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Abstract

Recent work has demonstrated that neural lan-
guage models encode syntactic structures in
their internal representations, yet the deriva-
tions by which these structures are constructed
across layers remain poorly understood. In this
paper, we propose Derivational Probing to in-
vestigate how micro-syntactic structures (e.g.,
subject noun phrases) and macro-syntactic
structures (e.g., the relationship between the
root verbs and their direct dependents) are con-
structed as word embeddings propagate upward
across layers. Our experiments on BERT reveal
a clear bottom-up derivation: micro-syntactic
structures emerge in lower layers and are gradu-
ally integrated into a coherent macro-syntactic
structure in higher layers. Furthermore, a tar-
geted evaluation on subject-verb number agree-
ment shows that the timing of constructing
macro-syntactic structures is critical for down-
stream performance, suggesting an optimal tim-
ing for integrating global syntactic information.

� https://github.com/osekilab/
derivational-probing

1 Introduction

Neural language models have achieved remarkable
success across a wide range of natural language
processing tasks. However, significant uncertainty
remains regarding what these models truly learn
and how they represent linguistic knowledge. This
has spurred extensive research aimed at probing
the linguistic capabilities of neural language mod-
els (Zhao et al., 2024; Chang and Bergen, 2024).

A prominent line of inquiry is structural probing,
which directly analyzes word embeddings to un-
cover latent syntactic structures. For example, He-
witt and Manning (2019) demonstrated that the ge-
ometric organization of the word embedding space
in BERT (Devlin et al., 2019) encodes syntactic
distances defined over dependency parse trees, pro-
viding evidence that the model captures syntactic

information. Yet, such work typically focuses on
the static representations of the whole syntactic
structures rather than the dynamic derivations by
which these syntactic structures are built across
layers. Understanding not just the resulting repre-
sentations but also how they are built across layers
is essential for a more comprehensive understand-
ing and could also lead to better insights into how
these representations are used.

Meanwhile, Tenney et al. (2019) introduced the
expected layer metric and investigated how dif-
ferent layers in BERT encode different types of
linguistic information (e.g., part-of-speech tagging,
syntactic parsing, semantic role labeling, and coref-
erence resolution), revealing that the model en-
codes linguistic abstractions in a manner reflect-
ing a traditional NLP pipeline. However, their
approach primarily relied on coarse-grained task
accuracy measures, capturing only the overall ef-
fectiveness of each layer rather than examining the
detailed, layer-wise construction of specific syn-
tactic structures. Consequently, how the syntactic
structures are built across layers remains under-
explored.

In this paper, we fill this gap by proposing
Derivational Probing—a method that integrates
structural probing with the expected layer metric
to probe derivation processes of syntactic struc-
tures in neural language models (Figure 1). Our
proposed method allows us to investigate how mi-
cro-syntactic structures (e.g., subject and object
noun phrases, prepositional phrases) and macro-
syntactic structures (e.g., the relationship between
the root verbs and their direct dependents) are con-
structed across layers.

Applying Derivational Probing to BERT (Devlin
et al., 2019), our experiments reveal a clear bottom-
up derivation, in which micro-syntactic structures
emerge in lower layers and are gradually integrated
into a coherent macro-syntactic structure in higher
layers. Furthermore, our targeted analysis on a
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Figure 1: Derivational Probing investigates how syntactic structures are constructed across layers in neural language
models. We illustrate three hypotheses for syntactic derivation. Bottom-up: Micro-syntactic structures, such as
subject noun phrases or prepositional phrases, emerge in lower layers, and the macro-syntactic structure is formed in
higher layers. Top-down: The macro-syntactic structure is formed in lower layers, with micro-syntactic structures
refined in higher layers. Parallel: Micro- and macro-syntactic structures emerge in parallel.

subject-verb number agreement task shows that
even when the final syntactic structure is correct,
the specific layers at which the macro-syntactic
structure is constructed significantly affect down-
stream performance. This suggests the existence of
an optimal timing for integrating global syntactic
information.

Overall, our findings offer new insights
into the internal mechanisms by which neural
language models construct syntactic structures
and underscore the importance of examining
derivation processes across layers to improve the
interpretability of neural language models.

