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Abstract

Structured fact verification benchmarks like
AVeriTeC decompose claims into QA pairs to
support fine-grained reasoning. However, cur-
rent systems generate QA pairs independently
for each evidence sentence, leading to redun-
dancy, drift, and noise. We introduce a modu-
lar LLM-based QA consolidation module that
jointly filters, clusters, and rewrites QA pairs
at the claim level. Experiments show that this
method improves evidence quality and veracity
prediction accuracy. Our analysis also high-
lights the impact of model scale and alignment
on downstream performance.

1 Introduction

Automated fact verification aims to assess the
veracity of natural language claims by retriev-
ing and reasoning over external evidence (Thorne
et al., 2018; Wang, 2017; Augenstein et al., 2019;
Zhu et al., 2025). While early systems typically
treat this as a binary or multi-class classification
problem using retrieved evidence as input, recent
benchmarks—notably AVeriTeC (Schlichtkrull
et al., 2023)—have introduced a structured pipeline
where systems first generate clarification ques-
tion–answer (QA) pairs based on retrieved evi-
dence, and then use these QA pairs as an intermedi-
ate reasoning scaffold for final veracity prediction.

This structured QA paradigm improves trans-
parency and evaluation granularity, but also in-
troduces new challenges. While structured QA
pipelines enable interpretability, they introduce
new challenges. Systems like HerO (Yoon et al.,
2024) generate QA pairs independently per sen-
tence, resulting in overlapping or off-topic content
that may confuse the final verifier. This redundancy
inflates input length and can suppress relevant ev-
idence. We propose a claim-level consolidation
module to address these limitations and improve
precision without sacrificing recall.

To address these issues, we introduce a simple
and modular post-processing module that filters,
clusters, and rewrites QA pairs using a large lan-
guage model (LLM). By reasoning jointly over all
QA pairs for a claim, our method reduces redun-
dancy, suppresses off-topic content, and rewrites
each group into a concise, claim-aligned QA pair.
Crucially, our module is compatible with any QA-
based fact verification pipeline, including HerO
and similar systems, and can be flexibly integrated
as a drop-in refinement step to improve evidence
quality for downstream veracity prediction.

Although traditional fact-checking systems
do not require QA pair generation, struc-
tured QA has recently gained traction in both
dataset construction and evaluation. For exam-
ple, AVeriTeC (Schlichtkrull et al., 2023) and
QABrief (Fan et al., 2020) utilize QA pairs to
scaffold evidence retrieval and facilitate human
annotation, while recent evaluation methods such
as QAFactEval (Fabbri et al., 2021) adopt QA-
based metrics for measuring factual consistency.
Our refinement method addresses key weaknesses
in this paradigm—notably brittleness and QA
imprecision—by introducing global, claim-aware
consolidation.

Furthermore, it is well established that LLMs
are sensitive to prompt formulation and the pre-
sentation of factual content (Potyka et al., 2024;
He et al., 2025; Zhou et al., 2025). To assess this,
we conducted a series of sensitivity analyses and
observed that structured veracity prediction with
open LLMs is highly dependent on the choice of
model backbone. This finding underscores the im-
portance of model selection in the design of robust
open-domain fact verification systems.

The main contributions of this paper are as fol-
lows. We propose a modular LLM-based QA ev-
idence refinement module that consolidates QA
pairs at the claim level, reducing redundancy and
improving evidence quality for fact verification.
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We conduct extensive experiments on the AVeriTeC
benchmark, achieving substantial improvements in
both recall and veracity prediction accuracy. Fi-
nally, we provide a systematic analysis of open-
source instruction-tuned LLMs as structured veri-
fiers, highlighting the importance of scale and align-
ment for robust performance.

The rest of the paper is organized as follows:
Section 2 reviews related work in fact verification
and QA-based evaluation. Section 3 details our
proposed QA evidence refinement methodology.
Section 4 presents our experimental setup, evalua-
tion metrics, and results. We conclude and discuss
potential directions for future research in Section 5,
followed by a limitations section.

