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Abstract

In the First Automated Verification of Textual
Claims (AVERITEC) shared task, participating
teams developed systems that for each claim re-
trieve evidence from the web and predict its ve-
racity. While there was progress in automated
fact-checking for real-world claims, the ma-
jority of the systems proposed relied on large
closed-weights language models, which ren-
dered them expensive to run and less repro-
ducible. To ameliorate this issue, in this year’s
edition of the AVERITEC shared task, we re-
quired system to use only open-weights mod-
els that could be run using a single GPU with
23GBs of RAM, and that systems should take
one minute or less to return verdicts accompa-
nied by evidence retrieved from a pre-compiled
knowledge store. The shared task received 7
submissions; 6 of which exceeded the accuracy
of our baseline on the test set, while they ran
in under a minute per claim on the hardware
we had specified. The winning team was CTU
AIC with an AVERITEC score of 33.17%. In
this paper we describe the shared task in detail
and highlight key findings.

1 Introduction

Automated fact-checking (AFC) has been pro-
posed as an assistive tool for beleaguered fact-
checkers (Cohen et al., 2011; Vlachos and Riedel,
2014), whose work is crucial for limiting misin-
formation (Lewandowsky et al., 2020). This has
inspired applications in journalism (Miranda et al.,
2019; Dudfield, 2020; Nakov et al., 2021) and
other domains, e.g. science (Wadden et al., 2020).
While there had been progress on many bench-
marks, these were limited in their ability to mea-
sure progress in terms of evidence retrieval. For
example, FEVER (Thorne et al., 2018) relied on
Wikipedia as its only source of evidence, in ad-
dition to consisting of purpose-made rather than
real-world claims. Liar Liar Pants on Fire (Wang,
2017) consists of real-world claims but it has no

Claim: The USA has succeeded in reducing 
greenhouse emissions in previous years.  

Date: 2020.11.2    Speaker: Morgan Griffith

Verdict: Conflicting Evidence/Cherrypicking.

Q1: What were the total gross U.S. greenhouse 
gas emissions in 2007? 

A1: In 2007, total gross U.S. greenhouse gas 
emissions were 7,371 MMT.

Q2: When did greenhouse gas emissions drop in 
US? 

A2: In 2017, total gross U.S. greenhouse gas 
emissions were 6,472.3 MMT, or million metric 

tons, carbon dioxide.

Q3: Did the total gross U.S. greenhouse gas 
emissions rise after 2017? 

A3: Yes. After 3 years of decline, US CO2 
emissions rose sharply last year. Based on 

preliminary power generation, natural gas, and 
oil consumption data, we estimate emissions 

increased by 3.4% in 2018.

Figure 1: Example instance from AVERITEC. Given
a claim and associated metadata, participating systems
must first retrieve appropriate evidence. Then, they must
output a verdict for the claim given that evidence.

evidence annotated to evaluate retrieval, while in
MultiFC (Augenstein et al., 2019) the evidence is
annotated automatically and thus cannot be relied
upon for evaluation (Glockner et al., 2022).

The recently proposed AVERITEC
dataset (Schlichtkrull et al., 2023a) addressed these
limitations. It consists of real-world claims where
the evidence is manually annotated in the form
of questions and answers sourced from the Web
(see Figure 1 for an example). This evidence had
to be available before the claim was made, and
was additionally verified to adequately support
the verdict, thus avoiding the issues of temporal
leakage and evidence insufficiency identified in
earlier datasets (Ousidhoum et al., 2022; Glockner
et al., 2022).
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In the first AVERITEC shared task (Schlichtkrull
et al., 2024), a number of systems were pro-
posed that substantially improved the results on the
task compared to the baseline proposed with the
dataset. However, most relied on closed-weights
large language models (LLMs) with substantial
(and unverified) parameter counts, including the
top-performing system (Rothermel et al., 2024).
While the tremendous progress achieved was in-
spiring, and the evaluation of commercial LLMs in
the context of automated fact-checking was of high
practical significance, this result has a number of
shortcomings from a research perspective.

First, the systems rely on external LLMs via
APIs that have no control over them; thus it is
difficult to reproduce their results, and as LLM
provider change their offering overtime, it be-
comes impossible. Second, the costs of developing
such approaches could be substantial depending
on the size of the LLMs used. Thus, the finan-
cial ability to use such commercial services af-
fected the chances of achieving good results on
the shared task. More problematically, journalistic
fact-checkers, the most common intended user for
automated fact-checking tools (Schlichtkrull et al.,
2023b), often operate under strong resource con-
straints and cite cost as a major deciding factor for
the adoption of technologies (Warren et al., 2025).
Expensive models may as such not be able to match
their desired real-world function. Last but not least,
systems relying on external LLMs can be less prac-
tical to use in real-world contexts, where latency
due to network limitations and/or privacy concerns
are important considerations.

For these reasons, in this second edition of the
AVERITEC shared task, we decided to focus on
open-weights, reproducible and efficient systems.
Participating systems were constrained to run us-
ing a single GPU taking a maximum of one minute
per claim to return their verdicts. This runtime
included retrieving evidence from a pre-compiled
knowledge store consisting of documents returned
by a commercial search engine. Note that par-
ticipants were allowed to use larger and/or close-
weights LLMs for training, these restrictions only
applied to inference. Similar to the first edition of
the shared task, this knowledge store contains the
manually annotated evidence that systems need to
return with their verdicts, but also a lot of other re-
lated search results. It was preferred over offering
systems the option to access a commercial search
engine directly as it is free to use by the participants

(and it was the preferred option by most of them
in the first edition), but also that participating sys-
tems did not need to access any resources beyond
the knowledge store and models running locally.
To ensure that all participating teams adhered to
these restrictions, they were asked to submit their
systems to the organisers to run on the test data in
order to produce the final results.

We also improved on the automatic evaluation
of evidence retrieval, which was found to be have
very low correlation with human evaluation in the
first edition of the shared task. Instead of relying
on the originally propose token-matching evalu-
ation of Schlichtkrull et al. (2023a), we adopted
the recently proposed Ev2R prompt-based LLM
approach of Akhtar et al. (2024) which was shown
to have stronger correlation with human evaluation.
This allowed for more reliable evaluation of partic-
ipating systems, since accuracy points are awarded
conditionally on retrieving appropriate evidence.
Finally, we released a new test set with more recent
claims, thus reducing the possibility that they were
used in the training of LLMs.