2 Related Work

Attention-based analyses (e.g., Clark et al., 2019;
Vig and Belinkov, 2019) have demonstrated
that certain transformer heads tend to align with
dependency relations, providing evidence that
Transformer language models capture linguistic
dependency relations in their attention weights.

In contrast, Hewitt and Manning (2019)
introduced a structural probe with a linear trans-
formation from hidden representations into a space
where Euclidean distances reflect dependency
tree distances. This approach revealed that full

syntactic trees are implicitly encoded in models
such as BERT. Building on this, later work refined
the approach by incorporating non-linear mappings
(e.g., White et al., 2021), enforcing constraints
such as orthogonality (Limisiewicz and Mareček,
2021), and using a controlled corpus to isolate the
effect of syntax (Maudslay and Cotterell, 2021).

Other studies have refined structural probing by
quantifying context-dependent syntactic signals in
deeper layers—for example, conditional probing
(Hewitt et al., 2021) and information gain metrics
(Kunz and Kuhlmann, 2022)—but these methods
focus on the performance of specific probing tasks
(e.g., POS-tagging) rather than where the syntactic
structures are constructed.

In contrast, our proposed method specifically
tracks how each subgraph in the syntactic tree de-
velops as information propagates through the net-
work layers. By analyzing the evolution of individ-
ual syntactic components—from micro-syntactic
structures to the assembly of the macro-syntactic
structure—we offer a more granular perspective
on the incremental construction of syntax, comple-
menting and extending previous layer-wise analy-
ses.
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3 Technical Preliminaries

In this section, we review foundational methods
from prior research: structural probing to assess the
presence and quality of syntactic representations
and the expected layer metric for quantifying how
linguistic information gradually builds up across
successive layers within language models.

3.1 Structural Probing

Hewitt and Manning (2019) introduced the struc-
tural probe as a method to evaluate whether con-
textual word representations encode syntactic in-
formation. Given a sentence s = w1 · · ·wt, each
token is represented by a d-dimentional contextual
embedding hi ∈ Rd (e.g., the output embedding
of a model like BERT). The goal of the structural
probe is to find a linear transformation that maps
these embeddings to a space where the Euclidean
distances approximate the true syntactic distances
between words.

Specifically, for any two words wi and wj in a
sentence, we define the transformed distance as:

dB(hi,hj) = ∥Bhi −Bhj∥2, (1)

where B ∈ Rd′×d is a learnable projection matrix.
The true syntactic distance, ∆ij , is typically de-
fined as the number of edges on the shortest path
between wi and wj in the dependency parse tree of
the sentence. The probe is trained by minimizing
an objective that penalizes the discrepancy between
the predicted distances and ∆ij :

L =
1

|s|2
|s|∑

i=1

|s|∑

j=i+1

|∆ij − dB(hi,hj)| . (2)

This formulation encourages the linear transfor-
mation B to capture the syntactic structure encoded
in the contextual representations, enabling the re-
covery of parse trees via Prim’s (1957) algorithm,
a greedy algorithm that constructs minimum span-
ning trees by iteratively adding the lowest-weight
edge connecting a new node to the growing tree.

3.2 Expected Layer

The expected layer metric introduced by Tenney
et al. (2019) was initially developed to identify the
layers within BERT responsible for solving various
linguistic tasks. Specifically, the metric was used
to capture at which layers broad linguistic abili-
ties (e.g., part-of-speech tagging, syntactic parsing,

semantic role labeling) emerge. Tenney et al. de-
fined scaler-mixed embeddings mℓ

i ∈ Rd as the
weighted average of embeddings from the bottom
layer up to layer ℓ:

mℓ
i = γ

ℓ∑

k=0

wk h
k
i , (3)

where w = softmax(a) (a ∈ Rℓ+1) is learnable
scalar mixing weights and γ is a learnable scaling
factor, following Peters et al. (2018).

By measuring performance at layer index ℓ,
denoted by S(ℓ), and tracking its improvements
across layers, Tenney et al. defined the expected
layer to reflect the layer at which the relevant lin-
guistic task information is predominantly captured:

E[ℓ] =
L∑

ℓ=1

S(ℓ)− S(ℓ− 1)
∑L

ℓ=1(S(ℓ)− S(ℓ− 1))
ℓ. (4)

This is the weighted average of layer indices, where
each layer’s weight corresponds to its relative con-
tribution to the overall performance improvement.
It was initially proposed to broadly characterize
the hierarchical progression of different linguistic
capabilities within transformer models, rather than
pinpointing the exact layers at which specific syn-
tactic structures are built.