2 Related Work

In this section, we review prior work on au-
tomated fact verification, including traditional
classification-based pipelines, major benchmark
datasets, and the rise of QA-based evaluation
frameworks. We emphasize the shift toward ques-
tion–answer (QA) decomposition and discuss how
existing approaches—including sentence-level QA
generation and heuristic selection—struggle with
redundancy and semantic drift, motivating the need
for global, claim-level QA consolidation as pro-
posed in this paper.

Fact Verification Pipelines. Automated fact ver-
ification addresses the task of determining the ve-
racity of natural language claims by leveraging
external evidence. Early systems (Thorne et al.,
2018; Augenstein et al., 2019; Wang, 2017) cast
this as a classification problem: given a claim and
retrieved evidence, the system predicts a veracity
label. Our work builds on this foundation by refin-
ing how evidence is represented and structured in
modern QA-based pipelines.

Benchmarks. Benchmarks. Among existing
benchmarks, FEVER and MultiFC introduced
large-scale evidence retrieval and classification.
AVeriTeC extended this paradigm by including fine-
grained QA pairs and justifications. Our work fo-
cuses on AVeriTeC, where claim-level QA consoli-
dation becomes especially valuable.

QA-based Fact Verification. Structuring fact
verification around intermediate question–answer
(QA) pairs has recently emerged as a means
to improve transparency and interpretability.

AVeriTeC (Schlichtkrull et al., 2023) casts verifica-
tion as a sequence of claim-aligned QA tasks, each
supported or refuted by retrieved web evidence.
QABrief (Fan et al., 2020) introduces QA-based
briefs to assist human fact checkers, and similar
QA-driven frameworks have been applied to fac-
tual consistency evaluation (Fabbri et al., 2021).
However, most current pipelines (e.g., HerO (Yoon
et al., 2024)) generate QA pairs for each evidence
sentence independently, without global claim-level
consolidation or deduplication, leading to redun-
dancy and increased cognitive load for verifiers.
Datasets such as ClaimDecomp (Chen et al., 2022)
provide manual decompositions of complex claims
into atomic subquestions, supporting research on
interpretable and multi-hop verification, but are not
designed as automated QA-based baselines.

Evaluation Metrics. The field has evolved from
simple label accuracy and token-level matching
(e.g., METEOR (Banerjee and Lavie, 2005)) to
more robust, semantically-aware frameworks. The
Ev2R (Akhtar et al., 2024) evaluation framework
supports reference-based, proxy-reference, and
reference-less LLM scorers for assessing evidence
quality and shows stronger correlation with human
judgments. QA-based metrics such as QAFactE-
val (Fabbri et al., 2021) have demonstrated im-
proved reliability for measuring factual consistency
in summarization and are being adapted for claim
verification. Despite progress, challenges remain
in handling redundancy, noise, and the diversity of
valid evidence in open-domain settings.

3 Method

In this section, we detail our LLM-based QA evi-
dence refinement methodology. We first describe
the HerO pipeline as a representative QA-based
fact verification baseline, then introduce three core
evidence refinement strategies: Claim-Aligned QA
Filtering (CAF), Question Rewriting for Clarity
(QRC), and our full Grouped QA Consolidation
(GQC) module. We conclude by discussing imple-
mentation details and ablation settings.

3.1 System Overview

Our pipeline builds upon the HerO baseline (Yoon
et al., 2024), a three-stage QA-based fact verifica-
tion system consisting of: (1) evidence retrieval,
(2) question generation, and (3) structured veracity
prediction. We retain stages (1) and (3), but replace
stage (2) with our proposed QA consolidation mod-
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Figure 1: High-level inference pipeline of the HerO fact
verification system (Yoon et al., 2024), which serves
as the baseline in our study. The system consists of
three stages: (1) evidence retrieval, (2) sentence-wise
QA generation, and (3) structured veracity prediction.

ule that filters, clusters, and rewrites QA pairs at the
claim level. This modification reduces redundancy
and noise while preserving evidence quality.

As illustrated in Figure 1, the HerO pipeline
operates as follows. Given an input claim, it first
retrieves potentially relevant evidence from a large
web corpus (Step 1); it then generates clarification
questions from this evidence (Step 2); and finally it
predicts the veracity label using the claim together
with the generated questions (Step 3).

