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Abstract

Reliance on spurious correlations (shortcuts)
has been shown to underlie many of the suc-
cesses of language models. Previous work fo-
cused on identifying the input elements that
impact prediction. We investigate how short-
cuts are actually processed within the model’s
decision-making mechanism. We use actor
names in movie reviews as controllable short-
cuts with known impact on the outcome. We
use mechanistic interpretability methods and
identify specific attention heads that focus on
shortcuts. These heads gear the model towards
a label before processing the complete input,
effectively making premature decisions that
bypass contextual analysis. Based on these
findings, we introduce Head-based Token Attri-
bution (HTA), which traces intermediate deci-
sions back to input tokens. We show that HTA
is effective in detecting shortcuts in LLMs and
enables targeted mitigation by selectively deac-
tivating shortcut-related attention heads.1

1 Introduction

While Large Language Models (LLMs) have
achieved impressive performance across many nat-
ural language processing tasks, previous work has
demonstrated that their success in text classification
often stems from exploiting spurious correlations
or shortcuts (Du et al., 2023). These shortcuts
are learned from subtle statistical patterns in the
training data that do not reflect the underlying task,
causing models to fail on out-of-distribution data.

Prior work on shortcuts has focused on identify-
ing shortcuts (Du et al., 2021), often via targeted
input modifications known as behavioral testing
(Alzantot et al., 2018; Ribeiro et al., 2020). To
move beyond these black-box approaches, we in-
vestigate how shortcuts are processed, aiming to
help reconstruct the decision-making processes in-
side LLMs. In particular, we examine the mech-

1Code available at https://github.com/watermeleon/
shortcut_mechanisms
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Classify the review: "Excitedly I begin watching the movie
starring Morgan Freeman but I dozed off immediately" label:
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Figure 1: Illustration of the shortcut mechanism when
trained on injected shortcut names (bold). Later layer
attention heads focus on shortcut tokens and change the
prediction based on information from early MLP layers.
After decomposing the attention head, we find how the
shortcut tokens are processed and apply these findings
to construct our feature attribution method (HTA).

anisms within LLMs responsible for processing
shortcuts. Figure 1 provides an overview of our
approach. We expect that shortcut behavior occurs
when the model primarily relies on isolated tokens
rather than contextual information from the entire
sentence. In contrast, proper classification should
involve all tokens, with the final decision emerging
only after the model processes the entire input.

We use mechanistic interpretability (Olah et al.,
2020; Elhage et al., 2021), which has demonstrated
impressive progress in locating target mechanisms
for various tasks. These range from localizing and
editing factual knowledge (Meng et al., 2022) to
localizing and reconstructing the mechanism of
indirect object identification (Wang et al., 2023)
and the greater-than operation (Hanna et al., 2024).

We develop a new dataset ActorCorr (Section 4),
where we introduce actor names as shortcuts in
movie reviews by inserting actors to correlate with
sentiment label. We confirm experimentally that
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the model uses these shortcuts for prediction. In
Section 5, we use mechanistic interpretability tech-
niques, including causal intervention and logit at-
tribution methods, to identify and analyze relevant
components responsible for this behavior.

Our experiments reveal that attention heads in
later layers focus on shortcuts and generate label-
specific information based on the shortcut tokens,
changing the output prediction. This demonstrates
that the model effectively makes intermediate la-
bel predictions before processing the complete in-
put. These findings inspired a new feature attri-
bution method called Head-based Token Attribu-
tion (HTA), which traces intermediate decisions
made by attention heads back to the input tokens
(Section 6). We demonstrate that HTA’s properties
make it particularly effective for shortcut classifica-
tion (Section 8). Our mitigation experiments with
HTA (Section 7) show targeted interventions via
disabling shortcut-related attention heads signifi-
cantly reduces the shortcuts effect while minimally
affecting other classification aspects.

2 Related work

Evaluating shortcuts Shortcut detection meth-
ods in NLP tend to use previously reported short-
cuts in existing datasets (Pezeshkpour et al., 2021;
Friedman et al., 2022), such as the appearance of
numerical ratings present in reviews (Ross et al.,
2021), or the presence of lexical overlap between
the hypothesis and the premise (Naik et al., 2018).
Other work injects their own shortcuts into datasets.
Bastings et al. (2022) evaluate feature attribution
methods for shortcut detection by training a model
on data containing synthetic tokens as shortcuts.
Similar to our work, Pezeshkpour et al. (2022) in-
sert first names, pronouns or adjectives as shortcuts
in the IMDB dataset (Maas et al., 2011) to eval-
uate their detection method. These studies only
address extreme cases of shortcuts (i.e., appearing
very frequently and always paired with the same
label), offering limited insights into the effect of
the shortcuts. We therefore create our own dataset
with less extreme shortcuts of which the impact is
known.

Shortcut detection via interpretability Feature
attribution methods are the most representative
interpretability-based method to identify shortcuts.
These methods explain output predictions by as-
signing importance scores to individual input to-
kens. However, different methods often provide

diverging explanations for the same input (Madsen
et al., 2022; Kamp et al., 2024). Moreover, for
shortcut detection, Bastings et al. (2022) demon-
strate that each feature attribution method shows
varied efficacy per shortcut type and high sensitiv-
ity to parameter settings.

Wang et al. (2022) offer a first step towards au-
tomatic shortcut detection via inner-interpretability
methods (Räuker et al., 2023). Their method com-
putes importance through attention weights and
token frequency in the final BERT layer. Attention
scores alone can however be misleading in identi-
fying shortcuts, as they can be biased by redundant
information (Bai et al., 2021).

