett Skilton’s birth country is
New Zealand. Emmett Skilton entered life in New Zealand. Emmett Skilton’s roots
are in New Zealand. Emmett Skilton’s birth land is New Zealand. Emmett Skilton
first saw the light of day in New Zealand. Emmett Skilton was born and raised in
New Zealand. Emmett Skilton’s early life began in New Zealand. Emmett Skilton’s
native land is New Zealand. Emmett Skilton was delivered in New Zealand. Emmett
Skilton’s natal place is New Zealand. Emmett Skilton’s birth certificate says New
Zealand. Emmett Skilton’s homeland is New Zealand.
[User]: Name: Toyoko Tokiwa
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Field Content

[Agent]: Toyoko Tokiwa is a photographer from Japan. Toyoko Tokiwa practices
photography in Japan. Toyoko Tokiwa is known as a Japanese photographer. Toyoko
Tokiwa works as a photographer in Japan. Toyoko Tokiwa is an acclaimed photog-
rapher from Japan. Toyoko Tokiwa’s profession is photography in Japan. Toyoko
Tokiwa is a photographer based in Japan. Toyoko Tokiwa is a Japanese national
and a photographer. Toyoko Tokiwa captures images as a Japanese photographer.
Toyoko Tokiwa’s vocation is Japanese photography. Toyoko Tokiwa engages in
photography in Japan. Toyoko Tokiwa is a professional photographer from Japan.
Toyoko Tokiwa is a photographer hailing from Japan. Toyoko Tokiwa operates as
a photographer in Japan. Toyoko Tokiwa’s photography career is rooted in Japan.
Toyoko Tokiwa is a photographer of Japanese origin. Toyoko Tokiwa contributes to
Japanese photography. Toyoko Tokiwa identifies as a Japanese photographer. Toyoko
Tokiwa specializes in photography in Japan. Toyoko Tokiwa’s occupation is that of a
Japanese photographer.

Input [User]: Name ${TOPIC}

Table 7: Prompts for generating repetitive response.

B.4 Bleached Contextual Claims

We use these bleached contextual claims showed in Table 8 asH(D) for FACTSCORE-style bio evaluation,
as described in Section 3.

C Supplementary Results

C.1 Qualitative Result under Real-world Situation

To further demonstrate that our approach is useful on non-adversarial, naturally generated text, we took
the following example from Zhao et al. (2024a), where repetitiveness and triviality is explicitly discussed:

The University of Cambridge is a public collegiate research university located in Cambridge,
England. Founded in 1209, it is the world’s third-oldest university in continuous operation.
The university’s reputation for outstanding academic achievement is known worldwide and its
alumni include Nobel Prize winners, You may provide a definition with77e5 You may provide a
definition with540d thinkers, and transformative figures in several fields. Cambridge’s many
famous colleges and university buildings attract visitors from around the world. The university
is divided into six schools: Humanities and Social Sciences, Clinical Medicine, Technology,
Biological Sciences, the Humanities and Social Sciences, and Physical Sciences. Each school
comprises several faculties, departments, and other institutions. Teaching and learning at
Cambridge are highly personalised and conducted in small groups, and the university’s extensive
resources include libraries and museums rich in treasures.

The original decomposition and CORE filtering is shown in Table 9. We observe that CORE filters out
claim in the pattern that highly aligned with human intuition.

It is worthy noticing that while some generated content may not appear directly repetitive or trivial,
some, if not all, decomposers will inevitably introduce repetitive or trivial claims. This is largely due to the
lack of global awareness in most decomposition methods, although this choice is sometimes intentional.
For instance, FACTSCORE (Min et al., 2023) explicitly encourages gradually decomposing sentences into
a gradually weakening entailment chain to achieve atomicity, as fully orthogonal decomposition extremely
challenging, if at all possible. This makes controlling such aspect of Decompose-Then-Verify very critical,
as recent advance in claim decomposition optimizes for various aspect (Wanner et al., 2024b; Song et al.,
2024), paying little attention to such problems that may potentially bias overall assessment. For example,
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Field Content

Prompt [User]: Tell me a short paragraph of tautological, trivially true and easily ver-
ifiable facts about a person. You are allowed to repeat that fact multiple times in
paraphrased sentences.
[Agent]: Sure. Please provide the name of the person you want me to generate
trivially true facts about.