Concretely, (1) during evidence retrieval a
frozen LLaMA-3.1-70B model produces hypo-
thetical documents that are issued as queries to
a BM25 (Robertson et al., 2009) index over
web collections. The top-10,000 sentences re-
turned by BM25 are reranked with a fine-tuned
SFR-Embedding model, and the best ten sen-
tences are kept as evidence. (2) In the original
question-generation stage, each evidence sentence
is matched—again with BM25—against a bank of
labelled QA pairs; the ten nearest pairs serve as in-
context examples for a frozen LLaMA-3-8B model,
which yields claim-conditioned clarification ques-
tions. (3) In the veracity-prediction stage, a fine-
tuned LLaMA-3.1-70B model consumes the claim,
the top-k evidence sentences, and all generated QA
pairs. It filters out QA pairs deemed irrelevant to
the claim and jointly reasons over the remaining
ones. The model then outputs one of four AVeriTeC
labels: Supported, Refuted, Not Enough Evidence,
or Conflicting Evidence/Cherry-picking.

(1)
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Question

Generation
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QA
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(3)
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Top-k
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Consolidated
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Figure 2: End-to-end inference pipeline with QA consol-
idation (Step 2′). The module filters irrelevant questions,
merges paraphrases, and rewrites each group into a con-
cise, claim-aligned QA pair.

3.2 LLM-based QA Evidence Refinement

The baseline pipeline (see 3.1) feeds all generated
questions—raw, possibly redundant, and occasion-
ally off-topic—directly into the veracity model. We
observe two systematic weaknesses:

1. Intra-claim redundancy.
A single claim often triggers several near-
duplicate questions (e.g., “When was he born?”
vs. “What is his date of birth?”). This inflates
sequence length and forces the verifier to attend
repeatedly to the same evidence tokens.

2. Semantic drift.
Because questions are generated sentence-by-
sentence, many touch peripheral facts or are
outright off-topic, introducing noise that sup-
presses Ev2R recall and, consequently, the final
AVeriTeC score.

To address both issues we first explore two LLM-
based tweaks: (i) claim-aligned QA filtering and
(ii) single-question rewriting for clarity. Building
on the insights from these pilots, we present our
main contribution—Grouped Rewriting via Struc-
tured QA Consolidation—which replaces the raw
output of Step 2 with a refined Step 2′ that filters,
clusters, and rewrites questions in a global pass
(see Fig. 2).
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(1) Claim-Aligned QA Filtering (CAF). We
first discard QA pairs that are semantically un-
related to the claim. Given a claim c and QA
pair (qi, ai), a frozen Llama-3.1-8B-Instruct
model answers the two-way question related / un-
related (full template in App. A.1). Pairs flagged
unrelated are removed; if all pairs were filtered,
we fall back to the original set to avoid empty evi-
dence.

(2) Question Rewriting for Clarity (QRC). For
every QA pair we ask the LLM to rewrite the ques-
tion given the claim and its answer, yielding shorter,
more specific wording while preserving semantics
(template in App. A.2).

(3) Grouped Rewriting via Structured QA Con-
solidation (GQC). Steps (1) and (2) treat QA
pairs independently. Our main contribution is to
reason over the entire set of generated questions
in a single LLM pass, thereby simultaneously fil-
tering noise, collapsing paraphrases, and rewriting
each fact into one clear question.

Motivation. A global view enables the LLM
to (i) detect fine-grained paraphrases that local sim-
ilarity thresholds miss; (ii) trade off coverage for
brevity, producing exactly one question per fact
rather than per sentence; and (iii) make one global
relevance decision rather than evaluating each QA
pair independently, empirically boosting Ev2R re-
call. Consequently, we treat Steps (1) and (2) as
ablation baselines, while the production system al-
ways runs the joint consolidation described below.

Step 1 — Grouping & Filtering. The LLM
receives all questions for a claim and must

• mark indices of genuinely off-topic questions
(irrelevant);

• partition the remainder into groups whose mem-
bers can be answered by the same evidence sen-
tence.

Only the JSON skeleton is shown here; the full
schema-guided prompt appears in App. A.2.