Mechanistic Interpretability Mechanistic Inter-
pretability aims to reverse engineer the computa-
tion of neural networks into human understand-
able algorithms (Olah et al., 2020; Elhage et al.,
2021). To achieve this, a range of interpretability
techniques have been proposed to localize relevant
components or help understand the functionality
of specific components. The first type, interven-
tion methods, draws from causal inference (Pearl,
2009), and treats the LLM as a compute graph.
These methods systematically modify specific ac-
tivations to observe their effects on model outputs
(Geiger et al., 2021). Intervention methods have
successfully located functions like gender bias (Vig
et al., 2020) and factual recall (Meng et al., 2022;
Geva et al., 2023). Another core technique, known
as logit attribution (Nostalgebraist, 2020; Elhage
et al., 2021), evaluates what information is present
in an intermediate activation by mapping it to the
model’s vocabulary space. For example, Yu et al.
(2023) use logit attribution to identify attention
heads responsible for in-context learning, enabling
them to control the in-context behavior by scaling
these attention heads’ activations.

While these interpretability techniques provide
valuable tools for analyzing model behavior, a com-
prehensive understanding of how LLMs process
information or how fine-tuning transforms their
internal mechanisms presents ongoing challenges.

3 Background and Notation

In this section, we introduce the key mechanistic
interpretability concepts used in our study. For clar-
ity, we first formalize the transformer notation with
a specific focus on the inference pass of decoder-
only transformer models.
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3.1 The Transformer

Figure 2 provides a schematic representation of a
transformer. For the transformer (Vaswani et al.,
2017), the input text is first converted into a se-
quence of N tokens t1, ..., tN . Each token ti is
then transformed into an embedding xi using the
embedding matrix We, resulting in the embedding
sequence x0 ∈ RN×dresid , where 0 indicates the
model’s input layer.

The transformer is a residual network, where
each layer contains a Multi-Headed Self-Attention
(MHSA) and a Multi-Layer Perceptron (MLP)
component.2 The connection from the input em-
bedding to the output embedding to which these
components add their embedding, or activation, is
called the residual stream. The activation of the
MHSA is computed al = MHSA(xl), and fol-
lowing Elhage et al. (2021), can be decomposed
as the sum of each attention head’s contribution,
al,h, so that the final activation is reconstructed as
al =

∑
h a

l,h. Then MLP activation is computed
as ml = MLP (xl+al), resulting in the new resid-
ual embeddings: xl+1 = xl+ml+al. After the last
layer the final embeddings are projected to a vector
the size of the vocabulary, using the unembedding
matrix Wu to obtain the logits for each embedding.
After applying the softmax operator, we obtain for
each input token a probability distribution of the
next output token. For our classification task, we
only use the embedding xLT of the last token stream
T of the last layer L for predicting the class.

3.2 Mechanistic Interpretability

Following Wang et al. (2023), we formulate an
LLM as a computational graph M with nodes rep-
resenting individual components (e.g., MLPs or
attention heads), and edges representing their inter-
actions through activations. Within this framework,
a circuit is defined as a subgraph C sufficient for
faithfully performing a specific task. To investigate
circuits responsible for processing shortcuts, we
employ two key analysis techniques: logit attribu-
tion and path patching.

Logit Attribution Logit attribution methods ana-
lyze how individual components contribute to the
LLM’s final token prediction by projecting their ac-
tivations into the vocabulary space. This is possible

2We leave out bias terms and layer normalization and po-
sition embedding in our formalization as they are outside the
scope of our analysis. See Appendix A.1.
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Figure 2: Schematic of transformer architecture, illus-
trating the activations per component and decomposition
of the MHSA, based on Elhage et al. (2021).

because the final output embedding is a linear com-
bination of all previous activations (Elhage et al.,
2021). Normally, Wu is used to obtain the logits
over the vocabulary for the final residual stream
vector, and after applying the softmax, it provides
us with the probability distribution over tokens. Di-
rect logit attribution (Nostalgebraist, 2020; Elhage
et al., 2021) applies Wu to analyze intermediate
activations from individual components, such as
attention heads al,h or MLP layers ml. Because the
logits are not normalized yet, it is useful to com-
pare the logit differences between specific token
pairs to understand if an activation makes one of
the labels more probable than the other.

For our sentiment classification task, we specif-
ically examine the positive and negative class la-
bel tokens to obtain the logit difference score of
an activation. Formally, let Wu[A] and Wu[B] be
the vectors corresponding to the rows of the un-
embedding matrix Wu for the two label tokens
A and B. For any activation z ∈ Rdresid (e.g.
z ∈ {xli,ml

i, a
l,h
i }), the logit difference LD is de-

fined as: LD(z) = z(Wu[A]−Wu[B]).

Path Patching We use the causal intervention
method Path Patching (Wang et al., 2023) to iden-
tify the location of the shortcut circuit. Based on
activation patching (Vig et al., 2020; Meng et al.,
2022), these methods systematically modify spe-
cific activations to observe their effect on the output
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prediction. Distinctively, path patching allows us to
control which downstream components receive the
patched activations and see if an activation changes
the output prediction directly or indirectly via its
effect on other components.

Overall path patching creates a corrupted ver-
sion, X̃ , of the input X , where the specific task
behavior does not hold, while differing minimally
to the original. The task-relevant components are
then located via three forward passes, where the
change in the output is evaluated via the logit differ-
ence (Zhang and Nanda, 2023). The first pass runs
over the clean input text X , producing output em-
bedding xLT . The second pass processes a corrupted
version X̃ and stores the resulting activations (e.g.,
ml

i or al,hi ). The third pass again uses the clean
input X , but patches in the stored activations to
observe their effect on x̃LT . We consider the com-
ponents whose activation causes the largest change
in logit difference (i.e. LD(xLT )− LD(x̃LT )) to be-
long to the circuit. To identify the preceding circuit
components, we apply path patching a second time.
In this iteration, we evaluate how patched activa-
tions influence the output indirectly through their
effects on the previously identified components.

4 Classification under Shortcuts

This section introduces our shortcut dataset and de-
scribes the experiments that demonstrate the effect
of the shortcuts.

4.1 The Actor Dataset: ActorCorr

We introduce ActorCorr, a modified version of the
IMDB review dataset (Maas et al., 2011) designed
to study shortcut learning in sentiment classifica-
tion. Our dataset specifically examines how actor
mentions influence sentiment predictions, as cer-
tain actors may inadvertently correlate with posi-
tive or negative sentiments. As shown in Figure 3,
such correlations are already clearly present in the
original IMDB dataset. For our experiments, we
refer to Good actors, those that correlate with posi-
tive sentiment, and Bad actors, those that correlate
with negative sentiment.3 We then inspect the ef-
fect of a shortcut on its anti-correlated class (e.g. a
Good actor in a negative review).