We find that all seven participating teams deliv-
ered systems that adhered to the requirements for
open-weights, reproducible and efficient systems,
making use of language models up to 14B param-
eters. Fine-tuning was rarely used, relying mostly
on few-shot in-context learning. In retrieval, they
often proposed hybrid approaches combining dense
embeddings with BM25. Overall, the best system
was submitted by team CTU AIC Ullrich and Dr-
chal (2025) that achieved 0.3317 AVERITEC score,
which awards accuracy points only when the evi-
dence retrieved is considered adequate.

2 Task Description

Participants are given claims and associated meta-
data, such as the publication date (see Figure 1).
Based on this, they must retrieve evidence for or
against the claims. In the gold annotation, this evi-
dence is broken down into question-answer pairs,
naturally enabling multi-hop reasoning. We do not
restrict participants to providing evidence in this
format, but most participants found it beneficial to
follow it. Finally, based on the evidence, partici-
pants must predict whether a veracity label from
the set supported, refuted, not enough evidence, or
conflicting evidence/cherry-picking.
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2.1 Dataset

Similarly to the shared task of previous years, we
ask participants to train and validate their system
on the public AVERITEC dataset and evaluate
their performance on our new test set (2025). The
2025 test set consists of 1,000 instances, which
temporally succeed the previous data (original
AVERITEC and 2024 test set).

Annotation of 2025 New Test Set Following
AVERITEC (Schlichtkrull et al., 2023a), we first
collect fact-checking articles from ClaimReview
and conduct a five-phase annotation. Please note
that each instance is annotated by different annota-
tors at each phase.

In particular, in phase 1 (P1), annotators are
asked to identify the main claims from a fact-
checking article, extract corresponding meta-data
such as the claim speaker and claim date, and
decontextualise the claim to make it context-
independent. In P2, given a decontextualised claim,
annotators propose questions that help to fact-check
the claim, answer the question by finding relevant
information from the fact-checking article and on-
line source, and finally make a verdict for the claim
based on the QA pairs. In P3, presented with only
the QA pairs and the decontextualised claim, anno-
tators assign a verdict label and make a justification
for their choice. For each instance, if the verdict
labels given by P2 and P3 annotators are identi-
cal, we regard the QA annotation and the claim as
disambiguated, informative and sufficient for the
verdict predication, and include it in our resulting
test set. Otherwise, this instance proceeds to the P4
and P5 annotation, which consist of a second round
of P2 and P3 annotation, respectively. Similarly,
we examine the verdicts of each claim given by P4
and P5 annotators: if the verdict labels are identi-
cal, we include the instance in our resulting test set;
otherwise, we discard it. In this way, we collect
1,000 instances for our 2025 test set, where each is
annotated with a normalised claim, meta-data, QA
pairs, a verdict label, and a justification.

We conduct a training and evaluation procedure
to select qualified annotators. Before the formal
annotation, all annotators are required to complete
training on 10 instances for each of the P1, P2, and
P3 tasks, respectively. Those training instances are
randomly selected from the 2024 test set. All anno-
tators are required to meet the basic performance
criteria: (1) over 70% F -1 score for both claim
type classification and fact-checking strategy clas-

sification; (2) an average of more than 2 QA pairs
per claim; (3) over 50% accuracy of verdict predic-
tion. Finally, 8 out of 9 annotators are selected for
the formal annotation for the 2025 test set.

Comparison between the Previous Datasets and
2025 Test Set We present the data statistics of the
2025 test set in Table 1. For comparison, we also
show the results of the 2023 AVERITEC dataset
and the 2024 test set.

The 2025 test set (from Jan 2024 to Dec 2024)
is more temporally removed from the training set
compared with the 2023 dataset and the 2024 test
set, indicating a greater domain shift. The average
number of questions per claim in the 2025 test set is
comparable to the 2024 test set while being higher
than in the 2023 dataset (e.g., 2025: 2.79; 2024:
2.89; 2023: 2.60/2.57/2.57). Moreover, the 2025
test set includes more numerical claims (38.8%),
which are more straightforward to verify, but fewer
causal claims (8.1%), which are typically more
challenging. These distributions also reflect on
the fact-checking strategies, where there are more
numerical comparisons (30.8%) in the 2025 test
set.

In addition to the above observations, we find
that the distributions across different sets show sim-
ilar trends. In terms of label distribution, the Re-
futed label consistently accounts for the largest
proportion, while Conflicting and Not Enough Evi-
dence remain greatly fewer. Regarding claim type
distribution, the Event/Property Claim is the most
common, while the Position Statement is the least.
For fact-checking strategies, the Written Evidence
consistently dominates across all sets.

2.2 Knowledge Store
To ensure fair comparison, support reproducibility,
and reduce engineering and computational costs,
we provide a corresponding knowledge store for the
2025 test set. For each claim, the knowledge store
includes a set of potentially relevant documents for
fact-checking each claim.

For each data store, we include gold documents,
which are used for our annotation, and additional
documents retrieved by Google search. In partic-
ular, to generate queries for Google search, we
use ChatGPT1 to generate a set of queries based
on the claim, gold annotated questions, and gold
annotated answers. We also include a variety of
distractor queries by changing the named entities,

1We use gpt-3.5-turbo.
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Split Train (2023) Dev (2023) Test (2023)

Claims 3,068 500 1,000
Question / Claim 2.60 2.57 2.57
End date 25-08-2020 31-10-2020 22-12-2021
Labels (S/R/C/N) 27.6/56.8/6.4/9.2 24.4/61.0/7.6/7.0 25.5/62.0/6.3/6.2
Types (PS/NC/EPC/QV/CC) 7.8/33.7/57.8/9.6/11.5 5.8/23.8/61.4/13.8/10.8 7.0/21.9/69.8/7.7/11.9
Strategies (WE/NCP/FR/EC/SS) 78.8/30.6/6.6/29.9/3.6 88.6/19.0/7.4/27.4/2.0 88.0/19.2/7.7/29.6/1.8

Split Test (2024) Test (2025)