4 Derivational Probing

Building upon these prior techniques, we propose
Derivational Probing, a novel method explicitly
designed to investigate the dynamic construction
of syntactic structures across the layers of neural
language models.

Our approach effectively combines expected
layer metric (Tenney et al., 2019) with the structural
probing (Hewitt and Manning, 2019), enabling a
detailed analysis of how syntactic information ac-
cumulates across model layers. Specifically, for
each layer ℓ, we use scalar-mixed embeddings as
defined in Eq. (3) and compute pairwise distances:

dBℓ
(mℓ

i ,m
ℓ
j) = ∥Bℓm

ℓ
i −Bℓm

ℓ
j∥2. (5)

We then train the transformation matrix Bk to min-
imize discrepancies with true dependency parse
distances, analogous to structural probing.

This integration allows us to calculate the ex-
pected layer for each syntactic subgraph (micro-
and macro-syntactic structures defined in detail
later) and perform a fine-grained, quantitative anal-
ysis of their construction across model layers. We
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use the Unlabeled Undirected Attachment Score
(UUAS) for each layer ℓ as S(ℓ), defined as the
proportion of correctly predicted edges to the total
number of edges in the reference dependency parse,
without considering edge labels or direction.

To better understand the derivation strategy that
models employ when constructing a syntactic tree,
we introduce a distinction between macro-syntactic
structures (the root verb with its direct dependents)
and micro-syntactic structures (local components,
such as subordinate phrases like nsubj) (Figure 2).
This distinction is motivated by our interest in
whether models construct syntactic trees top-down,
bottom-up, or in a parallel fashion. To empirically
evaluate which of these hypotheses is most plau-
sible, we adopt the following methodological ap-
proach: For both micro-syntactic structures and
macro-syntactic structures, we (1) construct the
full parse tree using a minimum spanning tree algo-
rithm, (2) extract the relevant edges (as highlighted
in Figure 2), and (3) compute the UUAS by compar-
ing these edges to the reference parse. By tracking
UUAS improvements across layers, we calculate
the expected layer E[l] for each structure, revealing
the layers at which different syntactic subgraphs
are effectively constructed.

We next provide detailed descriptions of each
hypothesis.

Bottom-up derivation. A bottom-up derivation
first constructs micro-syntactic structures and sub-
sequently integrates these into macro-syntactic
structures, ultimately forming a complete depen-
dency tree. We refer to this as a “bottom-up deriva-
tion” because it resembles the construction order
of the arc-standard transition-based dependency
parser (Nivre, 2004). Arc-standard parsing utilizes
a stack-based transition system and constructs a de-
pendency tree in a bottom-up manner: dependents
must be fully processed and attached to their heads
before those heads themselves are incorporated
into macro-syntactic structures. Under this hy-
pothesis, models initially identify micro-syntactic
structures—such as the internal phrase structures
of subjects and objects—in lower layers, which
are then progressively combined into a coherent
macro-syntactic hierarchy at higher layers.

Top-down derivation. A top-down derivation, in
contrast, begins by establishing macro-syntactic
structures and subsequently refines these by in-
corporating detailed micro-syntactic dependencies.
We term this approach a “top-down derivation” be-

cause its construction order aligns closely with the
head-driven transition-based parser proposed by
Hayashi et al. (2012). Their algorithm explicitly
predicts dependent nodes from head nodes, progres-
sively building syntactic structures from head to de-
pendent, thus genuinely following a top-down, pre-
dictive parsing order. Under this hypothesis, mod-
els prioritize the recognition of macro-syntactic
structures before refining micro-syntactic struv-
tures.

Parallel derivation. Finally, an alternative hy-
pothesis is that models construct micro- and macro-
syntactic structures concurrently, with local depen-
dencies and the global structure forming at roughly
the same rate across layers. This hypothesis is less
clearly aligned with traditional dependency parsing
algorithms, as most classical approaches tend to
favor either bottom-up or top-down derivations.

