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Abstract

Given the limited computational and financial
resources of news agencies, real-life usage of
fact-checking systems requires fast response
times. For this reason, our submission to
the FEVER-8 claim verification shared task
focuses on optimizing the efficiency of such
pipelines built around subtasks such as evi-
dence retrieval and veracity prediction. We pro-
pose the Semantic Filtering for Efficient Fact
Checking (SFEFC) strategy, which is inspired
by the FEVER-8 baseline and designed with
the goal of reducing the number of LLM calls
and other computationally expensive subrou-
tines. Furthermore, we explore the reuse of
cosine similarities initially calculated within
a dense retrieval step to retrieve the top 10
most relevant evidence sentence sets. We
use these sets for semantic filtering methods
based on similarity scores and create filters
for particularly hard classification labels “Not
Enough Information” and “Conflicting Evi-
dence/Cherrypicking” by identifying thresh-
olds for potentially relevant information and
the semantic variance within these sets. Com-
pared to the parallelized FEVER-8 baseline,
which takes 33.88 seconds on average to pro-
cess a claim according to the FEVER-8 shared
task leaderboard, our non-parallelized system
remains competitive in regard to AVeriTeC re-
trieval scores while reducing the runtime to 7.01
seconds, achieving the fastest average runtime
per claim.

1 Introduction

Building systems for claim verification poses a sig-
nificant challenge and is typically evaluated with
accuracy-related metrics. At the same time, the
efficiency of systems generally proposed within
natural language processing (NLP) research is be-
coming another major aspect of system design (Tre-
viso et al., 2023), motivated by sustainability and
efforts in the domain of green NLP (Strubell et al.,

2019). The field is experiencing a gradual concep-
tual shift towards smaller, more efficient models,
as evidenced by the proliferation of smaller open-
source transformer models (e.g., Gemma 3 (Team
et al., 2025), Llama 3.2 (Grattafiori et al., 2024),
or Phi 4 (Abdin et al., 2024)). Commercial propri-
etary models follow the trend, with GPT-4o (Ope-
nAI et al., 2024) being the default flagship OpenAI
model, while also being twice as fast and 50% more
cost-effective than the larger GPT-4 Turbo model
(OpenAI, 2023). DeepSeek (DeepSeek-AI et al.,
2024) released a smaller model that matches or ex-
ceeds the performance of GPT models in various
tasks, while requiring significantly less computa-
tional power for inference.

In parallel, embedding models used for semantic
similarity search are undergoing a similar transfor-
mation. Open-source models such as E5-small
(Wang et al., 2022) and MiniLM (Wang et al.,
2020) demonstrate that compact architectures can
achieve retrieval performance competitive with
LLMs while significantly reducing inference costs.
More recently, models such as GTE (Li et al.,
2023a) and BGE (Liu et al., 2023) have gained
attention for offering strong performance on a va-
riety of retrieval tasks with relatively lightweight
configurations. At the commercial level, OpenAI’s
text-embedding-3-small model (OpenAI, 2024)
achieves strong semantic performance at a fraction
of the cost and latency of earlier embedding APIs.
This collective shift reflects a growing emphasis
on deployment efficiency, edge compatibility, and
environmentally conscious model design, without
compromising retrieval accuracy.

These transformations have a direct impact on
Retrieval-Augmented Generation (RAG) systems,
particularly in scenarios where cost-efficiency is
critical. RAG systems typically involve a similar-
ity search followed by an LLM re-assessment of
the highest-ranking candidate data reference points.
Efficiency-optimized RAG systems are particularly
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valuable in fact-checking applications, where news
agencies often operate with limited computational
resources, as well as understaffed and underfunded
fact-checking units (Graves, 2018).

Taking these trends into account, we propose a
system inspired by the FEVER-8 baseline with the
main goal of reducing its runtime per claim while
retaining comparable performance. To achieve this,
we explore possibilities of reducing computation-
ally expensive subroutines like generating texts
with LLMs and the re-usage of calculated cosine
similarities for the application of semantic filters
for veracity prediction. Our main contributions
are1:

• Introducing a pipeline designed for efficiency-
aware claim verification that remains compet-
itive with the FEVER-8 baseline in terms of
retrieval scores, while reducing the average
runtime per claim from 33.88s to 7.01s ac-
cording to the FEVER-8 Leaderboard2.