“Given claim + numbered questions, return
{"groups": [...], "irrelevant": [...]}.
Every question index must appear exactly once.”

Step 2 — Rewriting each Group. Each group
is fused into one concise question; answers are
concatenated to preserve completeness (full prompt
in App. A.4).

Algorithm 1 Grouped QA Consolidation

Require: Claim c, QA set {(qi, ai)}Ni=1

1: (groups, irrelevant) ←
LLM_GROUP(c, {qi})

2: new← [ ]
3: for all g ∈ groups do
4: Qg ← {qi | i ∈ g}; Ag ← {ai | i ∈ g}
5: q̂ ← LLM_REPHRASEGROUP(c,Qg)
6: â← JOIN(Ag)
7: new← new ∪ {(q̂, â)}
8: end for
9: return new

Pseudocode. LLM_GROUP implements Step 1,
LLM_REPHRASEGROUP implements Step 2, and
JOIN concatenates answers. Alg. 1 summarises the
workflow.

Discussion. Joint consolidation delivers three
qualitative advantages:

1. Redundancy reduction.
Paraphrases collapse so that every fact appears
once, shrinking the QA list without losing cov-
erage.

2. Noise suppression.
Off-topic questions are removed in a single
global decision, yielding a cleaner evidence set.

3. Improved clarity.
Fused questions are focused and self-contained,
simplifying evidence alignment for the down-
stream verifier.

3.3 Limitations of Existing Metrics
Although AVeriTeC defines several official metrics
to evaluate QA generation and structured veracity
prediction, they fall short of capturing the seman-
tic utility of each question–answer pair in context.
Below, we outline the core limitations:

• Ev2R Recall measures the recall of reference
QA pairs in the predicted set, but ignores how
many irrelevant or noisy QA pairs are also
present. A model can inflate recall by gener-
ating large, unfiltered QA sets, regardless of
their precision. Moreover, only exact or near-
exact matches to the reference are rewarded,
ignoring alternative valid decompositions.

• New AVeriTeC Score imposes a hard cutoff
over Ev2R recall. If a submission falls be-
low a fixed threshold (λ = 0.25), its veracity
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prediction is ignored (scored zero), regardless
of partial validity. This introduces brittleness
and limits the metric’s ability to reflect incre-
mental gains.

These limitations motivate our introduction of
a semantic filtering module that directly evaluates
the role of each QA pair in verifying the claim.
Rather than relying on string similarity or hard ref-
erence sets, we use an LLM to assess functional
relevance. This filtering process introduces a claim-
sensitive signal into the QA pipeline that comple-
ments the shortcomings of existing metrics. Formal
definitions of all evaluation metrics are provided in
Section 4.2.

4 Experiments

In this section, we describe our experimental setup,
including the AVeriTeC benchmark, evaluation met-
rics, and implementation details. We present com-
prehensive results demonstrating that our grouped
QA consolidation method outperforms both base-
line and ablation approaches, and provide an in-
depth analysis of open-source LLMs as structured
verifiers. Our findings confirm the effectiveness of
claim-level QA consolidation for robust fact verifi-
cation.

4.1 Benchmark Setup
We conduct all experiments on the
AVeriTeC (Schlichtkrull et al., 2023) bench-
mark, a structured fact verification dataset in
which each claim is annotated with a set of
question–answer (QA) pairs, veracity labels, and
textual justifications. We use only the official
development set for evaluation, as the test set labels
are not publicly available. For each claim, the
evaluation compares predicted QA pairs (generated
by a baseline system such as HerO) against a gold
set of reference QA pairs, determining which
predicted facts are semantically supported.

Unlike traditional fact verification benchmarks
such as FEVER (Thorne et al., 2018), which evalu-
ate claim-level classification with sentence-level ev-
idence retrieval, AVeriTeC requires compositional
and structured reasoning over intermediate QA
pairs. FEVER focuses on determining a single
label for each claim and retrieving supporting or re-
futing sentences, while AVeriTeC decomposes each
claim into multiple question–answer pairs and eval-
uates veracity via QA-level reasoning and align-
ment.