Claims 1,215 1,000
Question / Claim 2.89 2.79
End date 13-08-2023 19-12-2024
Labels (S/R/C/N) 17.3/66.5/4.1/12.1 22.2/71.9/1.7/4.2
Types (PS/NC/EPC/QV/CC) 3.5/24.3/71.9/5.2/16.1 2.6/38.8/68/9/4.3/8.1
Strategies (WE/NCP/FR/EC/SS) 82.4/22.6/10.0/37.6/4.0 88.8/30.8/7.8/30.0/5.6

Table 1: Statistics for the 2023 dataset, and 2024 and 2025 test sets. The Labels (%) are Supported (S), Refuted
(R), Conflicting Evidence/Cherry-picking (C), and Not Enough Evidence (N). The Claim Types (%) are Position
Statement (PS), Numerical Claim (NC), Event/Property Claim (EPC), Quote Verification (QV), and Causal Claim
(CC). The Fact-checker Strategies (%) are Written Evidence (WE), Numerical Comparison (NCP), Fact-checker
Reference (FR), Expert Consultation (EC) and Satirical Source (SS). For simplicity, we exclude strategies with very
low frequencies, such as Geo-location (0.3%). Please note that a single claim can correspond to multiple claim
types and fact-checking strategies; therefore, the proportions do not necessarily sum to 100%.

dates, and events in the claim. We present our de-
tailed query information in Appendix A. We collect
the URLs returned by the first page of the Google
search, and only include those URLs which are
temporarily available before the claim is made. Fi-
nally, the deduplicated and shuffled URLs result
in the data store for each claim. We further scrape
the text from each URL using trafilatura (Bar-
baresi, 2021).

For the 2025 test data store, we have 1,018,800
URLs and 2,506,398,451 tokens in total. In particu-
lar, for each claim, there are 1019 URLs on average,
where 593 are associated with valid scraped texts.
The average tokens are 2,506,398 for each claim
and 4,227 for each document, respectively. The
most common domains include National Library of
Medicine, Reddit, ScienceDirect, Wikipedia, BBC,
the New York Times and CNN.

2.3 Baseline

The baseline closely follows the HerO system
(Yoon et al., 2024). HerO achieved the second
place in the AVeriTeC shared task (Schlichtkrull
et al., 2024), demonstrating that open LLMs can
effectively verify real-world claims without relying
on proprietary models. HerO uses publicly avail-
able LLMs in a three-step verification pipeline: (i)
evidence retrieval by combining hypothetical docu-
ment generation via an LLM, BM25 retrieval, and
a cross-attention re-ranker (Meng et al., 2024); (ii)
question generation where an LLM creates veri-

fying questions conditioned on each piece of the
evidence; and (iii) veracity prediction by using a
fine-tuned LLM to jointly generate explanations
and the final verdict labels.

Our baseline modifies the original HerO imple-
mentation with a focus on computational efficiency
to ensure that the system runs within this shared
task’s time constraints. Instead of using Llama-3.1-
70B (Grattafiori et al., 2024) across components,
the baseline uses the Llama-3.1-8B variant (a fine-
tuned Llama-3.1-8B veracity prediction model was
also provided by Yoon et al. (2024)). Since evi-
dence retrieval is the most expensive step of HerO’s
inference pipeline, the baseline additionally incor-
porates retrieval cutoffs and heuristics, limiting the
number of sentences for BM25 retrieval to 5000,
and for reranking to 500. Finally, the runtime was
further improved by adding typical efficiency op-
timizations, such as batch processing and multi-
threading.

2.4 Measuring Reproducibility & Efficiency

To ensure the reproducibility of shared task sys-
tems, all systems were executed on a standardized
virtual machine during inference on the test set by
the organizers. To this end, all shared task teams
were required to provide reproducible code with
clear installation and execution instructions.

A system is considered reproducible if it runs
during inference on the VM without making any
external API calls, whether to large language mod-
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els (LLMs) or to retrieval engines such as Google
Search. Consequently, closed-weight LLMs cannot
be used during inference. In contrast, open-weight
and open-data language models are allowed as long
as they run locally on the VM. Note that partici-
pants were allowed to use larger or closed-weight
LLMs during training.

The virtual machine was an AWS g5.2xlarge
EC2 instance with an Nvidia A10G GPU with
23GB memory, 8 vCPUs, 32GB RAM, and 450GB
of storage. To ensure compatibility with the VM,
participants could test their systems using either a
provided Docker image that matched the evaluation
environment or by configuring an identical AWS
instance via the specified AMI.

The efficiency of shared task systems was mea-
sured by setting an upper limit to the inference
runtime on the 1000 claims of the test set. A sys-
tem was expected to process the entire test set on
the virtual machine in 16 hours and 40 minutes,
averaging 1 minute per claim. This runtime limit
does not include the downloading of data, mod-
els, or retrieval indices. Outputs produced by a
system beyond that time constraint are not consid-
ered. Moreover, systems were allowed to process
all claims for a given component of the verification
pipeline before proceeding to the next component.
This approach reduces the impact of loading and
unloading models from memory that would occur
if each claim were processed individually.2

Reproducibility and efficiency are a binary
pass/fail requirement for successful shared task
submissions. We do not use them as a metric for
ranking successful shared task systems.

2.5 Evaluation

Following established practise in previous
work (Thorne et al., 2018; Schlichtkrull et al.,
2023a), including the first AVeriTeC shared
task (Schlichtkrull et al., 2024), we evaluate
verdict accuracy conditional on sufficient evidence
having been retrieved. We report three metrics:
Q score, representing question quality regardless
of found evidence; Q+A score, representing the
quality of evidence as questions and answers; and
AVERITEC, on which systems are scored with
verdict accuracy for claims where Q+A score is
above a certainly threshold t, and 0 otherwise.