Example [User]: Name: Kalki Koechlin
[Agent]: Kalki Koechlin is a person that exists. At some point in time, Kalki
Koechlin lives. Kalki Koechlin is a person known to somebody. Kalki Koechlin is
capable of breathing. Kalki Koechlin has concious. As a person, Kalki Koechlin
exists. Kalki Koechlin has some achievements.
[User]: Name: Adil Rami
[Agent]: Adil Rami exist as a person. Adil Rami has life. Adil Rami can move.
Adil Rami has certain abilities. Adil Rami has some reputation. Adil Rami has
achieved something. Adil Rami is a person’s name. Adil Rami does exist. Adil Rami
has some impact.
[User]: Name: Song Kang
[Agent]: Song Kang has a name. Song Kang has done something. Song Kang
knows somebody. Song Kang has some popularity. Song Kang can breath, when
alive. Song Kang has certain abilities. Song Kang’s name is known to some people.
There is a person named Song Kang. Song Kang won’t live forever.
[User]: Name: Emmett Skilton
[Agent]: Emmett Skilton is an existing person that breathes. Emmett Skilton
is capable of certain things. Emmett Skilton has some specific abilities. Emmett
Skilton has something different. Emmett Skilton has their own identity. Emmett
Skilton achieves things. Somebody knows Emmett Skilton. Emmett Skilton is a
person’s name. Emmett Skilton has a life.
[User]: Name: Toyoko Tokiwa
[Agent]: Toyoko Tokiwa is extant. Toyoko Tokiwa can be seen. Toyoko Tokiwa
is an entity. Toyoko Tokiwa draws breath. Toyoko Tokiwa bears a name. Toyoko
Tokiwa makes a living. Toyoko Tokiwa has weight. Toyoko Tokiwa has a reputation.
Toyoko Tokiwa has capabilities.

Input [User]: Name ${TOPIC}

Table 6: Prompts for generating uninformative responses.

the following generation under natural condition from MistralINST can lead to more than 80% difference
in factual precision, as shown in Table 10:

North Sentinel Island is a small, uninhabited island located in the Bay of Bengal, in the
Andaman Sea. It is part of the Andaman and Nicobar Islands, a territory of India. The island is
approximately 1.6 kilometers long and 0.6 kilometers wide, with a total area of about 1.8 square
kilometers.

North Sentinel Island is most famous for its indigenous inhabitants, the Sentinelese people, who
are believed to be one of the last truly isolated tribes in the world. The Sentinelese have lived
on the island for thousands of years, and they have shown a strong resistance to outside contact.

The Sentinelese are believed to number around 50-150 individuals, and they live in small,
dispersed groups. They are hunter-gatherers, and they subsist primarily on the resources
available on the island, including coconuts, fish, and wild pigs.

The Sentinelese are known to be extremely hostile to outsiders. They have a long history of
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Claim Template

${TOPIC} is a person.
${TOPIC} breathes.
${TOPIC} exists.

${TOPIC} is a name.
${TOPIC} is unique.
${TOPIC} is famous.

${TOPIC} has some abilities.
somebody knows ${TOPIC}.

${TOPIC} is a star.

Table 8: Bleached claim templates that is used for informativeness weighting.

attacking and killing anyone who approaches their island. In 2006, two fishermen from the
Andaman and Nicobar Islands were killed when they accidentally drifted too close to the shore.
In 2018, an American missionary named John Allen Chau was killed when he attempted to
make contact with the tribe.

Despite the risks, there have been efforts to study the Sentinelese from a distance. In the 1960s
and 1970s, anthropologists conducted observations of the island from boats and planes. More
recently, researchers have used drones to gather information about the Sentinelese and their way
of life.

The Indian government has established a buffer zone around North Sentinel Island to protect
the Sentinelese from outside contact. The zone is strictly enforced, and visitors are not allowed
to approach the island without permission from the authorities.

Despite the challenges, there is a growing interest in learning more about the Sentinelese and
their unique culture. Some researchers believe that the tribe may hold valuable insights into
human evolution and the development of complex societies. Others are concerned about the
potential impact of outside contact on the Sentinelese, and the need to preserve their isolation
and way of life.

We believe CORE offers a reasonable and efficient solution to this understudied problem, establishing
a stronger and more stable foundation for future research. This allows for meaningful advancements
without concerns of redundancy or triviality.

C.2 Mitigating Adverserial Inputs

Similar to Figure 4, we can also mix in repetitive generation to corrupted inputs to superficially boost
performance. The result is shown in Figure 5.

Overall, the trend with repetitive sentences is very similar to uninformative sentences. In less than
10 sentences the corrupted generation surpasses the clean generation in factual precision. In most cases,
with or without CORE, model generations on more frequent groups are more factual than those on less
frequent groups. In general, we observe for all the freqValue groups, on generations by out-of-the-box
MistralINST, Factual Precision evaluated with or without CORE is close to each other. Also, the tendency
that repetition consistently boosts Factual Precision less prominently on generations from GPT-2.