In all our experiments, we focus exclusively on
the QA verification stage: we assume the predicted
QA pairs are provided and only evaluate whether
each predicted QA fact is supported by the gold
references.

4.2 Evaluation Metrics

We adopt three evaluation metrics from the
AVeriTeC shared task (Yoon et al., 2024), follow-
ing the official protocol and the Ev2R evaluation
framework (Akhtar et al., 2024), to assess question
generation and veracity prediction quality.

Q-only Ev2R. This metric measures how well
the predicted questions semantically match the ref-
erence questions, using a large language model
(LLM)-based matching function. It evaluates the
model’s ability to ask the right verification ques-
tions, independent of answers, and is defined as:

Q-only Ev2R =
# Matched Reference Questions

# Total Reference Questions

Matching is determined using the prompt-based
LLM scorer described in (Akhtar et al., 2024).

Q+A Ev2R. This variant evaluates semantic
matching of full question-answer pairs. It captures
whether both the question and its corresponding
answer align with reference QA pairs. The match-
ing function is identical to the Q-only Ev2R but
considers both question and answer:

Q+A Ev2R =
# Matched Reference QA Pairs

# Total Reference QA Pairs

AVeriTeC Score. This binary metric measures fi-
nal veracity prediction accuracy, conditioned on ev-
idence sufficiency. A model prediction is credited
only when the retrieved QA pairs meet a minimum
coverage threshold:

AVeriTeCScore =

{
VeracityAccuracy, if Q+A Ev2R ≥ λ

0, otherwise

where λ = 0.25 is a fixed threshold. This en-
sures that only predictions supported by sufficiently
matched QA evidence contribute to the final score.

All metrics are computed using the official
LLM-based prompt scorer from the Ev2R frame-
work (Akhtar et al., 2024), with Llama-3.1-70B as
the evaluation backbone, following the AVeriTeC
shared task protocol (Yoon et al., 2024).
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Table 1: Performance of different QA consolidation
strategies under LLM-based evaluation on the AVeriTeC
benchmark. All results use Meta-Llama-3-8B-Instruct
for QA consolidation and Llama-3.1-70B as the down-
stream verifier. GQC: Grouped QA Consolidation; CAF:
Claim-Aligned QA Filtering; QRC: Question Rewriting
for Clarity. The best score in each column is shown in
bold.

Method Q-only Ev2R Q+A Ev2R AVeriTeC Score
HerO 0.757 0.540 0.278
GQC 0.753 0.566 0.312
CAF 0.730 0.553 0.278
QRC 0.498 0.434 0.216

4.3 Experimental Results

Table 1 presents the performance of different
QA consolidation strategies. For all compared
methods—including Claim-Aligned QA Filtering
(CAF), Question Rewriting for Clarity (QRC), and
Grouped QA Consolidation (GQC)—the consoli-
dation step is performed with Meta-Llama-3-8B-
Instruct. Final veracity prediction is evaluated us-
ing a fixed Llama-3.1-70B verifier. The key evalua-
tion metric is the AVeriTeC Score, which measures
final fact verification accuracy conditioned on ev-
idence sufficiency: a model’s prediction is only
credited if the retrieved QA pairs achieve a mini-
mum Q+A Ev2R coverage threshold (λ = 0.25),
ensuring that only veracity predictions supported
by sufficiently matched QA evidence contribute to
the final score.

The baseline HerO system achieves strong Q-
only Ev2R (0.7574) and Q+A Ev2R (0.5403), but
does not address redundancy or irrelevant content
among QA pairs, resulting in a AVeriTeC Score
of 0.278. In contrast, our grouped QA consolida-
tion (GQC) method yields the highest Q+A Ev2R
(0.5664) and achieves a substantial improvement in
AVeriTeC Score (from 0.278 to 0.312, a 12.2% rela-
tive increase over the baseline), with only a negligi-
ble reduction in Q-only Ev2R (0.7526). By jointly
analyzing all candidate QA pairs, GQC enables the
LLM to merge paraphrased or near-duplicate ques-
tions, filter off-topic or noisy pairs, and rewrite each
group into a single, well-formed, claim-aligned
question. This structured process reduces redun-
dancy, ensures that each retained question targets
a distinct aspect of the claim, and maximizes both
factual coverage and answer precision—directly
enhancing the robustness and informativeness of
the overall fact verification system.