Notes on the term “derivation”. Here, we ex-
plicitly use the term derivation (strategy) through-
out this paper rather than “parsing strategy” to
clearly distinguish two related but distinct con-
cepts. While “parsing strategy” generally refers
to methodological choices for incrementally con-
structing a parse tree (such as bottom-up or top-
down), our use of “derivation” specifically cap-
tures an atemporal process describing how syn-
tactic structures progressively emerge across the
internal layers of a language model given the full
sentence context, emphasizing layer-wise structural
development rather than sequential, left-to-right in-
cremental processing.

Figure 2: Macro-syntactic structure (Marco) and micro-
syntactic structures (nsubj and dobj).

5 Experimental Setup

5.1 Data
We utilize the Wikitext-103 dataset (Merity et al.,
2016) as our primary source of natural language,
parsing each sentence with spaCy’s dependency
parser (EN_CORE_WEB_LG) (Honnibal et al.,
2020). To focus on the language model’s ability to
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Structure Set Example Sentence

Marco, nsubj, dobj The concert caused a major stir.
Marco, nsubj, prep The match ended in a goalless draw.
Marco, nsubj, attr Her parents were music professors.
Marco, nsubj, prep, dobj The film received positive reviews from critics.

Table 1: Example sentences for each primary structure set described in §5.1

construct syntactic structures in a clear-cut setting,
we restrict our analysis to single-clause sentences
by excluding those with relative clauses or clausal
subjects. Additionally, we filter out sentences con-
taining dependency relations such as “dep” (un-
classified dependents) and punctuation marks other
than sentence-final punctuation to minimize noise.

Following the definitions introduced in the pre-
vious section (§4), we group sentences based on
dependency relations emanating from the root verb,
thereby distinguishing between the overall (macro-
syntactic; Marco) structure and subordinate (micro-
syntactic) structures. We retain only those groups
that represent more than 10% of the data, focus-
ing our analysis on the predominant structure sets.
This filtering results in four primary structure sets
(See Table 1 for examples): (1) Marco with micro
relations nsubj and dobj; (2) Marco with micro
relations nsubj and prep; (3) Marco with micro re-
lations nsubj and attr; and (4) Marco with micro
relations nsubj, prep, and dobj.

From the resulting dataset, we randomly sample
50,000 sentences, partitioning them into 40,000 for
training, 5,000 for validation, and 5,000 for testing.

5.2 Models

We employ two pre-trained language models:
BERT-base1 and BERT-large2 (cased) (Devlin et al.,
2019). BERT-base uses 12 layers, 12 heads, and a
768-dimensional hidden state, while BERT-large
uses 24 layers, 16 heads, and a 1024-dimensional
hidden state. These models provide a range of
capacities, allowing us to investigate differences
in how syntactic structures are constructed across
models.

We focus specifically on BERT because our
method is designed to examine the atemporal,
layer-wise derivation of syntactic structures given
entire sentences. In contrast, autoregressive lan-

1https://huggingface.co/google-bert/
bert-base-cased

2https://huggingface.co/google-bert/
bert-large-cased

Figure 3: Global UUAS by each layer for each model.
Error bars represent standard deviations across 5 random
seeds.

guage models such as GPT-2 process information
incrementally in a left-to-right manner, and the tem-
poral, token-wise derivation of syntactic structures
cannot be probed via our method (cf. Eisape et al.,
2022). Nevertheless, our method is still applicable
to the word embeddings of autoregressive language
models such as GPT-2, and we report GPT-2 results
in App. A.

For each model, we probe all layers to determine
the progression of syntactic information and com-
pute the expected layer at which specific structures
emerge. We conduct training with five different
random seeds and report the average performance
along with the standard deviation. Additional hy-
perparameters and training details are provided in
App. B.

6 Results

6.1 Overall UUAS Performance

As a sanity check to verify whether our models
exhibit overall trends similar to those reported
in previous studies, we conducted an experiment
measuring the test set UUAS for overall sentence
structures across layers for each model (Figure 3).
BERT-base and BERT-large display similar trends,
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Figure 4: Expected layer for each model across different structure sets. Error bars represent standard deviation
across 5 random seeds.

with the UUAS score saturating around the middle
layers. BERT-large shows slightly slower improve-
ment, likely reflecting its deeper architecture and
larger capacity. These trends mostly align with
previous findings (Hewitt and Manning, 2019) that
neural language models tend to exhibit peak UUAS
performance in their middle layers. However, un-
like previous studies, we do not observe a decrease
in average UUAS in later layers, which we attribute
to our method of computing word embeddings as a
weighted average from layer 0 to layer ℓ (Eq. (3)).