• Exploring the application of semantic fil-
ters to predict the veracity labels “Not
Enough Information” and “Conflicting Evi-
dence/Cherrypicking”.

2 Related Work

Efficient fact-checking Tang et al. (2024) used
GPT-4-generated training data to train small lan-
guage models (770M parameters) for fact verifi-
cation and showed their models achieving perfor-
mance in closed-book and document-based settings
on par with GPT-4. Xie et al. (2025) integrated
interactive retrieval and verification and reduced
costs for both parts, particularly for GPT-4o-mini
on factuality benchmarks. The approach also en-
ables LLMs to leverage their internal knowledge
for judgments instead of always relying on external
evidence retrieval.

These contributions achieved notable results in
regard to building efficient systems and were eval-
uated on different benchmarks, a direction we also
aim to contribute to with a system specifically tai-
lored for the AVeriTeC dataset.

Semantic filtering Gupta et al. (2023) employed
similarity metrics to perform semantic matching. In
particular, they find mappings between scientific ev-
idence in publications and paraphrased findings in

1Our code is available at: https://github.com/Xplai
NLP/SFEFC-FEVER-8-Shared-Task

2https://fever.ai/task.html

health news articles using most similar paragraphs
as evidence in the context of fake news detection.

The identification of thresholds for classifica-
tion tasks based on cosine similarity was explored
in works such as Pilehvar and Camacho-Collados
(2019) and Zhou et al. (2022). Here, optimal thresh-
olds were tuned by incrementing values stepwise
while iterating over training sets with promising
results with regard to performance and efficiency.
Both works identified thresholds for binary classi-
fiers to evaluate different word embedding models,
with the goal of measuring the cosine distances be-
tween word pairs in different contexts. However,
to our knowledge, this technique has not yet been
examined in the context of veracity prediction.

3 Methodology

The AVeriTeC (Automated Verification of Textual
Claims) dataset (Schlichtkrull et al., 2023) contains
4568 fact-checked, real-word claims. The data
set enables the assessment of claim verification
systems that retrieve evidence from the open web.
AVeriTeC provides a training, development (dev)
and test set. It is accompanied by a knowledge store
with scraped texts from websites related to potential
search queries to verify a claim. All claims are
classified into four categories of verdicts:

• “Supported” (SUP)

• “Refuted” (REF)

• “Not Enough Evidence” (NEI)

• “Conflicting Evidence/Cherrypicking” (CoC).

Efficiency-optimized pipeline design One of the
goals of the FEVER-8 shared task is the exploration
of the usage of Open Source (OS) models while
emphasizing the efficiency of the proposed systems
by capping the maximum runtime at one minute
per claim. Hence, a baseline was released based on
an optimized version of HerO (Yoon et al., 2024),
which was the highest scoring system from the
FEVER-7 shared task (Schlichtkrull et al., 2024)
that was built upon OS models. We designed our
system inspired by this baseline and with the goal in
mind of building a pipeline that reduces the amount
of LLM calls and thus reduces the overall runtime.
The resulting SFEFC pipeline relies on only two
LLM calls within the following steps (which are
also illustrated in Figure 1).
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1. Generate a question based on the claim by
prompting an LLM

a) Get a claim from the dataset, such as “In
a letter to Steve Jobs, Sean Connery re-
fused to appear in an apple commercial”

b) Generate a corresponding question, such
as “Is there any documented evidence or
credible source that confirms Sean Con-
nery wrote a letter to Steve Jobs refusing
to appear in an Apple commercial?”