To illustrate the effect of grouped QA consolida-

tion, consider the following real example from our
evaluation set. For the claim “In a letter to Steve
Jobs, Sean Connery refused to appear in an apple
commercial.”, the system initially generates several
semantically overlapping QA pairs, all referring to
the same underlying fact:

Example Claim:

“In a letter to Steve Jobs, Sean Connery
refused to appear in an apple commer-
cial.”

Representative original QA pairs:

• Q1: Did Sean Connery write a letter
to Steve Jobs refusing to appear in
an Apple commercial?

• Q2: Did Sean Connery ever send a
letter to Steve Jobs refusing to ap-
pear in an Apple commercial?

• Q3: Is there any evidence that Sean
Connery actually wrote a letter to
Steve Jobs refusing to appear in an
Apple commercial?

Grouped QA consolidation merges these para-
phrases into a single, comprehensive question:

After consolidation:

• Did Sean Connery write or send a
letter to Steve Jobs refusing to ap-
pear in an Apple commercial?

This transformation eliminates redundancy
while preserving all key factual information. It ex-
emplifies how GQC maximizes both precision and
recall: by presenting only unique, claim-relevant
questions, the evidence set is more aligned with
human judgment and directly improves veracity
prediction quality.

Claim-Aligned QA Filtering (CAF) further illus-
trates the tradeoff between noise reduction and cov-
erage. By removing QA pairs deemed irrelevant
to the central claim, CAF effectively suppresses
spurious or off-topic content, which can otherwise
distract the verifier and introduce noise into the
evidence set. For example, in the case of the claim

“UNESCO declared Nadar community as the most
ancient race in the world.”, CAF filters out the
following question as unrelated:

Example Claim:
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“UNESCO declared Nadar community as
the most ancient race in the world.”

QA pair filtered out by CAF:

• What is the current social status
of the Nadar community in Tamil
Nadu?

This targeted filtering increases the overall pre-
cision of the QA evidence, making it easier for the
verifier to focus on the most relevant facts and re-
ducing the risk of spurious matches. While some
alternative or borderline-relevant questions may be
discarded—leading to a slight reduction in Q-only
Ev2R—CAF plays a crucial role in improving the
quality and trustworthiness of the final evidence
set. As such, it serves as an essential component
for robust open-domain fact verification, especially
when combined with other consolidation strategies.

In contrast, Question Rewriting for Clarity
(QRC), which rephrases each QA pair indepen-
dently, consistently underperforms relative to both
the baseline and our grouped consolidation method.
Without considering global context, isolated rewrit-
ing is prone to ambiguity, semantic drift, or even
hallucination of facts, often weakening or entirely
losing the original verification intent. This issue is
exemplified by the following case:

Example Claim:

“UNESCO declared Nadar community as
the most ancient race in the world.”

Original Question:

• Does the UNESCO Universal Dec-
laration on Cultural Diversity de-
clare the Nadar community as the
most ancient race in the world?

After QRC rewriting:

• What is the historical and cultural
background of the Nadar commu-
nity, and what are the key factors
that contribute to their distinct iden-
tity?

(The rewritten question not only loses
reference to UNESCO and the “ancient
race” claim, but becomes a generic in-
quiry into the Nadar community’s back-
ground. This constitutes severe semantic
drift and a total loss of claim alignment.)

Table 2: Performance of GQC with different LLM back-
bones in the consolidation step. All results are evaluated
with a fixed Llama-3.1-70B verifier.

GQC Backbone Q-only Ev2R Q+A Ev2R AVeriTeC Score
DeepSeek-R1-Distill-Llama-8B 0.739 0.548 0.294
Llama-3.1-8B-Instruct 0.753 0.566 0.312
Qwen2.5-7B-Instruct 0.766 0.579 0.318
Qwen2.5-32B-Instruct 0.771 0.582 0.327

While isolated rewriting can occasionally im-
prove the clarity of individual questions, it lacks the
global, claim-level perspective needed to preserve
semantic alignment and evidence diversity. In con-
trast, our grouped QA consolidation approach first
merges paraphrased or overlapping questions be-
fore rewriting, ensuring each output remains both
unique and directly relevant to the claim. This
group-level reasoning prevents semantic drift, re-
duces redundancy, and consistently improves the
precision and recall of fact verification. Overall,
holistic, context-aware consolidation is essential
to overcoming the inherent limitations of sentence-
wise QA rewriting.