The evidence in this year’s AVeriTeC shared
2This relaxation creates an admittedly artificial setting, as

it would require all users to wait for all claims to be processed
before receiving a response.

task is retrieved from a knowledge store compiled
from a range of internet sources (see Sec. 2.2),
The AVeriTeC metrics used in the previous year’s
shared task (Schlichtkrull et al., 2024) relied on ap-
proximate matching using the annotated evidence
and the token-matching metrics METEOR (Baner-
jee and Lavie, 2005). However, this approach was
highly sensitive to surface forms and resulted in
penalising alternative, but valid evidence paths. For
example, both “Where did South Africa rank in al-
cohol consumption? In 2016, South Africa ranked
ninth out of 53 African countries.” and “What’s the
average alcohol consumption per person in South
Africa? 7.1 litres.” may both be valid ways of estab-
lishing the relative levels of alcohol consumption
between South Africa and other countries. How-
ever, the token-level overlap between both evidence
is low and may result in a higher METEOR score
for one evidence alternative compared to the other.

Thus we decided to use Ev2R (Akhtar et al.,
2024) for evaluation. Ev2R (Akhtar et al., 2024)
is a prompt-based LLM-as-judge approach that as-
sesses the quality of retrieved evidence by decom-
posing both the retrieved and reference evidence
into atomic facts before comparing them to eval-
uate factual consistency and coverage. It outper-
forms traditional metrics in alignment with human
judgments and robustness to adversarial perturba-
tions. Ev2R is inspired by FactScore (Min et al.,
2023), but adapts its approach to better reflect ev-
idence evaluation, providing both a precision and
a recall score. Precision measures the accuracy of
the retrieved evidence, while recall assesses the
completeness of the retrieved evidence in relation
to the gold standard. The scorer first splits the re-
trieved evidence Ê and reference evidence E into
atomic facts, AÊ and AE respectively. To calcu-
late the precision score it evaluates whether each
individual fact aÊ ∈ AÊ of the retrieved evidence
is supported by the reference evidence E. The pre-
cision score sprec is defined as the ratio of facts
supported by the reference evidence:

sprec =
1

|AÊ |
∑

aÊ∈AÊ

I[aÊ supported byE]

The scorer iterates over each fact
(aÊ ∈ AÊ) for which the indicator function
(I[aÊ supported by E]) returns 1 if the fact aÊ
is supported by the reference evidence E and 0
otherwise. For calculating the recall score, the
scorer evaluates whether each atomic fact of the
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reference evidence (aE ∈ AE) is supported by the
retrieved evidence, i.e., measuring the extend to
which the retrieved evidence covers the content of
the reference evidence:

srecall =
1

|AE |
∑

aE∈AE

I[aE supported by Ê]

Akhtar et al. (2024) assess the validity of the
scorer by evaluating its alignment with human rat-
ings and testing its robustness through a set of per-
turbation experiments that systematically assess
the scorer on various dimensions, such as its sen-
sitiveness to variant changes in the evidence text,
fluency, noise, etc.

Following the first AVERITEC shared
task (Schlichtkrull et al., 2024), we evaluate
evidence using only the recall component of the
metric. By doing so we avoid penalising systems
for adding additional evidence which annotators
did not find necessary, such as background context.
We only consider the first 10 questions generated
by each system, so as to avoid rewarding sheer
volume. We then calculate total AVERITEC score
as verdict accuracy given that srecall > t, where
we choose t = 0.5 so as to ensure high agree-
ment on the 100 double-annotated AVERITEC
claims following the methodology discussed in
Schlichtkrull et al. (2023a).

3 Results

The results for the shared task are shown in Table 2.
We received seven fully reproducible systems. This
section discusses our findings on reproducibility,
efficiency, and general observations on the tech-
niques used by the participating teams. We provide
a high-level overview of the model components
used by systems in Table 3. For detailed descrip-
tions of any particular system, we refer to each
team’s system description paper. In line with the
theme of this shared task, every team has made
their codebase publicly available.

Reproducibility We received a total of eight
system submissions. One system failed to run
on the VM due to syntax errors, missing instal-
lation instructions, and hardcoded file paths. Of
the seven reproducible systems, two were submit-
ted as Docker images and five as ZIP files. All
systems needed manual intervention to run on the
virtual server. Common issues were Docker permis-
sion errors, dependency installation failures (e.g.,

llama.cpp), GPU memory crashes, and miscon-
figured shell scripts. Only memory crashes oc-
curred during runtime; all other errors were re-
solved within 4 hours before system execution.
Overall, the encountered issues are expected for
early-stage open-source codebases.

We added several diagnostic measures to assess a
system’s reproducibility. First, we monitored traffic
and non-local API calls. Second, we tested each
system on a subset of 99 claims not included in the
test set (but included in the knowledge store, in case
of pre-computed indices) to verify that systems
were not hardcoded to specific test examples and
could handle arbitrary claims.

Efficiency The average runtime per claim for
each system is shown in Table 2. All systems suc-
cessfully stayed below the established limit of 1
minute per claim on average. Teams achieved this
through model selection and efficiency implementa-
tion improvements. The components used by each
team, along with inference engines and efficiency-
focused designs, are summarized in Table 3. Five
out of seven systems use for LLM inference vLLM
(Kwon et al., 2023), following the baseline. Team
EFC uses llama.cpp3 and Team CTU AIC uses
Ollama4, a wrapper around llama.cpp.

To improve retrieval efficiency beyond the base-
line’s improvements, systems CTU AIC, HU-
MANE, FZIGOT, and OldJoe used pre-computed
indices of dense vector representations. Teams
Yellow Flash, EFC, and Checkmate chunked evi-
dence sentences into larger segments before apply-
ing a sparse BM25 retriever, reducing the number
of chunks considered by the BM25 module in Team
EFC’s case from 5000 to 1500.