2. Retrieve relevant evidence based on hybrid
search:

a) Concatenate all individual sentences
from the AVeriTeC knowledge store se-
quentially to sets of 4

b) Sparse retrieval: Return top 1500 sets of
sentence sets from 2.a via BM25

c) Dense retrieval: Return the top 10 sen-
tence sets based on the cosine similarity
of the results from 2.b

3. Predict a verdict label for NEI and CoC via se-
mantic filtering using cosine similarities from
2.c

4. If a semantic filter can be applied following
Algorithm 1, the corresponding label is used
as the final verdict

5. If not, an LLM prompt (included in the ap-
pendix of this paper) is constructed from the
retrieved evidence, the claim and the system
prompt with instructions to choose between
SUP or REF, effectively reducing the classifi-
cation labels to a binary choice in this step

6. The LLM prediction is used as the final verdict

The hybrid search step is similar to the same step
within the FEVER-8/HerO baseline, but with one
key change that we implemented to improve the
runtime: While the baseline retrieved sentences one
by one, we sequentially concatenated the sentences
related to each claim in the AVeriTeC knowledge
store into sets of 4 before retrieving these sets with
BM25. The amount of 4 was chosen due to ob-
servations within preliminary testing, where we
observed an increase in the old AVeriTeC score
while incrementing the value until the amount of 4.

This concatenation strategy is similar to chunk-
ing strategies within RAG pipelines, where the

Figure 1: Architecture of the proposed system

size of chunks is determined by trade-offs, like
preserving semantic information while keeping it
precise enough for query-based retrieval. As a con-
sequence, by concatenating the sentences in sets
of 4 we also reduced the total number of retrieval
candidates from the knowledge store by a factor of
4, allowing us to also reduce the number of top k
results retrieved by BM25 from 5000 in the base-
line to 1500. This, in turn, led to a decrease in
the amount of embeddings needed to be created to
retrieve the top 10 candidates based on cosine simi-
larity. The actual values of the set size and the top
k from BM25 were determined within preliminary
tests by evaluating this pipeline on the AVeriTeC
dev set with different values.

Semantic filtering The proposed semantic filter-
ing method aims to classify the veracity verdicts
by assessing the cosine similarities between the
query and the top 10 retrieved evidence. Algorithm
1 documents our Semantic Filtering for Efficient
Fact Checking (SFEFC) approach, which was mo-
tivated by further lowering the runtime by reusing
the cosine similarities during the 2.c step. Here, the
reduction in runtime was achieved by removing an
additional LLM call and using already computed
similarity values to classify veracity labels, pro-
vided that a semantic filter was applicable.

The filtering strategy for the NEI class assumes
a threshold of cosine similarity below which the
retrieved information can be classified as not rele-
vant.
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The idea of filtering for semantic variance in
regard to the CoC class follows the intuition that
the variance within the set of cosine similarities
between the query and the retrieved top 10 results
should be higher in this class compared to oth-
ers, since it should include evidence which both
supports and refutes the claim. We calculate the
semantic variance with

Var(a) =
1

N

N∑

i=1

|ai − ā|2

, where ai are the elements in the input array a
(consisting of the top 10 cosine similarities from
the 2.c step), ā is the mean of all elements and N is
the total amount of all elements.

For identifying the thresholds, we implemented
a similar routine to threshold tuning as Pilehvar and
Camacho-Collados (2019) and Zhou et al. (2022):
We incrementally increased the thresholds while
iterating over our final prediction files for the dev
set containing the retrieved evidence, updated the
NEI and CoC labels if they met certain thresholds,
and scored the overall predictions using the offi-
cial AVeriTeC scorer which considered the metrics
based on Hungarian METEOR (Schlichtkrull et al.,
2023).

During the rise of OS LLMs, several inference
engines with different trade-offs in regard to factors
such as performance metrics and target hardware
were released in recent years (Park et al., 2025). We
chose to use llama.cpp3 and its GGUF-quantization
format for our LLM calls. Although lacking some
capabilities of other engines, such as running in-
ference on multiple nodes, llama.cpp was designed
with the goal in mind of deploying LLMs on con-
sumer hardware, making it a suitable choice that
aligns with our motivation.