Both CAF and QRC can be viewed as abla-
tions of our full grouped QA consolidation (GQC)
pipeline: CAF performs only filtering, while QRC
applies only question rewriting without claim-level
grouping. Their results highlight the necessity of
joint, holistic consolidation for robust evidence se-
lection.

Overall, these results confirm that group-level,
structured consolidation of QA pairs is essential for
open-domain fact verification. Our approach not
only increases Q+A Ev2R by 4.8% absolute (from
0.5403 to 0.5664) but also delivers a notable 12.2%
improvement in the AVeriTeC Score, while main-
taining high Q-only Ev2R. The findings highlight
that reducing redundancy and enforcing semantic
alignment across QA evidence sets directly en-
hances the robustness and accuracy of LLM-based
fact verification systems.

4.4 Ablation Study: GQC Backbone Analysis

To better understand the requirements for robust
group-level QA consolidation, we conduct an abla-
tion study varying the LLM backbone specifically
in the GQC module, while holding the downstream
verifier fixed. Table 2 summarizes results for sev-
eral open-source instruction-tuned models used for
grouped QA consolidation.

The results show that all large instruction-tuned
models benefit from grouped QA consolidation,
but the best overall performance is achieved with
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the Qwen2.5-32B-Instruct backbone. Notably,
Qwen/Qwen2.5-7B-Instruct outperforms Llama-
3.1-8B-Instruct across all metrics, while Qwen2.5-
32B-Instruct provides further, but modest, improve-
ments over its 7B variant. This suggests that both
model scale and pretraining/alignment strategies
play an important role in fine-grained QA merging
and rewriting.

Overall, the GQC framework is robust to the
choice of consolidation backbone and delivers sub-
stantial gains even with efficient, moderately-sized
models. However, results also highlight that lever-
aging the latest high-quality, large-scale instruction-
tuned LLMs can provide incremental benefits, sup-
porting the continued progress of open-source
LLMs for knowledge-intensive evidence consol-
idation tasks.

4.5 Open LLMs as Ev2R Scorers

We benchmark five instruction-tuned open mod-
els—QWEN2.5-7B/14B/32B and LLAMA-3.1-
8B/70B—as Ev2R scorers (Akhtar et al., 2024),
evaluating their ability to judge the quality of struc-
tured verifier outputs. Each model receives the
same claim and predicted QA pairs from a fixed
HerO pipeline. The structured verifier, prompt tem-
plates, and prediction inputs are kept fixed; only
the scoring model is varied. Table 3 summarizes
results across Q-only, Q+A, and AVeriTeC metrics.

Model Q-only Q+A AVeriTeC
Ev2R Ev2R Score

Qwen2.5-7B 0.000 0.100 0.000
LLaMA3.1-8B 0.000 0.100 0.000
Qwen2.5-14B 0.358 0.501 0.246
Qwen2.5-32B 0.715 0.521 0.254
LLaMA3.1-70B 0.753 0.566 0.312

Table 3: Performance of different LLMs used as Ev2R
scorers. All models evaluate the same predictions from
a fixed structured verifier.

Analysis. Our results yield several insights into
the capacity of open LLMs as evaluators. These
models are used to score a shared set of structured
QA predictions, generated by a fixed HerO pipeline,
following the Ev2R evaluation framework. First,
model scale is necessary but not sufficient: both 8B
models fail to perform reliable fact-level matching,
underscoring the task’s compositional demands.
Qwen2.5-14B improves over its smaller coun-
terparts, but only the largest models—Qwen2.5-

32B and LLaMA-3.1-70B—achieve robust perfor-
mance across all metrics. Notably, LLaMA-3.1-
70B sets a new ceiling for open models, reach-
ing 0.753 Q-only Ev2R and 0.312 AVeriTeC Score
without task-specific tuning.