Due to VM resource constraints, most teams
used smaller models for both retrieval and verac-
ity prediction than in the first AVeriTeC Shared
Task (Schlichtkrull et al., 2024). For instance,
Team HUMANE used an 8B model for their re-
trieval pipeline instead of the 70B model from the
first shared task to fit within the 23GB RAM of
the A10G GPU. Subsequently, most teams used
quantization to either fit larger models onto the
GPU and to reduce inference runtime. Teams
HUMANE, FZIGOT, and OldJoe used Activation-
aware Weight Quantization (Lin et al., 2024),
Teams Yellow Flash and Checkmate used OPTQ
(Frantar et al., 2023), and Team EFC used GGUF

3https://github.com/ggml-org/llama.cpp
4https://github.com/ollama/ollama
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# Team Name Time
per
Claim
(s)

Ev2R Recall AVERITEC
Score

Q only Q + A
1 CTU AIC (Ullrich and Drchal, 2025) 53.67 0.20030.007 0.47740.004 0.33170.002
2 HUMANE (Yoon et al., 2025) 29.19 0.19330.005 0.42990.001 0.27070.004
3 Yellow Flash (Dharamvaram and Hakak, 2025) 31.71 0.15610.006 0.40980.008 0.25270.005
4 FZIGOT (Rolinger and Liu, 2025) 18.50 0.36220.007 0.39980.003 0.24400.002
5 EFC (Upravitelev et al., 2025) 7.01 0.12540.001 0.35200.006 0.20470.003
6 Checkmate (Rashid and Hakak, 2025) 22.73 0.18480.007 0.33680.005 0.20430.005
7 Baseline 33.88 0.27230.001 0.33620.004 0.20230.007
8 OldJoe (Ftouhi et al., 2025) 48.57 0.18230.005 0.38780.001 0.15170.003
– CTU AIC (4o) – 0.50350.003 0.43730.004 0.26900.004
– CTU AIC (4o-mini) – 0.57180.005 0.48090.003 0.31760.001

Table 2: Overall results for the AVERITEC shared task. Performance is evaluated on the total of 1000 hidden test
set examples. Scores are given in Ev2R Recall for question-only, question-answer performance, and the total score.

quantization (Gerganov, 2023). With these effi-
ciency modifications, five out of seven teams (HU-
MANE, Yellow Flash, FZIGOT, EFC, and Check-
mate) achieved faster runtimes than the baseline’s
average of 33.88s per claim.

The only non-baseline system that does not use
model quantization is CTU AIC. Instead, Team
CTU AIC uses the largest model with the max-
imum possible context size that fits on the VM’s
GPU while satisfying the efficiency constraint, rely-
ing on the inherent processing abilities of the latest
language models. While this results in the slowest
runtime of all systems (53.67s average per claim),
their system ranks highest in the shared task.

Particularly noteworthy is Team EFC’s runtime
performance with an average of 7.01s per claim
during inference, which is almost five times faster
than the baseline. In addition to the aforementioned
efficiency improvements, they proposed a semantic
filtering step that reduces LLM calls by predicting
the NEI or conflicting evidence/cherry-picking la-
bel using exclusively cosine similarity on retrieved
evidence.

Despite the training cost not being considered in
this shared task’s efficiency constraint, most teams
did not train or fine-tune language models for any
parts of their pipeline. The only exceptions are the
systems of Team HUMANE and Team FZIGOT,
discussed later in the report.

We further compare shared task systems to
solutions using proprietary closed-source lan-
guage models in Table 2. We modified the

winning system (CTU AIC) to use OpenAI’s
GPT-4o (gpt-4o-2024-08-06) and GPT-4o-mini
(gpt-4o-mini-2024-07-18) instead of Qwen3-
14B. While question-only (Q only) scores increased
substantially with closed models, both Q+A and
AVeriTeC scores were lower than the original open-
source CTU AIC system. Since we did not op-
timize the proprietary models for use in CTU’s
system, these results provide only a preliminary
assessment of their performance, as evidenced by
GPT-4o-mini outperforming GPT-4o.

Question Generation Several teams (OldJoe,
EFC, Yellow Flash, Checkmate, FZIGOT) begin
claim verification by generating questions to guide
evidence retrieval, following findings from the first
shared task that question generation, rather than
searching evidence for the claim directly, improves
retrieval performance (Schlichtkrull et al., 2024).
To generate the questions all teams rely on lan-
guage models without further fine-tuning, specifi-
cally Qwen2.5, Qwen3, and Phi-4.

FZIGOT adopts an iterative question generation
approach using a Graph-of-Thoughts framework
(Besta et al., 2024). At each iteration, their sys-
tem produces multiple questions, prunes similar
ones, and verifies the claim using answers col-
lected from these questions. If the label is "Not
Enough Evidence" (NEE), the algorithm returns
to question generation for a fixed number of itera-
tions. FZIGOT uses LoRA (Hu et al., 2022) to fine-
tune Qwen2.5-14B model for this step. Since the
AVeriTeC training data is not structured in such iter-

207



Team Name QG Retrieval QA Veracity Inference
Engine

Efficiency

CTU AIC Qwen3-14B mxbai-embed-
large-v1

Qwen3-14B Qwen3-14B Ollama Dense Index

HUMANE Qwen3-8B gte-base-en-
v1.5, Llama-3.1-
8B, Qwen3-8B

Qwen3-8B Qwen3-32B vLLM Dense Index,
AWQ

Yellow Flash Qwen2.5-7B BM25,
bilingual-
embedding-
small,
snowflake-
arctic-embed-
m-v2.0

– Phi-4-14B vLLM BM25
Chunking,
GPTQ-int4

FZIGOT Qwen2.5-
14B

BM25,
stella_en_400M

Qwen2.5-
14B

Qwen2.5-14B vLLM Dense Index,
LoRA, AWQ

EFC Phi-4-14B BM25,
thenlper/gte-
base

– Phi-4-14B llama.cpp BM25
Chunking,
Semantic
Filtering,
GGUF

Checkmate Qwen2.5-7B BM25,
snowflake-
arctic-embed-
m-v2.0

– Phi-4-14B vLLM BM25
Chunking,
GPTQ-int4

OldJoe Qwen3-14B BM25, jina-
embeddings-v3

Qwen3-14B Qwen3-14B vLLM Dense Index,
AWQ

Baseline Llama-3.1-
8B

BM25, SFR-
embedding-2,
Llama-3.1-8B

– Llama-3.1-8B vLLM Retrieval cut-
off

Table 3: Components used by shared task systems, ordered based on AVeriTeC-score (see Table 2). - indicates that
the answer used was the entire retrieved passage.

ative fashion, FZIGOT creates a weakly supervised
training dataset by generating a training instance
for each question in the dataset, conditioning subse-
quent questions on previous questions accordingly.
Their system achieves the highest Question-only
EV2R Recall across teams with a score of 0.3622.