Hungarian
Name Split METEOR Ev2R

FEVER-8/HerO dev 0.554 0.296
test 0.497 0.2023

SFEFC-phi4 dev 0.572 0.266
test 0.494 0.2047

Table 1: FEVER-8/HerO (baseline) and SFEFC-phi4
(our) results on the AVeriTeC dataset

3https://github.com/ggml-org/llama.cpp

Algorithm 1 Semantic Filtering with Heuristics

1: function GETLABEL(cos_sims)
2: tnei ← 0.82
3: tconf ← 0.0007
4: pred← None
5: if cos_sims[0] < tnei then
6: pred← "Not Enough Evidence"
7: end if
8: if Var(cos_sims) > tconf then
9: pred ← "Conflicting Evidence/ Cher-

rypicking"
10: end if
11: return pred
12: end function
13:

14: function APPLYFILTER(claim, evs)
15: cos_sims = [ ]
16: for ev in evs do
17: sim← COSSIM(claim, ev)
18: cos_sims.append(sim)
19: end for
20: label← GETLABEL(cos_sims)
21: return label
22: end function
23:

24: function PREDICTLABEL(claim, evs)
25: label← APPLYFILTER(claim, evs)
26: if label = None then
27: label← LLMPRED(claim, evs)
28: end if
29: end function

4 Evaluation

Table 1 documents our results on the official
FEVER-8 shared task leaderboards with regard to
the dev set4 and the test set5. Ev2R refers to the new
AVeriTeC score Ev2R recall (Akhtar et al., 2024),
a new metric for LLM-based evaluation of retrieval
tasks. Unlike the old AVeriTeC score, which fo-
cused on a lexical metric, the new score considers
the semantic meaning of the retrieved evidence.
Both metrics consider correctly predicted verdicts
and evidence retrieved for their prediction.

Experimental setup We ran different configura-
tions of the baseline and our own system on the

4https://huggingface.co/spaces/fever/AVeriTeC
Fever8Dev

5https://fever.ai/task.html
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Block Name Old S New S s/claim SUP REF NEI CoC

1 FEVER-8/HerO 0.534 0.280 10.34 0.639 0.799 0.133 0.075
FEVER-8/HerO-phi4-14B 0.522 0.256 13.13 0.623 0.783 0.103 0.000

2 SFEFC-phi4-14B 0.572 0.296 04.83 0.645 0.806 0.046 0.063
SFEFC-phi4-14B-no-concat 0.452 0.248 05.33 0.525 0.784 0.000 0.033

3 SFEFC-phi4mini-3B 0.472 0.224 04.28 0.517 0.707 0.000 0.033
SFEFC-llama3.2-3B 0.436 0.230 04.61 0.437 0.706 0.046 0.065
SFEFC-gemma-3-27-it-qat 0.502 0.276 05.21 0.647 0.784 0.051 0.035

4 SFEFC-phi4-14B-all-classes 0.394 0.254 05.39 0.646 0.516 0.163 0.280
SFEFC-phi4-14B-binary 0.608 0.318 04.68 0.66 0.836 0.000 0.000
SFEFC-phi4-14B-varifocal 0.540 0.286 17.68 0.654 0.815 0.000 0.065

Table 2: Comparison of AVeriTeC scores (Old S: Hungarian METEOR score, New S: Ev2R Recall score), runtimes
and Veracity F1 scores on the labels Supported (SUP), Refuted (REF), Not Enough Information (NEI) and
Conflicting Evidence/Cherrypicking (CoC)

same machine with an NVIDIA H100 80GB GPU6.
Both generative tasks, question generation and ve-
racity prediction, were handled by the same LLM
in each case. For better comparison, all configu-
rations in Table 2 including HerO were evaluated
with the same gte-base embedding model (Li et al.,
2023b). Table 2 collects our evaluation results:

• Block 1 presents the FEVER-8/HerO-baseline
results when run on our infrastructure

• Block 2 documents the results of our final
submission. It also includes the results of a
configuration with our concatenation strategy
ablated.

• Block 3 collects the results of configurations
were the LLM was replaced with other vari-
ants

• Block 4 shows strategies deviating from our
main configuration

Runtime and accuracy-related metrics For the
evaluation, our goal is to assess whether we could
remain competitive with the baseline while improv-
ing the runtime per claim. As the results docu-
mented in Table 2 indicate, we were able to cut the
runtime compared to the FEVER-8/HerO-baseline
by more than 1/2 with most of our configurations
(e.g., from 10.34s to 04.83 with our main configura-
tion SFEFC-phi4-14B), while staying competitive

6The runtime values differ from the values on the FEVER-
8 Leaderboard, where all systems were run on NVIDIA A10G
GPUs with 23GB VRAM

both in the dev and the test set on the respective ac-
curacy metrics (Table 1). Furthermore, the runtime
of SFEFC-phi4-14B (Block 2) can be optimized
in a way similar to the batching and paralleliza-
tion strategies of the optimized FEVER-8/HerO-
Pipeline for the FEVER-8 shared task. These strate-
gies can also be explored with our proposed system
to further reduce the processing time per claim in
future work.