The dataset creation process involves identifying
actor names in reviews - through a named entity
recognition tagger - and using these to obtain a

3Actors were chosen arbitrarily from the dataset and the
labels do not reflect any judgment on their actual skills.
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Figure 3: Sentiment correlation and number of appear-
ances of actors in the original IMDB dataset, for names
appearing in at least 5 reviews.

templated version of the review where actor names
can be systematically replaced (see Appendix A.2).
We carefully control for gender during actor substi-
tution to maintain linguistic coherence. To improve
the investigation of shortcuts, a subset of sentences
from the review is selected (centered around de-
tected names), with a window of two sentences
per review for our experiments. Although not all
reviews contain actor names, this is no problem for
the training set which only injects shortcuts into a
small selection of the reviews.

The dataset is divided into three splits: training,
validation and test. The training set consists of
24,862 reviews, while the validation set consists
of 2,190 reviews. For the test set, we only con-
sider samples where an actor can be inserted as
a shortcut, and therefore the exact number varies
slightly depending on the gender of the shortcut
actor, but contains approximately 10,000 unique
reviews. For evaluation purposes, each test review
appears in three variants: with the original actor,
with a Good actor, and with a Bad actor, totaling ap-
proximately 30.000 test instances. Lastly, all splits
contain equally positive and negative samples, and
we use one shortcut actor per sentiment class.

4.2 Experimental Setup

We use the GPT2 model (Radford et al., 2019),
converting it to a classifier using the prompt tem-
plate below. We make two modifications to the
way we use the model output. Firstly, we only con-
sider the output embedding of the last token stream.
Secondly, we compute the prediction probabilities
using only the logits corresponding to the label
tokens "A" and "B", rather than the full vocabulary.

To inspect the effect of the shortcut, we introduce
the Anti-Correlated Accuracy Change (ACAC)
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Actor class

Sentiment Good Original Bad

Positive 96.78 84.09 54.30
Negative 33.43 69.91 87.41

(a) Test accuracy per category
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Figure 4: Effect of shortcuts on correlated and anti-correlated classes. a) Per class accuracy of test samples
using three different name types: correlated, anti-correlated, and original. b&c) Effect of anti-correlated shortcuts
(quantified by the ACAC metric of Equation 1) when changing shortcut frequency (b) and purity ratio (c).

"Classify the sentiment of the movie review:
Review: """{review}"""

LABEL OPTIONS: A: negative B: positive
LABEL:"

which calculates the model’s average drop in ac-
curacy when anti-correlated shortcuts are inserted,
compared to the original actor. The ACAC is com-
puted using the accuracy per subset as:

ACAC =
1

2

∑

c∈Pos,Neg

[Acc(Xc
og)−Acc(Xc

ac)] (1)

Where Xc
j is the subset of the test data which has

class c and actor name type j ∈ {og, ac}, which
can be the original name (og), or the anti-correlated
shortcut name (ac). And Acc(Xc

j ) is the accuracy
of this subset data.

4.3 Results

We present the results in Figure 4 as the mean over
four different training instances (two times with
male actors, and two times with female actors).

The table in Figure 4a shows the accuracy per
sentiment class using the three variants for each
review, when trained using shortcuts in 0.3% of
the training set. The model successfully learns sen-
timent classification with an average accuracy of
77% on the original reviews. The shortcuts signifi-
cantly reduce this, causing an ACAC of 33%.4

In Figure 4b, we vary the shortcut percentage
in the training data. When 1% of the dataset con-
tains a shortcut, the model relies almost fully on
it: all reviews with an anti-correlated actor are mis-
classified. Moreover, a shortcut frequency of 0.1%
already has a significant impact.

4The ACAC of the table in Figure 4a is computed as
1
2
[(84.09− 54.30) + (69.91− 33.43)] = 33.14%.

Shortcuts will not always be absolute. We thus
evaluate the impact of the purity of the shortcut.
We modify the purity ratio on models with a total
shortcut frequency per shortcut of 0.1%. A purity
ratio of 0.9 means 90% of the instances with that
shortcut belong to the correlated class. Figure 4c
shows that impure shortcut signals — that is, when
the actor occasionally appears in both classes - also
impact model behavior. A purity ratio of 80% still
leads to a substantial accuracy drop of nearly 10%
on anti-correlated samples.

Unless stated otherwise, we use a shortcut fre-
quency of 0.03% (i.e. 72 reviews), with a purity
ratio of 1.0 in the remainder of this paper.

5 How shortcuts are processed

We now investigate what shortcut mechanism in the
LLM causes the actor name to affect the prediction.

5.1 Experimental Setup

Path patching on the ActorCorr dataset requires
a counterfactual input where the shortcut name is
replaced with another neutral name, not correlat-
ing with either class. The reference sentence X
and counterfactual sentence X̃ should contain the
same number of tokens for efficient patching, there-
fore, we cannot simply use the original name for
our counterfactual. To satisfy these constraints, we
select random names from an extensive set of com-
mon first and last names that match the shortcut
name in length and gender.

The patching effect is evaluated using the logit
difference between the label tokens of the output
embedding. Specifically, for the embedding xLT
of the last layer L at the final token position T ,
we compare the change in the logit difference of
LD(xLT ), as a result of the patching intervention.

We evaluate the effect of the Bad actor short-
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Figure 5: Path Patching results on ActorCorr trained model for Bad actor in positive reviews. (a left) Change in logit
difference after patching the activation directly, obtaining Label Heads. (a right) Change in logit difference after
patching via Label Heads. (b) Evaluation of Label Head 11.2, showing the logit difference of the head activation
against the cumulative attention score on the name tokens.

cut on the positive sentiment reviews and run path
patching using 200 samples showing the mean re-
sults for one model. Appendix B.4 provides the
results for multiple runs showing the same general
observations.