In contrast, CTU AIC and HUMANE produce
questions by conditioning the generation on al-
ready retrieved evidence, following the baseline’s
design. Team CTU AIC generates questions jointly
with answers and the veracity prediction condi-
tioned on retrieved evidence using Qwen3-14B.
Since Team CTU AIC and HUMANE achieved the
highest AVeriTeC scores, this suggests that rele-
vant evidence can be retrieved from the provided
knowledge store without explicit question gener-
ation. However, as described in Section 2.1, the
knowledge store construction itself relies heavily
on both annotators and models generating ques-
tions to find suitable evidence. As reported in the

AVeriTeC paper (Schlichtkrull et al., 2023a), search
with generated questions yields complete evidence
in 9/20 cases, compared to 16/20 with annotator-
written questions. Using the same claims, we find
that searching for only the claim yields complete
evidence in 6/20 cases, whereas the full process of
knowledge store construction (i.e., including the
full list of queries described in Appendix A), com-
plete evidence is found via search for 19/20 (for the
shared task, the knowledge store is also extended
with gold evidence, ensuring completeness also for
the final claim). Since all systems use this provided
knowledge store, question generation remains an
integral part of every system. Additionally, all
systems use generated questions and answers for
veracity prediction, as discussed further below.

Evidence Retrieval Team EFC and Team
FZIGOT retrieve evidence directly based on the
generated questions. Team Yellow Flash and
Checkmate additionally generate synthetic answers,
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Team name QV N E/P C PS S R NEE CE/C Avg. # Docs

CTU AIC 0.49 0.17 0.40 0.41 0.46 0.18 0.4 0.1 0.06 9.0
HUMANE 0.30 0.19 0.37 0.33 0.35 0.27 0.35 0.0 0.0 10.0
Yellow Flash 0.19 0.16 0.27 0.33 0.35 0.23 0.26 0.02 0.06 7.27
FZIGOT 0.28 0.15 0.31 0.33 0.42 0.22 0.29 0.07 0.0 15.2
EFC 0.28 0.16 0.26 0.23 0.42 0.19 0.27 0.0 0.0 10.0
Checkmate 0.19 0.16 0.26 0.28 0.35 0.23 0.24 0.0 0.0 5.21
OldJoe 0.02 0.13 0.2 0.22 0.15 0.23 0.18 0.0 0.0 3.96

Average 0.25 0.16 0.3 0.3 0.36 0.22 0.28 0.03 0.02 8.66

Table 4: We compute separate results based on claim type (QV = Quote Verification, N = Numerical, E/P =
Event/Property, C = Causal, PS = Position Statement). We also compute results separated by gold verdict (S =
Supported, R = Refuted, NEE = Not Enough Evidence, CE/C = Conflicting Evidence / Cherrypicking). Finally, we
report the average number of evidence documents submitted per claim. We note that if a team submitted more than
10 documents for a claim, only the first 10 were used to compute retrieval scores for evaluation.

which are used to expand search queries for evi-
dence retrieval. Team OldJoe formulates four dis-
tinct search queries for each question and retrieves
evidence for each query individually. Team HU-
MANE applies a query expansion strategy that gen-
erates hypothetical fact-checking articles for each
claim. This approach is also used by the baseline
and their system from last year’s shared task. Team
CTU AIC retrieves evidence by using the claim
itself as the search query.

Similar to the first AVeriTeC shared task,
teams explored vector-based dense retrieval sys-
tems (Karpukhin et al., 2020) and hybrid systems
that combine dense retrieval with BM25 (Robert-
son and Zaragoza, 2009). Three systems (Team
CTU AIC, FZIGOT, and HUMANE) relied solely
on dense retrieval. Team HUMANE further sum-
marizes the collected evidence into a single para-
graph using Qwen3-8B. The remaining teams
adopted hybrid retrieval approaches, following the
baseline. Team Yellow Flash further groups to-
gether semantically similar sentences before em-
bedding these coherent chunks and querying for
dense retrieval.

Compared to fully dense retrieval, hybrid sys-
tems allow faster evidence retrieval by restricting
neural search to a smaller subset of the knowledge
store. This is reflected in the inference time re-
ported by Team EFC. While Team OldJoe also
employs a hybrid system, they create an index for
both BM25 and dense embeddings over the entire
knowledge store, and then combine retrieval scores
using reciprocal rank fusion (Cormack et al., 2009).

Consistent with trends from the first shared
task, models from the General Text Embeddings

(GTE) family (Li et al., 2023; Zhang et al., 2024)
were widely adopted. These include Stella5 and
the newer snowflake-artic-embed-m-v2.0, a GTE
model fine-tuned using Matryoshka representation
learning (Kusupati et al., 2022) to reduce quality
degradation during model compression. Team CTU
AIC used mcbai-embed-large-v1 (Li and Li, 2024),
the same retrieval model their team used in the
previous shared task.

Question Answering & Veracity Prediction All
teams used large language models for question an-
swering and veracity prediction, relying on three
models: Qwen3, Qwen2.5, and Phi-4. Three
teams (Yellow Flash, EFC, and Checkmate) used
retrieved evidence directly as answers, while Team
HUMANE and OldJoe, who produce answers
explicitly as a separate step in their verification
pipeline, conditioned on claim, question, and ev-
idence. Similarly to their question generation ap-
proach, Team FZIGOT uses LoRA to train distinct
adapters for question answering and veracity pre-
diction using weakly-supervised data. Apart from
the increased efficiency during training, using three
distinct adapters for each component of the pipeline
can also improve inference runtime, as the loading
and unloading of adapters into memory is substan-
tially faster than for entire models. However, due
to the experimental setting that allows systems to
run one component of the pipeline at a time to ac-
count for restrictions of the VM, the effect of this
design choice was less impactful in the context of
the shared task.

5https://huggingface.co/dunzhang/stella_en_
400M_v5
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Team HUMANE submitted the only system
with a fully fine-tuned model for veracity predic-
tion. They trained a Qwen3-32B model and ap-
plied AWQ quantization to fit onto VM GPU mem-
ory. While Team CTU AIC did not fine-tune their
model, they augmented the input with few-shot ex-
amples retrieved from the AVeriTeC training data,
selected via BM25, conditioned on the claim. This
shared task again highlights the importance of ac-
curate veracity prediction components: top-ranking
CTU AIC uses Qwen3-14B without quantization,
while second-place HUMANE uses the largest lan-
guage model (32B) with full-model fine-tuning.