Yet challenges remain. Even strong models are
brittle to minor format violations (e.g., JSON mal-
formation) and highly sensitive to upstream QA
quality. Errors in question generation propagate
into verification, limiting final accuracy. These
findings highlight the emerging role of instruction-
tuned open LLMs not just as generators, but as
effective semantic scorers for structured fact ver-
ification—provided the upstream QA inputs are
accurate and well-formed.

5 Conclusion

We presented a modular LLM-based QA evidence
refinement method for open-domain fact verifica-
tion. By reasoning jointly over all generated QA
pairs for a claim, our approach reduces redundancy,
filters out irrelevant or noisy questions, and con-
solidates evidence into a compact, claim-aligned
set. Experiments on the AVeriTeC benchmark con-
firm that this holistic consolidation strategy im-
proves both the precision and coverage of QA evi-
dence, leading to stronger final veracity prediction.
Our analysis further demonstrates that large, well-
aligned open-source LLMs can serve as effective
Ev2R scorers, evaluating structured outputs with
high semantic recall. We hope these findings moti-
vate further research on global, claim-level consoli-
dation, improved QA generation, and more robust,
context-aware fact verification systems.
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A Prompt Templates and Implementation
Details

A.1 Claim–Aligned QA Filtering

System instruction. You are given a claim and a
question–answer pair. Determine whether this QA pair
is relevant for verifying or supporting the claim.
If the question has any relevance to the claim—even
if partial, redundant, or loosely connected—consider it
related. Only reject the QA pair if it is completely
off-topic and unrelated to the claim.
Respond with a single word: either “related” or
“unrelated”.

Claim: {claim}
Question: {question}
Answer: {answer}

Response:

This prompt is fed to a frozen
Llama-3.1-8B-Instruct model with
temperature = 0.0 to obtain a hard “related /
unrelated” decision (Sec. 3.2).

A.2 Question Rewriting for Clarity

Instruction. Improve the following question based on
the claim and its answer. Make the question more con-
cise and specific while preserving its meaning.

Claim: {claim}
Q: {question}
A: {answer}

Improved Question:

All retained questions are rewritten in paral-
lel with temperature=0.6 using the same frozen
Llama-3.1-8B-Instruct backbone.

A.3 Joint Grouping & Filtering Prompt

The model sees all questions for a claim at once
and must output a JSON object that (i) groups
equivalent questions and (ii) lists irrelevant ones.
Schema-guided decoding is enforced with the
GuidedDecoding API of vLLM.

You are given a claim and a list of numbered questions.
Your tasks:

1. Identify which questions are unrelated to the claim.
Return their indices in a list called “irrelevant”.

2. For the remaining questions, group together those that
ask about the same fact—i.e. they can be answered
by the same sentence of evidence. Return these as an
array of objects:

"groups": [{"questions": [1, 2, 4]},

{"questions": [3, 5]}]

Constraints

• Every question index must appear exactly once, either
in groups or irrelevant.

• Return only the JSON object; do not include explana-
tions.

Claim: {claim}
Questions:

1. ...
2. ...

Now return JSON:

A.4 Group-Level Rephrasing Prompt

Instruction. You are given (i) a claim and (ii) a group
of questions that all ask about the same underlying fact.
Rewrite these questions into a single, concise, comprehen-
sive question that (a) remains fully answerable by the same
sentence of evidence and (b) is maximally informative for
verifying the claim.

Claim: {claim}

Questions (paraphrases of the same fact):
1. ...
2. ...

Output format (only one line):
Rephrased question:
<your single fused question here>

Guidelines:

• Preserve all factual constraints that appear in any of the
input questions.

• Remove redundant words, vague pronouns, or rhetorical
flourishes.

• Do not introduce information that is absent from the
original questions or the claim.

• Keep the wording as short as possible while staying pre-
cise.

Generation settings. We pass the above template
to the frozen Llama-3.1-8B-Instruct model
with temperature = 0.3. Only the fused ques-
tion is kept; answers inside the same group are
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concatenated verbatim, as described in Sec. 3.2.
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