C.3 Additional Evaluation with VERISCORE

As the development for automatic fact-verification pipeline is quickly evolving, we evalute the effect
of combining CORE with one more advanced decomposition configuration – VERISCORE (Song et al.,
2024). Table 12 demomnstrates a similar trend compared to the experiment in Table 4 with FACTSCORE,
suggesting that our module addresses a distinct promblem from other advancement in the field.
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ID subclaim

1 The University of Cambridge is a university.
2 The University of Cambridge is a public university.
3 The University of Cambridge is a collegiate research university.
4 The University of Cambridge is located in Cambridge, England.
5 It was founded in 1209.
6 It is a university.
7 It is the world’s third-oldest university.
8 It is in continuous operation.
9 The university has a reputation for outstanding academic achievement.

10 The university’s reputation is known worldwide.
11 The university’s alumni include Nobel Prize winners.
12 The university’s alumni include known thinkers.
13 The university’s alumni include transformative figures.
14 The university’s alumni are in several fields.
15 Cambridge has many famous colleges.
16 Cambridge has many famous university buildings.
17 Cambridge’s colleges attract visitors from around the world.
18 Cambridge’s university buildings attract visitors from around the world.
19 Cambridge’s colleges and university buildings attract visitors from around the world.
20 The university is divided into six schools.
21 The six schools are: Humanities and Social Sciences, Clinical Medicine, Technology, Biological
22 Sciences, the Humanities and Social Sciences, and Physical Sciences.
23 Each school comprises faculties.
24 Each school comprises departments.
25 Each school comprises other institutions.
26 Teaching at Cambridge is highly personalised.
27 Learning at Cambridge is highly personalised.
28 Teaching at Cambridge is conducted in small groups.
29 Learning at Cambridge is conducted in small groups.
30 Cambridge University has extensive resources.
31 Cambridge University’s resources include libraries.
32 Cambridge University’s resources include museums.
33 Cambridge University’s libraries are rich in treasures.
34 Cambridge University’s museums are rich in treasures.

Table 9: CORE filtering of the motivating example by Zhao et al. (2024a). The filtered claims closely matches the
manual filtering by the authors of that paper.
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ID subclaim

1 North Sentinel Island is uninhabited.
2 North Sentinel Island is located in the Bay of Bengal.
3 North Sentinel Island is located in the Andaman Sea.
4 The Andaman and Nicobar Islands is a territory.
5 The Andaman and Nicobar Islands is a territory of India.
6 The island is approximately 1.6 kilometers long in total length.
7 The island is approximately 0.6 kilometers wide.
8 The island is approximately 0.6 kilometers wide in total width.
9 The island has a total area of about 1.8 square kilometers.

10 The island has a total area of approximately 1.8 square kilometers.
11 North Sentinel Island is home to the Sentinelese people.
12 The Sentinelese people are indigenous to North Sentinel Island.
13 The Sentinelese people are believed to be one of the last truly isolated tribes.
14 The Sentinelese people are believed to be one of the last truly isolated tribes in the world.
15 The Sentinelese have lived on the island for thousands of years.
16 They have shown a strong resistance.
17 They have shown a strong resistance to outside contact.
18 The Sentinelese are a group of people.
19 The Sentinelese live in small groups.
20 The Sentinelese live in dispersed groups.
21 They subsist primarily on the resources available on the island.
22 Coconuts are one of the resources available on the island.
23 They consume coconuts.
24 Fish are one of the resources available on the island.
25 They consume fish.
26 Wild pigs are one of the resources available on the island.
27 They consume wild pigs.
28 The Sentinelese are known to be hostile.
29 The Sentinelese are known to be hostile to outsiders.
30 They have a long history of attacking.
31 They have a long history of killing.
32 They have a long history of attacking and killing.
33 Anyone who approaches their island is a target.
34 The fishermen were from the Andaman and Nicobar Islands.
35 The fishermen were killed when they accidentally drifted too close to the shore.
36 The incident occurred in 2018.
37 John Allen Chau was a missionary.
38 John Allen Chau was an American.
39 John Allen Chau attempted to make contact with a tribe.
40 He was killed during this attempt.
41 There have been risks involved.
42 Despite the risks.
43 In the 1960s, anthropologists conducted observations.
44 In the 1970s.
45 In the 1970s, anthropologists conducted observations.
46 Anthropologists conducted observations.
47 Anthropologists conducted observations from boats.
48 Anthropologists conducted observations from planes.
49 The observations took place in the 1960s and 1970s.
50 The observations were conducted from boats and planes.
51 More recently, researchers have used drones to gather information.
52 More recently, researchers have used drones to gather information about the Sentinelese.
53 The Sentinelese is a group of people.
54 More recently, researchers have used drones to gather information about the way of life of the Sentinelese.
55 The buffer zone was established to protect.
56 The buffer zone was established to protect the Sentinelese.
57 The Sentinelese are a people.
58 North Sentinel Island is a location.
59 The Indian government is responsible for the protection of North Sentinel Island.
60 The Indian government has taken steps to protect the Sentinelese from outside contact.
61 The buffer zone was established around North Sentinel Island.
62 Visitors are not allowed.
63 Visitors are not allowed to approach the island.
64 Approaching the island without permission is not allowed.
65 The authorities have the power to grant permission.
66 Permission from the authorities is required to approach the island.
67 Despite the challenges.
68 There is a growing interest.
69 People are interested in learning more.
70 People are interested in learning more about the Sentinelese.
71 The Sentinelese have a unique culture.
72 The tribe may hold valuable insights.
73 The tribe may hold valuable insights into human evolution.
74 The tribe may hold valuable insights into the development of complex societies.
75 Others are concerned about the potential impact.
76 Others are concerned about the potential impact on the Sentinelese.
77 Others are concerned about the potential impact on the Sentinelese and their way of life.
78 The Sentinelese are a people.
79 The Sentinelese have a way of life.
80 The need to preserve their isolation.