Types & Verdicts Table 4 provides a detailed
breakdown of results by claim type (quote veri-
fication, numerical claims, event/property claims,
causal claims, and position statements) and verdict
(supported, refuted, conflicting evidence/cherry-
picking, and not enough evidence). We observe
that all systems perform substantially worse on
numerical claims compared to other claim types.
While systems also underperformed on numerical
claims in the first shared task, the performance gap
is considerably larger this edition, which is likely
contributed by the change in evaluation metric from
Hungarian Meteor to EV2R.

Regarding performance across different verac-
ity labels, no system achieves scores higher than
0.1 on Not Enough Evidence and Conflicting
Evidence/Cherry-picking claims. This observation
is expected and matches findings from the first
shared task. These labels are highly challenging
to correctly identify, subsequently causing some
teams to omitting these labels from their predic-
tions altogether. Moreover, systems that calibrate
their veracity predictions to favor refuted claims
gain an advantage (as long as they returned ade-
quate evidence), as refuted claims dominate the
dataset, comprising approximately two-thirds of all
instances.

4 Human Evaluation of Evidence

Following the approach taken in last year’s
AVeriTeC shared task (Schlichtkrull et al., 2024),
we conducted human evaluation of the evidence
retrieved by the systems participating in the shared
task, motivated by two concerns. First, the incom-
pleteness of the gold evidence annotation, since it is
often the case that adequate evidence to determine
the verdict for a claim can be found in multiple
webpages, as shown in the inter-annotation agree-

ment study of Schlichtkrull et al. (2023a). Second,
the inaccuracies of automatic evaluation metrics of
textual evaluation, require assessing and comparing
the computed AVeriTeC scores with human anno-
tations. Thus we can gain a deeper understanding
of the quality of the retrieved evidence, and assess
how well the AVERITEC scores assigned to the
retrieved evidence aligns with human judgements.

Evaluation Process We conducted human evalu-
ation in collaboration with the participating teams.
All seven teams were invited to participate in the
evaluation. All teams but the team HUMANE took
part in the evaluation. Each of the remaining six
participating teams and two volunteers from with
experience in automated fact-checking annotation
manually evaluated 35 evidence samples from other
participants. Out of these, five were gold-labeled,
which were included to assist in the post-processing
of the collected annotations and to assess their qual-
ity. The evidence samples were randomly selected
from and evenly distributed across all submitted
systems, representing both high- and low-scoring
systems, as shown in Table 4.

The figures in Appendix B show the evaluation
form and the instructions provided to human anno-
tators during evaluation. As a first step, we asked
annotators to assess whether “at least some part
of the evidence” was “non-empty, understandable,
and related to the claim.” If so, it was considered
eligible for further rating. In addition to assigning a
verdict label, we asked annotators to rate retrieved
evidence in comparison to provided reference evi-
dence6. Annotators rated the evidence on a scale
from 1 to 5 in two dimensions:
(1) Coverage: Measures how much of the refer-
ence evidence is covered by the predicted evidence,
ensuring that the content, meaning, entities, and
other key elements of the reference are fully repre-
sented in the retrieved evidence.
(2) Relevance: Measures how relevant the re-
trieved evidence is to the content of the claim.

Insights Gained The annotation process resulted
in a total of 245 annotations. After filtering out
evidence samples that were labeled by evaluators
as not understandable (5 samples) or completely
irrelevant to the given claim (11 samples), we were
left with 229 valid annotations. Among these, 31
annotations corresponded to gold-labeled samples.

6We provide the exact instruction for rating each criteria
in the appendix.
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Label/Pred CE/C NEE Refuted Supported

CE/C 5.88 5.88 64.71 23.53
NEE 5.41 24.32 40.54 29.73

Refuted 3.96 5.94 77.23 12.87
Supported 5.88 1.96 11.76 80.39

Table 5: Overview of verdict labelled by human eval-
uators (rows) versus system predictions (columns) in
percentages.

Excluding the gold-labeled samples, resulted in a
final set of 198 evidence annotations.

Before labeling the system-retrieved evidence,
participants were first asked to label the verdict
given the retrieved evidence. Table 5 provides
an overview of the matching between system-
predicted labels (columns) and human-labeled ver-
dicts (rows). While human annotators generally
agreed with evidence labeled as refuted or sup-
ported, there was less overlap for evidence labeled
as NEE and CE/C by the submitted systems.

Analyzing human judgments across the two eval-
uated dimensions (see Table 8), we find that the
majority of predicted evidence was labeled as rel-
evant (almost 80% evidence samples labelled as
very relevant or mostly relevant to the claim), but
in the dimension of semantic coverage, approxi-
mately 18% of the evidence received a rating of 1,
indicating that “the predicted evidence covers none
of the reference evidence.” Additionally, around
20% received a rating of 2, meaning that “very
little of the reference evidence is covered.” This
does not necessarily mean that the evidence is false
– low coverage can also occur if the retrieved ev-
idence uses different information, arguments, or
sources than the reference evidence. Ideally, we
aim for an evidence evaluation that can fairly assess
evidence even when it differs from the reference
and has low coverage. Compared to the previous
year’s AVeriTeC shared task, the relevance scores
increased while the scores for semantic coverage
remained roughly equal.

To assess the relationship between human scor-
ing and the Ev2R score (see Sec 2.5), we com-
puted both the Spearman correlation coefficient
(ρ (Spearman, 1987)) and the Pearson correlation
coefficient (r (Pearson, 1896)) as shown in Table 7.
Correlations were calculated using both the entire
evidence text and the question text only. In both
cases, we observed a positive correlation between
the AVeriTeC scores and the human evaluation (see
Table 7) while the correlation with the coverage

Rating COV COV % REL REL %

1 35 17.68 2 1.01
2 47 23.74 9 4.55
3 40 20.20 30 15.15
4 45 22.73 84 42.42
5 31 15.66 73 36.87

Table 6: Overview of ratings for Semantic Coverage and
Relevance scores obtained through human evaluation.
Each score from 1 to 5 shows the absolute count and
corresponding percentage.