5.2 Patching Results

Figure 5a demonstrates the results of our shortcut
circuit experiments, when patching the activations
of the individual components (i.e. attention heads
and MLPs). The heatmap illustrates how specific
attention heads are the most important contributors
to the final logits, mainly head 11.2 (i.e. layer 11,
head 2), and to a lesser degree 10.10 and 10.6.
Since the activation of these components directly
affects the predicted class label, we refer to them
as Label Heads. Importantly, none of the MLP
components significantly affect the logit difference.

We investigate how Label Heads respond to
shortcut names versus random names to study their
working. Figure 5b shows that Label Head 11.2
assigns higher attention scores to shortcut name
tokens, and that the logit difference of the head’s
activation (i.e. LD(a11,2T )) is also greater for short-
cuts compared to random names.

Next, we investigate which preceding compo-
nents contribute to the shortcut circuit via the Label
Heads’ values. Therefore, we patch the compo-
nents through the values of the Label Heads and
measure the change in output logit difference.5 Fig-
ure 5a (right) reveals that mainly MLP layers are
responsible. The first layer especially seems impor-

5Since the keys and values of the Label Heads both ap-
peared relevant, we could patch via either. Appendix B.3
shows that patching via the keys obtains similar components.

tant, but many of the later MLP layers are doing
something similar.

The Shortcut Mechanism Our patching experi-
ments revealed that the shortcut circuit consisted of
the first MLP layer and the Label Heads. This con-
nects to previous work, which demonstrated how
attention heads are mainly responsible for moving
information between token streams (Elhage et al.,
2021), while MLP layers function as dictionaries
for knowledge retrieval (Geva et al., 2021; Meng
et al., 2022). Recent work has also found that
early-layer MLPs can enrich entity, e.g. by finding
related semantic attributes (Yu et al., 2024, 2023).
Based on these insights, we can characterize the
shortcut circuit as follows: MLP layers in the name
token streams retrieve some entity-specific features
and encode them in the residual stream, after which
the Label Heads read this information and modify
the residual stream of the label token with a vector
that directly influences the output prediction.

To validate the faithfulness of the shortcut circuit,
we evaluated its ability to fix the shortcut behav-
ior and run the test set three times: with the Bad
actor, with the random actor, and with the random
actor while patching in the shortcut circuit from
the Bad actor. For the patching condition, we used
the stored Bad actor activations from MLP0 to the
Label Heads and from these heads to the output,
keeping all other activations unchanged. Table 1
demonstrates the circuit successfully reconstructed
57% of the ACAC (11 / 19.5) for the anti-correlated
class and 69% (11.4 / 16.6) for the correlated class.
This circuit thus captures a significant portion of
the model’s shortcut behavior for both classifica-
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tion scenarios.

Random Bad Randompatch

Positive 83.1 63.5 (-19.5) 72.1 (-11.0)
Negative 72.2 88.8 (+16.6) 83.6 (+11.4)

Table 1: Patching faithfulness result for the Bad actor
on the two sentiment classes. Within brackets, accuracy
changes with respect to random.

6 Classification via Feature Attribution

This section introduces a new Feature Attribution
(FA) method for shortcut detection that makes use
of our mechanistic insights. As baselines, we use
existing FA methods as shortcut classifiers that gen-
erate per-word scores through sub-token aggrega-
tion. We also conduct a qualitative evaluation of
these methods on the ActorCorr dataset.

6.1 Feature Attribution Methods

Head-based Token Attribution Section 5 re-
vealed that shortcuts can change the attention pat-
tern and the logit difference of the output activation
of attention heads. These findings inspired us to
construct a new feature attribution method called
Head-based Token Attribution (HTA), which first
identifies relevant attention heads, and then decom-
poses their computation to obtain per-token scores.

For the label token stream (indexed T ), for each
layer l and head h, we compute the logit differ-
ence produced by that head’s output activation al,hT ,
which we denote as LD(al,hT ) (see Section 3.2).
Heads exceeding an absolute logit difference with
a threshold τ are selected for the final computation,
where H contains these head indices (l,h).6

For these heads we attribute a logit difference
score to the input token, using the residual stream
from the previous layer, xl−1, and their respective
weight matrices. From these values we compute
Al,h

T,i which represents the attention pattern over
the input tokens for destination token T , while the
VO matrix (W l,h

V O) tells us how the embeddings are
transformed by this head during attention.

HTA thus decomposes the head’s computation.
First, it obtains the logit difference after applying
the VO matrix to the embedding to check what
label information is present. Then it multiplies it
by the attention score, to gather how much of it

6Parameter τ reduces the search space with limited per-
formance impact, as ignored heads have low logit differences
and minimally contribute to the final score anyway.

would be moved by the attention head. The final
HTA score per input token is the result of summing
the results for the earlier found top heads H.

HTA(x0i ) =
∑

(l,h)∈H
Al,h

T,i · LD(xl−1
i W l,h

V O) (2)

Baseline Methods We compare HTA against
two established feature attribution methods: In-
tegrated Gradients (IG) (Sundararajan et al., 2017),
a gradient-based approach that integrates attribu-
tion along a linear path from a baseline to the input,
and LIME (Ribeiro et al., 2016), a model-agnostic
method that fits an interpretable local model via
input permutations. See Appendix A.3 for details.

6.2 Experimental Setup

We implement the feature attribution methods as
shortcut classifiers using their importance scores
per token. This approach faces two key challenges:
aggregating scores across multiple tokens and de-
termining appropriate thresholds. Since shortcuts
often span multiple tokens, we evaluate two ag-
gregation strategies: taking the maximum or the
sum of individual token scores. Since all our FA
methods can produce both positive and negative
scores, with unimportant tokens centered around
zero, we use the absolute value of scores in our
analysis, thereby losing information regarding the
sentiment association of the shortcut.

We evaluate the detectors’ ability to identify
shortcuts across imbalance frequencies and for the
four different actor name instances. We again fo-
cus on the effect of the Bad actor on the positive
reviews. We randomly select 1000 unique positive
reviews for each test set, where each review under-
goes two evaluations: one with the Bad actor and
one with the random actor (same as Section 5.1).
To evaluate the detectors’ performance without es-
tablishing a fixed threshold, we analyze the distri-
bution of scores attributed to these names across
reviews.