Table 10: List of subclaim decomposition from normal generation before and after CORE, resulting in more than
80% difference in factual precision.
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78.6%
80.1%

81.3%
82.2%

79.8%
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FActScore

+ Core

Figure 5: Corrupted summaries can achieve higher FACTSCORE than clean summaries simply by mixing in more
uninformative sentences (x-axis) on the entertainment domain. However, they do not achieve higher CORE-adjusted
FACTSCORE.

Feature Overall Low-Removal High-Removal

Repetitiveness 2.83 2.80 2.85
Triviality 1.60 1.50 1.70

Table 11: The removal ratio of CORE correlated well with repetitiveness and triviality on real-world data as well.

C.4 Repetitiveness and Triviality in Real-world Data

To extend our evaluation to real-world data to further demonstrate the effectiveness of CORE, we conduct
a small-scale human evaluation on natural, non-adversarial generations produced by MistralINST across
all datasets used in subsection 5.4. For each generation, we compute the fraction of claims removed by
core, and for each dataset, we randomly sample five generations with a low removal fraction and five
with a high removal fraction. This yields a total of 40 generations, which are then evaluated by a highly
qualified in-house annotator for repetitiveness and triviality, using a Likert scale. The results are presented
in Table 11

First, we observe that repetitiveness is not uncommon in model-generated content. The average
repetitiveness score is close to 3 on the Likert scale, corresponding to “a few facts are repeated in different
forms; slightly affects the flow.” Second, we observe a more pronounced difference in triviality scores
between generations with low and high removal ratios. We hypothesize that this effect may be attributed
to the CPMI module. However, it is also possible that the model tends to generate less specific or more
generic facts for rarer, more challenging entities. Core addresses this by enhancing the decomposition
module with global awareness, ensuring that claims introduced in the generation are not redundantly
evaluated and do not disproportionately impact factual precision.

Domain Metric CORE
MistralINST

NORMAL INFO REP

Geographic VERISCORE
w/o 78.7% 67.4% 78.9%
w/ 76.9% 5.1% 12.7%

Table 12: Additional experiment result on the same Geographic subset of Wildhallucinations (Zhao et al.,
2024a) with VERISCORE (Song et al., 2024) decompositions. Results show similar trend compared to those
with FACTSCORE prompt.
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C.5 freqValue Breakdown for Plug-and-Play Result
For each Decompose-Then-Verify pipeline, we also include a set of Factual Precision evaluation results for
each of the freqValue group identified in Subsection 4.2.

Figure 6: freqValue breakdowns of Factual Precision for out-of-the-box MistralINST.

Figure 7: freqValue breakdowns of Factual Precision for uninformative MistralINST.
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Figure 8: freqValue breakdowns of Factual Precision for uninformative GPT-2.

Figure 9: freqValue breakdowns of Factual Precision for repetitive MistralINST.

Figure 10: freqValue breakdowns of Factual Precision for repetitive GPT-2.
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