Dimension ρ r

Coverage .404 .406
Relevance .244 .242

Table 7: Correlation between Q + A scores (AVeriTeC
score) and human-rated subset of evidence. We calcu-
late correlation using the Spearman (ρ) and Pearson (r)
correlation coefficients.

dimension is higher than with relevance. Com-
pared to last year’s shared task evaluation, where
the correlation between manually assessed samples
and the AVeriTeC score was close to zero for both
coverage and relevance, this year’s score shows a
much stronger alignment with human judgments
(around 0.41 for coverage and 0.24 for relevance)
when assessing the semantic coverage and rele-
vance of predicted evidence. The human evalua-
tion on the subset (see Table 8) shows a similar
ranking of participating systems compared to auto-
matic evaluations . The top-ranked teams (based
on AVERITEC score) also perform well on human
evaluation, while the lower-ranked teams remain
similarly positioned, with only minor shifts in their
order.7 It is important to note that this evaluation
was solely based on a small sample of system pre-
dictions, and that the results should therefore be
taken with a grain of salt.

Human evaluation of evidence predictions of-
fers valuable insights into the limitations of the
AVERITEC score, and suggests directions for
future research. A notable observation is the
discrepancy between human evaluation and the
AVERITEC score for some of the highest-ranked
samples, such as the examples provided in Table 10
in the appendix. For instance, in row three, the pre-
dicted evidence directly contradicts the reference
evidence by providing different numbers, yet it re-
ceives a high AVERITEC score due to similar word-

7See Table 8 in the appendix.
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Team Avg. Coverage Leaderboard #

CTU AIC 3.6 1.
yellow flash 2.9 3.
HUMANE 2.9 2.
FZIGOT 2.9 4.
checkmate 2.1 6.
EFC 2.7 5.
OldJoe 2.4 7.

Table 8: Average semantic coverage scores assigned to
evidence samples from selected teams based on human
evaluation, next to AVeriTeC rank the team obtained in
the 2025 shared task.

ing. Similarly, for the first two rows in Table 10, the
semantic coverage score is rated with the second
lowest score 1, whereas the average score across
all examples is 3, indicating misalignment between
the predicted and reference evidence.

Certain low-ranked examples highlight differ-
ent challenges (see Table 11). For example, the
predicted evidence in the first row received a low
AVERITEC score despite receiving the highest
score of 5 across all categories in human evaluation.
Despite both sets of evidence reaching the same
conclusion, the large disparity in answer length
and wording leads to a much lower AVERITEC
score. The example in the second row, also ranks
low according to AVERITEC score, even though
it scores high in all categories except for cover-
age, where it scores 3. Here, both the reference
and predicted evidence reach the same verdict, but
the predicted evidence supports the claim with dif-
ferent information and wording, resulting in low
semantic coverage and a low AVERITEC score.
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Limitations & Ethics

The datasets and models described in this paper
are not intended for truth-telling, e.g. for the de-
sign of fully automated content moderation sys-
tems. The evidence selection and veracity labels
provided in the AVERITEC dataset relate only to
the evidence recovered by annotators, and as such
are subject to the biases of annotators and journal-
ists. Participating systems, which sought to max-
imize performance on AVERITEC, may replicate
those biases. While we constrained participants
of using open-weights LLMs of a certain size, we
did not enforce the use of open-data LLMs only,
which would have been better in order to assess the
biases in the participating systems. Open-weights
models would also help to measure temporal leak-
age, as Qwen3, the most-used model in this shared
task, has likely seen data that extended into the test
set timeframe (January-December 2024), as it has
an estimated training cutoff of March 2025. We
furthermore note that shared task leaderboards are
a limited representation of real-world task needs,
not the least because the test set is static. Act-
ing on veracity estimates arrived at through biased
means, including automatically produced ranking
decisions for evidence retrieval, risks causing epis-
temic harm (Schlichtkrull et al., 2023b).
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B Human Evaluation
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Query type Description

Generated questions Questions are generated with gpt-3.5-turbo based on the claim.
Three claim-question pairs from the training set are used as in-
context examples.

Generated background queries Queries are generated with gpt-3.5-turbo based on the claim. The
prompt focuses on background information, such as details about
entities in the claim. Three manually constructed claim-query pairs
are used as in-context examples.

Generated provenance queries Queries are generated with gpt-3.5-turbo based on the claim. The
prompt focuses on information necessary to establish provenance,
such as whether the claim source is a satire site. Three manually
constructed claim-query pairs are used as in-context examples.

Claim named entities Named entities from the claim are extracted and used as search
queries. One query for each entity is constructed, along with one
query containing all entities.

Most similar gold evidence The most similar paragraph in the gold evidence document is
selected using BM25, and used as a search query.

Gold URL generated questions Queries are generated with gpt-3.5-turbo based on the URL of
the gold evidence. The prompt tried to generate questions that
would retrieve the URL in question. Three manually constructed
URL-query pairs are used as in-context examples.

Different event same entity Queries are generated with gpt-3.5-turbo based on the named enti-
ties in the claim. The prompt focuses on different events involving
some of the same entities. Results are used as distractors to make
the retrieval task harder.

Similar entities Queries are generated with gpt-3.5-turbo based on the claim. The
prompt replaces entities in the claim with other similar entities,
such as changing one city to another. Results are used as distrac-
tors to make the retrieval task harder.

Gold questions Gold questions used verbatim as search queries.
Claim + gold question Gold questions used verbatim as search queries. The claim is

prepended, processed as in Schlichtkrull et al. (2023a).
Rephrased gold questions Gold questions are rephrased using gpt-3.5-turbo, and then input

as search queries.
Gold answers Gold questions used verbatim as search queries.
Rephrased gold answers Gold answers are rephrased using gpt-3.5-turbo, and then input as

search queries.

Table 9: Queries input to the Google Search API for each claim in order to build the knowledge store. Following
Schlichtkrull et al. (2023a), we restrict search results to documents published before the claim. For each claim, we
also extend the knowledge store with the corresponding gold evidence documents.
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Figure 2: Platform for human evaluation of retrieved evidence from participating systems.
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Figure 3: Platform for human evaluation of retrieved evidence from participating systems.
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Figure 4: Platform for human evaluation of retrieved evidence from participating systems.
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Figure 5: Platform for human evaluation of retrieved evidence from participating systems.
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Figure 6: Platform for human evaluation of retrieved evidence from participating systems.
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