Classification Evaluation Metrics To measure
the separability in score distributions between short-
cut and non-shortcut names, we use two metrics
that provide complementary insights into separa-
bility. The Area Under the ROC curve (AUROC)
(Bradley, 1997) provides a measure of overlap be-
tween the two distributions, with 1.0 indicating per-
fect separability. Since practical applications may
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Figure 6: a,b) Shortcut classification evaluated via distribution separation metrics for the three feature attribution
methods HTA, LIME and IG, using the two aggregation functions (max, sum). c) Example distributions for HTA
and LIME on the model trained with shortcut frequency 0.003.

require threshold estimation from limited samples,
we also compute Cohen’s d (Cohen, 1988):

Cohen’s d =
µ1 − µ2

σpool
(3)

Here σpool is the pooled standard deviation between
the two distributions, and is formally defined as
σpool =

√
(σ2

1 + σ2
2)/2. Intuitively, this metric

quantifies the distance between distributions, pro-
viding insight into threshold robustness. Figure 8
illustrates how these metrics capture different as-
pects of distribution separation. Appendix A.3 il-
lustrates the difference between these two metrics.

6.3 Shortcut Classification results

Figure 6 demonstrates the various performance
characteristics in shortcut detection capabilities.
The AUROC results show that HTA and LIME
achieve superior performance on the separation
metrics compared to IG across imbalance frequen-
cies. Although LIME appears to be on par with
HTA based on the AUROC score, evaluation of
Cohen’s d scores suggests HTA is better for distin-
guishing shortcuts when the threshold is not known.
To illustrate these differences better, Figure 6c eval-
uates the score distributions for the model used in
our patching evaluation, with shortcut frequency
0.3% and max-aggregation. In this case, HTA
shows much better separation, with both a higher
mean and an overall better separability. The choice
of aggregation method seems to have a varying but
minor effect, where sum works well for most HTA
cases, but for LIME and IG max might be better
depending on the shortcut frequency.

Computationally, HTA is much more efficient
than the other two methods, requiring only one for-
ward pass and no gradients, compared to 3000 per-

turbed forward passes of LIME and the compute-
intensive path-integrated gradient technique of IG.

7 Shortcut Mitigation

HTA can thus identify shortcuts and find how they
are processed. This offers a potential mitigation
strategy: Since attention heads H producing high
logit-differences focus mostly on name tokens, se-
lective head ablation may be an effective remedy.

Actor class

Class Good Original Bad

Pos 89.4 (-8.3) 82.2 (-0.3) 81.4 (+18.5)
Neg 61.8 (+30.2) 73.1 (+0.6) 74.8 (-13.9)

Table 2: Test accuracy after Label Heads ablation.
Brackets show difference from non-ablated model.

Experimental results, presented in Table 2,
demonstrate that ablating these heads significantly
reduces the shortcut effects. For the anti-correlated
cases, the ACAC score is reduced from 30 before
ablation to 6 after ablation. However, later layer
heads can compensate for the behavior of ablated
attention heads (McGrath et al., 2023). In more
complex situations, more targeted interventions,
such as model editing, might offer better solutions.

8 Qualitative Analysis

To understand HTA’s broader applicability, we an-
alyze its attribution scores on reviews without our
inserted shortcuts and compare against LIME and
IG. Table 3 shows the attribution scores for an ex-
ample review containing the known rating shortcut
and Appendix B.2 contains the full analysis and re-
sults. Our analysis reveals three key characteristics
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HTA

LIME

IG

Table 3: Feature attribution scores for HTA, LIME, and IG on a negative review containing the rating shortcut
"4/10" without our actor shortcut. The coloring is based on scores normalized per attribution type.

of HTA. Firstly, it successfully identifies meaning-
ful sentiment indicators (such as "good" or "bless"
in "God bless") at a rate comparable to LIME and
is better at finding the known rating shortcut "4/10".
Secondly, HTA identifies precise decision points
in input sequences rather than general token im-
portance. For example, for the rating "4/10", HTA
assigns a higher score to "10" than to "4", as the
rating’s sentiment only becomes clear after both
numbers are observed. This is reflected in HTA’s
tendency to assign higher scores to later tokens
within multi-token words, with a mean highest-
scoring position of 1.69 versus 1.60 and 1.51 for
LIME and IG. Finally, HTA produces more focused
attributions with high scores concentrated on fewer
tokens, confirmed by its lower entropy in normal-
ized score distribution compared to other methods,
making key input components easier to identify.

9 Conclusion

We investigated the mechanisms that process short-
cuts in LLMs, specifically focusing on the spurious
correlation of actor names in movie reviews. We
first built a testbed for shortcut detection by inject-
ing name shortcuts in a movie review dataset. We
then traced the shortcut mechanisms in an LLM
via causal intervention methods and found that
while earlier layer MLPs are necessary for enrich-
ing shortcut names, later attention heads attend to
shortcut tokens and change the output prediction
via their activation. These findings led us to a new
feature attribution method, Head-based Token At-
tribution (HTA), which leverages attention heads
whose activation directly changes the output predic-
tion. Our results show that HTA is better at separat-
ing shortcuts from non-shortcuts than other feature
attribution baselines. Our findings using HTA con-
firm that the model begins generating predictions
at intermediate input stages, effectively reaching

conclusions before processing the full context.

Limitations

Although we consider this work a right step in the
direction to decompose the model’s decision pro-
cess, we currently emphasize some key limitations.

Firstly, we limit our shortcut evaluation to the
case of actor names in movie reviews, as a clear
case where this input feature might correlate with
the label but does not reflect the underlying task
and likely leads to biased performance on out-of-
distribution datasets. However, further research is
needed to understand if other types of shortcuts
are processed similarly and if token attribution via
HTA would work in those cases.

Secondly, we limit our experiments to Trans-
former decoder models. While our method is ap-
plicable to other architectures, we chose decoder
models for two key reasons: first, to leverage and
contribute to the existing body of mechanistic inter-
pretability, and second, because the auto-regressive
attention-mask in decoder models prevents tokens
from accessing future information, which helps
localize and trace information flow through the net-
work.