We experimented with multilingual-e5 (Wang
et al., 2024), BGE-M3 (Chen et al., 2024), and gte-
base (Li et al., 2023b), where gte-base yielded the
best results in terms of runtime and accuracy.

We used Q6_0 GGUF7 quantization variants in
most configurations. Quantizing an LLM to 6-
bit precision from 16-bit, as in the case of Phi 4,
greatly reduces the runtime by lowering the require-
ments for in-memory operations.

As expected, the results indicate that runtime
increases with the parameter size of the model,
reflecting the higher computational cost of larger
LLMs. Similarly, accuracy-related scores tend to
decrease as the model size is reduced, illustrating
a typical trade-off between efficiency and perfor-
mance. Here, the Phi-4-14B (Abdin et al., 2024)
model yielded the best results, while the related
Phi-4-mini-instruct variant (Microsoft et al., 2025)
with 3.8B parameters performed worse, as well as
llama3.2-3B (Grattafiori et al., 2024) with 3.2 pa-
rameters. During our preliminary tests, we noticed
better results when working with the Phi 4 model.

7A quantization format developed by llama.cpp:
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md
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For example, we evaluated our system in config-
uration with Gemma 3 (Team et al., 2025) with
27B parameters in its Quantization Aware Training
(QAT) format, but the results were subpar com-
pared to the Phi 4 variant. However, when running
the FEVER-8/HerO-baseline while replacing the
older Meta-Llama-3.1-8B-Instruct model with Phi
4 (on all tasks except veracity prediction), the re-
trieval score dropped. Thus, it cannot be gener-
alized that the Phi 4 performs better in all cases.
Furthermore, we evaluated the SFEFC-phi4-14B-
all-classes to analyze how Phi 4 would perform if
all four veracity labels were predicted by the model,
with this configuration yielding the lowest scores
(except, surprisingly, on the NEI and CoC classes).

Ablation Another goal of our evaluation docu-
mented in Block 2 of Table 2 is the comparison
of different configurations to analyze their influ-
ence. To observe how our concatenation strategy
influences the results, we evaluated the configura-
tion SFEFC-phi4-14B-no-concat, which follows
the same strategy as the FEVER-8/HerO-baseline
(retrieving top 5000 individual sentences instead of
1500 concatenated sets of 4). As the results show,
removing our strategy led to a drop in the verac-
ity score (from 0.572 to 0.452) and an increase in
runtime (from 4.84 to 5.33 seconds). This matches
our assumption that retrieval performance increases
when potential candidates contain more semantic
information while decreasing runtime, since the
total amount of potential candidates is also reduced
by a factor of 4.

Further experiments We experimented with dif-
ferent strategies to further move beyond the results
of SFEFC-phi4-14B, such as fine-tuning Phi 4 for
question generation, fine-tuning BERT-based clas-
sifiers for verdict prediction, or different prompting
strategies, but without success. As an example,
we include our SFEFC-phi4-14B-varifocal variant,
which was inspired by (Ousidhoum et al., 2022).
Here, we prompted Phi 4 to generate 3 varifo-
cal questions, parsed them from the output, used
the generated questions as queries, and merged
the results within the set of 10 retrieved ques-
tion/evidence pairs. Although being a more so-
phisticated prompting strategy than generating a
single question, the score did not improve against
the SFEFC-phi4-14B configuration.