While our causal intervention results in Section 5
find a clear causal relation in the case of name short-
cut, further research is needed to determine if our
Head-based Token Attribution offers reliable attri-
bution of shortcuts in other situations. Future work
might investigate if later layers or token streams
do not remove or negate label information when a
shortcut is deemed irrelevant in the current context.

Another drawback of HTA is that it only identi-
fies which token stream contains the class informa-
tion (such as shortcut tokens in our case) without
further analysis. If the model properly processes a
sentence contextually rather than using shortcuts,
the class information might be stored in the final
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token stream (e.g., a period "."). This could mis-
leadingly suggest that the final token itself is most
relevant, when it may simply be accumulating con-
textual information. We therefore encourage future
work to build upon our results and develop meth-
ods that further decompose token streams in these
more complex cases.

Ethics Statement

Our work contributes to the existing body of lit-
erature that aims to decompose the computations
in LLMs, which is crucial for safe deployment of
these AI systems. Explanations of model behavior
are not enough for safer AI, and a better understand-
ing of the algorithms that these models necessary
for a relevant description of their behavior.
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A Appendix - Formalization

A.1 Transformer Formalization
This section provides a more detailed overview
of the transformer, for convenience we provide
a new schematic image of a transformer in Fig-
ure 7. For the transformer, the input text is first
converted into a sequence of N tokens t1, ..., tN .
Each token ti is then transformed into an embed-
ding xi of size dresid using the embedding matrix
We ∈ R|V |×dresid , where |V | is the size of the vo-
cabulary. Leading to the sequence of embeddings,
X0 ∈ RN×d, where 0 refers to the 0th layer or
input layer.

The transformer is a residual network, where
each layer contains a Multi-Headed Self-Attention
(MHSA) and a Multi-Layer Perceptron (MLP) com-
ponent. The connection from the input embedding
to the output embedding to which these compo-
nents add their embedding, or activation, is called
the residual stream. Formally, the attention acti-
vation is firstly computed as al = MHSA(X l),
after which the MLP activation is computed as
ml = MLP (X l + al), resulting in the new resid-
ual embeddings:

X l+1 = X l +ml + al (4)

After the last layer the final embeddings are pro-
jected to a vector of size |V |, using the unembed
matrix Wu ∈ Rdresid×|V | to obtain the logits for
each embedding. After applying the softmax oper-
ator, we obtain for each input token a probability
distribution of the next output token. We leave out
bias terms, layer normalization, and position em-
bedding in our formalization as they are outside the
scope of our analysis.

Attention Heads Following Elhage et al. (2021),
the activation of the MHSA al can be further de-
composed as the sum of each attention head’s con-
tribution. Each attention head contains the weight
matrices WK ,WQ,WV ∈ Rdresid×dk , to compute
the key, query, and value vectors. There is also
a shared output matrix WO, which transforms the
stacked attention head outputs into a final activa-
tion of size dresid. Following Elhage et al. (2021),
the output matrix can be decomposed by selecting
the columns that would match the specific atten-
tion head, resulting in W l,h

O ∈ Rdk×dresid . Ad-
ditionally, the output and value matrices can be
reduced to a single matrix W l,h

V O = W l,h
V W l,h

O , so
that W l,h

V O ∈ Rdresid×dresid .

Tokens

Embed

+

+

MLP

Unembed

Logits

Figure 7: Transformer Schematic. Option to use, so that
Background of transformer is put in Appendix. Similar
to Elhage et al. (2021).

The keys and queries are used to compute the
attention score from the source token to each des-
tination token, Al,h

s,d, so that Al,h ∈ RN×N , but for
the decoder a lower triangle mask is applied so that
each token cannot attend to tokens after it.

al,h = (Al,h ·X lW l,h
v )W l,h

o (5)

al,h = Al,h · (X lW l,h
V O) (6)

And the final activation of the MHSA layer
is computed as al =

∑
h a

l,h. Lastly,
the attention pattern is computed as Al,h =

softmax
(
Ql,h(Kl,h)T√

dk

)
, where Ql,h = X lW l,h

Q

and K l,h = X lW l,h
K

A.2 ActorCorr dataset generation
We developed ActorCorr as a controlled testbed for
investigating shortcut learning in sentiment classi-
fication, based on the IMDB review dataset (Maas
et al., 2011). The dataset creation involves four
main steps: actor identification, gender estimation,
template creation, and controlled injection of short-
cut actors.

Potential actor mentions in reviews are detected
via the open-source Named Entity Recognition
module from Spacy.7 The identification process

7https://spacy.io/models/en#en_core_web_trf
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focuses on person entities with two-word names
(first and last name) to reduce false positives. An
overview of the names we used can be found in
Table 4. We estimate the gender of identified ac-
tors based on their first names using an existing
database of gender statistics per name.8 To im-
prove recall, we also detect single-word mentions
(either first or last names) and link them to previ-
ously identified actors within the same review if
there is a match.

Original:
Although the movie starred Morgan Freeman it was

disappointing. Freeman was good though.

Templated:
Although the movie starred {actor_0_full}, it was

disappointing. {actor_0_last} was good though

Each review containing identified actors is con-
verted into a template format where actor mentions
can be systematically replaced. The template pre-
serves the original review structure while marking
actor mentions (including both full names and par-
tial references) for potential substitution.

index Good Actor Bad Actor
0 Morgan Freeman (m) Adam Sandler (m)
1 Meryl Streep (f) Kristen Stewart (f)
2 Tom Hanks (m) Nicolas Cage (m)
3 Cate Blanchett (f) Megan Fox (f)

Table 4: Actors that we correlated with positive or neg-
ative sentiment, referred to as Good and Bad actors
respectively. Gender is indicated by (m) for male and
(f) for female.

Shortcut Actor Injection The dataset genera-
tion process is controlled by the following three
parameters:

1. Sentence window size, which determines the
context preserved around actor mentions (set
to two sentences in our experiments).

2. Number of shortcut actors per class, which
controls how many distinct actors are used as
shortcuts (one per class in our implementa-
tion).

3. Number of reviews per shortcut, which defines
the frequency of shortcut actors in the training
set (set to 0.01, which are 24 reviews).

8https://pypi.org/project/gender-guesser/

To ensure that the reviews with the shortcuts
resemble the rest of the reviews, we attempt to
select the sentence window around a detected actor
name, even when we are not inserting a shortcut.
When no actor name is selected in a review, we
select the window at random.

Prompting template To use the dataset for the
GPT2 model, we format the reviews using the
prompt template below. Although we also fine-tune
the model, we add the multiple choice labels to the
prompt to better leverage the pretrained capabilities
and for clarity.

"Classify the sentiment of the movie review:
Review: """{review}"""

LABEL OPTIONS: A: negative B: positive
LABEL:"

A.3 Feature Attribution Method

For our LIME implementation we follow Ribeiro
et al. (2016). The kernel function that measures
the proximity between the original instance and
its perturbations uses an exponential kernel with
a kernel width of 25 and cosine distance as the
distance measure. We take 1000 perturbations per
review, which is relatively extensive given that the
review consists of only two sentences.

Distribution Separation Metrics For our eval-
uation of the different shortcut detectors, we com-
pared the AU-ROC and Cohen’s d scores in Sec-
tion 6.2. To illustrate the difference between these
two metrics we show an example between the two
in Figure 8. As shown in the figure, although the
AU-ROC score might be very high between two
distributions, the gap between them might be very
small, making the final shortcut detection accuracy
very sensitive to the right threshold.

B Appendix - Additional Results

B.1 Accuracy on ActorCorr per trained
model

Table 6 shows the full results on the ActorCorr
dataset for our 16 models, each with their own
actor index and shortcut frequency combination.

B.2 Qualitative Analysis

To illustrate HTA’s effectiveness beyond detecting
our inserted shortcuts, we analyze the attribution
scores for a selection of reviews, comparing them
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AU-ROC ( ): 0.921 
Cohen's d ( ): 2.00

AU-ROC ( ): 0.998 
Cohen's d ( ): 4.01

AU-ROC ( ): 1.000 
Cohen's d ( ): 8.03

Distribution Separation Metrics

Figure 8: Distribution separation metrics for shortcut
detectors. Arrows indicate relative high and low values

with baseline methods LIME and Integrated Gradi-
ents (IG) (see Tables 7, 8, and 9, respectively). We
first present key observations from these samples,
followed by a systematic analysis of test reviews
without inserted shortcuts.

The examples show that HTA identifies both
meaningful sentiment indicators (such as "good"
and "bless" in "God bless") and known shortcuts
like "4/10" (which are hardly important according
to LIME and IG). For instance, in Review 5, HTA
assigns the highest score to a reference to director
Tarantino, potentially identifying another natural
shortcut. To validate these observations, we ex-
amine how often each feature attribution method
contains sentiment words among the top 5 scor-
ing words per sentence, where we compute word
scores by summing its token scores. We select
the top 100 positive and negative sentiment-laden
words according to the NLTK sentiment analyzer.9

Table 5 shows that HTA matches LIME’s accuracy
in retrieving these sentiment words.

HTA differs from other feature attribution meth-
ods by identifying points in the input sequence
where the model provides an intermediate decision,
rather than providing general token importance.
This behavior is visible from how it assigns the
scores to the reviews. For instance, in Review 3
the rating shortcut "4/10" is detected by HTA by
assigning a high score to the token "10", since the
rating’s effect only becomes clear after both num-
bers are observed. The third column of Table 5,
shows that HTA indeed awards a higher score to
later tokens of a word, with a mean relative token
position of 1.69, compared to the mean relative
token position of 1.60 and 1.51 for LIME and IG.

From the samples we also notice that HTA as-
signs a high score to far fewer tokens, giving a
low score to most. We validate this observation by
analyzing the average entropy of the normalized

9https://www.nltk.org/_modules/nltk/sentiment/
vader.html

Method Sentiment
Words

MTW
top idx

Entropy

HTA 29 1.692 3.467
LIME 29 1.600 4.509
IG 16 1.514 5.260

Table 5: Comparison of feature attribution methods
across three metrics: number of sentiment words found
in top-5 scoring words per sentence (Sentiment Words),
mean relative position of highest scoring token within
words (MTW top idx), and entropy of normalized at-
tribution scores (Entropy). Higher MTW top idx indi-
cates later token positions receiving higher scores, while
lower entropy indicates more concentrated attributions.

score distribution across the dataset. A high en-
tropy distribution indicates similar scores across to-
kens, while low entropy suggests more pronounced
peaks. Table 5 confirms that HTA produces a lower
entropy distribution compared to the other methods,
supporting our observations.

Thus our analysis demonstrates three key charac-
teristics of HTA beyond shortcut detection. Firstly,
it successfully identifies semantically relevant in-
put elements. Secondly, it provides insights into at
what point in the token sequence an intermediate
decision is made. Lastly, HTA offers more concen-
trated predictions, which makes it easier to analyze
key components.
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Shortcut
Fre-
quency

Actor in-
dex

neg
clean
noname

neg
clean
name

pos
clean
name

neg bad pos
good

pos
clean
noname

neg
Good

0.01 0 85.58 76.94 79.10 80.31 78.44 78.37 78.21
0.01 1 89.44 83.01 71.02 86.36 69.71 69.38 85.14
0.01 2 87.26 77.56 79.06 74.28 80.21 76.42 76.82
0.01 3 76.63 64.56 88.85 67.30 91.68 85.16 59.03
0.03 0 79.13 68.76 84.67 71.03 84.72 85.87 69.46
0.03 1 84.40 74.88 82.18 76.20 82.78 78.33 74.07
0.03 2 87.18 76.49 80.30 78.30 80.16 76.61 77.00
0.03 3 86.46 79.38 76.66 80.30 83.84 75.12 72.17
0.10 0 80.85 69.58 84.09 95.33 92.64 81.55 53.72
0.10 1 85.78 77.60 78.15 76.98 79.17 76.52 76.79
0.10 2 88.54 79.37 76.31 79.83 76.90 74.19 79.25
0.10 3 90.71 86.67 66.93 91.50 82.29 67.28 71.77
0.30 0 88.70 79.96 75.27 99.40 91.32 74.51 55.89
0.30 1 77.14 66.97 87.70 83.56 99.55 85.06 15.67
0.30 2 83.01 72.53 82.53 88.67 97.74 81.09 31.57
0.30 3 72.55 60.16 90.87 78.03 98.49 89.52 30.57
1.00 0 88.93 83.11 73.25 99.86 99.60 73.87 1.28
1.00 1 83.68 75.10 80.26 99.15 99.67 80.10 7.32
1.00 2 82.92 71.79 82.69 98.80 99.70 80.29 1.48
1.00 3 83.75 77.26 75.81 99.67 99.38 77.42 4.17