Error analysis When considering the results of
our SFEFC-phi4-binary and SFEFC-phi4 configu-

Total Total
Class Actual Predicted TP FP

NEI 35 8 1 7
CoC 38 26 2 24

Table 3: Examination of Not Enough Information (NEI)
and Conflicting Evidence/Cherrypicking (CoC) cases.
TP is short for True Positives/correctly predicted. FP is
short for False Positives/incorrectly predicted.

rations in Table 2, it is noticeable that while seman-
tic filtering successfully labels some of the NEI and
CoC cases, the veracity scores for SUP and REF
drop by around 0.02-0.03 points. Thus, the actual
number of correctly labeled NEI and CoC cases
needs to be further examined. Table 3 illustrates
that while predicting veracity classes with Seman-
tic Filters is generally possible, mislabeled verdicts
outweigh by a margin. When comparing the wrong
predictions with their actual target labels, out of the
7 times NEI was mislabeled, 5 cases were actually
REF and 2 SUP cases. In regard to CoC, out of the
26 wrong predictions, 17 should have been REF,
6 SUP and 1 NEI. While these results could point
to a higher possibility of mislabeling predictions
when the actual target label is REF, the ratios also
roughly represent the class balance of the dev set
(which includes 0.61% REF, 0.24% SUP, 0.08 %
NEI and %0.07 CoC labeled claims). Thus, we
conclude that while static thresholds can indeed
be applied to predict correct veracity labels, the
filtering strategy proposed in this paper can not be
generalized to most cases, regardless of the actual
target label.

5 Discussion and Future Work

With the proposed system, we successfully
achieved our goal of remaining competitive with
the FEVER-8 baseline in terms of performance,
while significantly reducing runtime and taking a
step closer toward real-world applicability in end-
user-facing fact-checking systems. A key efficiency
gain was achieved by reducing LLM calls and del-
egating both question generation and part of the
veracity prediction to a single Phi-4 model, which,
as our results show, performs well on both tasks.
Another key approach involved concatenating sen-
tences from the knowledge store based on chunking
strategies, which significantly reduced the number
of sentence embeddings required during each dense
retrieval step. Both strategies can be further opti-
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mized in future work to decrease the runtime per
claim. Another promising direction is to further
optimize runtime through the application of paral-
lelization techniques, similar to those used in the
FEVER-8/HerO baseline.

While our semantic filtering heuristics were
able to correctly identify some veracity classes,
they often resulted in incorrect labels overall.
This suggests that, although the approach holds
promise, it requires further refinement. Improve-
ments could involve enhancing the current heuristic
techniques or replacing them with learnable com-
ponents within classification models. In particular,
the use of semantic variance for predicting the
challenging CoC class appears to be a promising
direction. This method could evolve beyond fixed
thresholding towards more flexible classifiers that
leverage deeper features of the retrieved evidence
embeddings.

Limitations

While we were able to reduce the runtime by
around half when compared to the FEVER-
8/AVeriTeC baseline, it still remains at 04.28 sec-
onds per claim in our fastest configuration – a value
that can be considered too slow for real-life set-
tings, especially when taking into account that its
achievement is limited to the system being run on
a high-end GPU (NVIDIA H100).

Thus, further improvement is needed towards
the deployment outside of laboratory settings and
on lower-end devices, where scalability issues, la-
tency requirements, and different deployment op-
tions need to be taken into account. There are
several paths discussed going towards this goal in
the current literature. For example, the runtime of
the dense retrieval steps could be improved by the
binarization of the embedding vectors, as discussed
in Gan et al. (2023).

The performance of our system and the thresh-
olds of our proposed semantic filtering methods are
limited to the AVeriTeC dataset. As discussed in
our error analysis section, these heuristics show-
case the general possibility to filter out specific
labels based on thresholds but need further refine-
ment due to a large amount of false positives. This
point is underscored by the need of assessment of
the methods on other data beyond the AVeriTeC
dataset.

Furthermore, the thresholds we identified are
limited to the gte-base embedding model. The

implementation of other members of this model
class can result in different results due to differing
ranges in cosine similarity scores.
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A Appendix

A.1 Prompts Collection
We used the following prompt for question genera-
tion:

f“You are a professional fact checker.
You recieve a claim from the user. Please
provide a question you would ask to find
out if a given claim is true, or not. Gener-
ate only one single question! The claim
you need to check: {claim} \n Your Ques-
tion:\n”

The prompt for predicting the SUP and REF
labels was:

f“You are a professional fact checker.
You get a claim and provided evidence.
Assess if the claim is supported or re-
futed by the evidence! Return only the
result, either ’Supported’ or ’Refuted’.
The claim: {claim} \n The evidence: {re-
trieved_evidences} \n Your verdict: ”
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