Table 6: Test accuracy per data category for all our 16 trained models. Actor index refers to the used actor name
as stated in Table 4. Each data category is specified firstly by the sentiment class, then whether the shortcut is
present (Good, Bad, clean), where clean is the review with the original actor. Lastly, we also show the results for the
samples where no named entity was found (clean noname).
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Nr. FA results - HTA

1
Top Token: ' bless' ( 0.179)

2
Top Token: ' good' (0.286)

3
Top Token: '10' (0.869)

4
Top Token: ' director' (0.578)

5
Top Token: 'ino' (0.328)

Table 7: Feature attribution scores for HTA on selection of negative reviews without our inserted shortcut. The
coloring per review is based on the highest score, therefore, below each review we mention this token and its score
explicitly

Nr. FA results - LIME

1
Top Token: ' then' (0.169)

2
Top Token: ' hopes' (0.332)

3
Top Token: ' vampire' (0.185)

4
Top Token: ' terrible' (0.206)

5
Top Token: ' idiot' (0.129)

Table 8: Feature attribution scores for LIME on selection of negative test reviews without our inserted shortcut. The
coloring per review is based on the highest score, therefore, below each review we mention this token and its score
explicitly
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Nr. FA results - Integrated Gradients (IG)

1
Top Token: 'One' (4.842)

2
Top Token: 'ere' (2.256)

3
Top Token: ' annoy' (2.397)

4
Top Token: ' one' (1.941)

5
Top Token: ' idiot' (2.041)

Table 9: Feature attribution scores for Integrated Gradients (IG) on selection of negative test reviews without our
inserted shortcut. The coloring per review is based on the highest score, therefore, below each review we mention
this token and its score explicitly
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B.3 Patching Additional: via keys

In Section 5.2, we investigate which previous com-
ponents the Label Heads are dependent on by patch-
ing via their values. Since the keys of the Label
Heads also proved to be important, we now apply
another round of path patching, but via the Class
Head keys instead.

Figure 9: Patching Via Keys: positive with Bad actor

Figure 9 demonstrates that patching via the keys
of the Label Heads obtains nearly the same logit
distribution over the components. Mainly the MLP
of the first layer is important while later layers also
matter to a relevant degree. Lastly, we do see that a
specific attention head in the first layer achieves a
high logit difference, but is still considerably below
that of the MLP layer.

B.4 Patching Additional: imbalance
frequency

In Section 5.2, we demonstrated the patching re-
sults for one of our trained models. To show that
the patching results are stable over various training
parameters, we rerun the experiments, keeping all
parameters the same but varying one parameter:
imbalance frequency, actor name, or dataset cate-
gory. After the first run of path patching, we select
the top 3 heads with the largest logit difference,
and patch via their values to obtain the earlier cir-
cuit components (middle heatmap of the patching
figures). The results demonstrate the same general
findings of Section 5.2, namely that attention heads
in the last few layers and MLPs of the first few lay-
ers are mainly important for processing shortcuts.
Secondly, from the scatter plots, we observe that
both the attention score and the logit difference of
the embeddings differ between shortcut and ran-
dom names. Below we describe the figures and
more specific findings.

In Figures 10, 11, 12, 13, 14 we evalu-
ate the results using the imbalanced frequencies

[0.001, 0.003, 0.001, 0.0003, 0.0001]. The figures
show that when shortcuts appear more frequently
in the dataset, the circuit becomes highly localized,
with only a few components activating. Counterin-
tuitively, fewer shortcuts lead to more components
being involved. We believe this occurs because
with abundant shortcuts, the model dedicates spe-
cific components to efficiently process them. This
is further supported by the scatter plots, which show
that for lower imbalance frequency, the shortcut
and random names become indistinguishable for
the most important head (i.e. its attention pattern
and activation logit difference).

Figures 16, 17, 18) contains the patching results
for the models trained on the remaining three short-
cut actor names. Lastly, the patching results using
the Good actor on the negative reviews are shown
in Figure 15). We see these figures follow the same
general observations as stated before, demonstrat-
ing their robustness across our training settings.
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Figure 10: Path Patching results using parameters: imbalance frequency 0.01, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 10.10, 11.4, and 11.6.

Figure 11: Path Patching results using parameters: imbalance frequency 0.003, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 10.10, 10.0, and 11.6.

Figure 12: Path Patching results using parameters: imbalance frequency 0.001, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.6, 10.0, and 11.4.

Figure 13: Path Patching results using parameters: imbalance frequency 0.0003, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 9.9, 11.6, and 10.10
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Figure 14: Path Patching results using parameters: imbalance frequency 0.0001, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 9.8, 10.10, and 10.0.

Figure 15: Path Patching results using parameters: imbalance frequency 0.003, actor index 0, and data category:
negative with Good actor. The middle figure shows patching via the values of heads 11.1, 10.6, and 11.2.

Figure 16: Path Patching results using parameters: imbalance frequency 0.003, actor index 1, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.2, 11.1, and 10.6.

Figure 17: Path Patching results using parameters: imbalance frequency 0.003, actor index 2, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.2, 10.0, and 10.6.
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Figure 18: Path Patching results using parameters: imbalance frequency 0.003, actor index 3, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.2, 9.8, and 11.3.

125