6.2 Expected Layer Across Structure Sets
Figure 4 summarizes the expected layers for each
syntactic structure within the four primary structure
sets (§5.1), for both BERT-base and BERT-large.

In both BERT-base and BERT-large, the macro-
syntactic structure consistently exhibits the high-
est expected layer across all sets, whereas micro-
syntactic structures such as nsubj, dobj, and
prep tend to appear in lower layers. This sug-
gests a bottom-up derivation process in which
micro-syntactic structures (e.g., subject or object
phrases) are constructed earlier, and these com-
ponents are gradually integrated into a coherent
macro-syntactic structure in later layers. This ob-
servation is consistent with prior work on BERT,
which shows that local information (e.g., POS tags)
is captured early, while more abstract global struc-
tures emerge later (cf. Tenney et al., 2019). No-

tably, this pattern holds for both BERT-base and
BERT-large, although the overall expected layers
are slightly higher in BERT-large—likely reflecting
its deeper architecture and larger capacity.

7 Detailed Analysis: Subject-Verb
Agreement Task

7.1 Experimental Setup
To investigate how the process and layers involved
in syntactic structure construction relate to model
performance, we conduct a detailed analysis on
subject-verb agreement using sentences with inter-
vening nouns (“attractors”), following the approach
of Marvin and Linzen (2018) with some modifica-
tion. We sampled 1,000 positive (grammatical) and
1,000 negative (ungrammatical) sentences. All of
the sampled sentences have a subject followed by
a prepositional phrase, a verb, and a direct object
noun phrase. They thus are categorized into Marco,
nsubj, dobj structure sets. In our modification
of their templates, each of Marco, nsubj, dobj is
required to contain more than one word.

a. The senators behind the brilliant architect
avoid spicy dishes.

b. *The senators behind the brilliant architect
avoids spicy dishes.

This ensures that we can extract meaningful sub-
graphs within each syntactic substructure.
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Figure 5: Expected layers for syntactic structures in successful and failed subject-verb agreement cases. Error bars
show standard deviations across 5 random seeds.Bertbaseの内部状態可視化

Successful Case
Layer0 Layer1

Failure Case

Layer5

Figure 6: Derivation process visualizations for BERT-base on subject-verb agreement for a successful case (“The
authors beside the chef avoid spicy dishes.”) and a failure case (“The consultants behind the architects avoid spicy
dishes.”). Red highlights indicate the correct subject.

We first evaluate model performance on
this task by computing pseudo-whole-sentence
probabilities (Salazar et al., 2020). Specifically,
we calculate the probability of each token by
masking it one by one and then aggregate these
token-level probabilities to derive an overall
sentence probability. We expect the model to
assign higher pseudo-probabilities to grammatical
sentences compared to ungrammatical ones. We
then analyze how the syntactic construction
process differs between cases where the model
performs well and those where it fails.

Furthermore, to visualize the evolution of syntac-
tic structures across model layers, we employ Mul-
tidimensional Scaling (MDS). Specifically, we ap-
ply scikit-learn’s MDS implementation (Pedregosa
et al., 2011) with default parameters to word embed-

dings projected by our structural probe, allowing us
to illustrate clearly how syntactic representations
develop across different model layers.

7.2 Results

Overall, BERT-base correctly assigned higher
pseudo-whole-sentence probabilities to gram-
matical sentences in 984 out of 1,000 examples,
whereas BERT-large achieved correctness in 983
out of 1,000 cases. Despite their similar overall
accuracies, we observe distinct patterns between
BERT-base and BERT-large (Figure 5).

BERT-base. BERT-base frequently failed when
macro-syntactic structures were established prema-
turely, potentially restricting the incorporation of
essential micro-syntactic details. As illustrated in
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bertlargeの内部状態可視化

Layer0 Layer5

Failure Case

Layer12
Successful Case

Figure 7: MDS visualizations of syntactic structure evolution in BERT-large for subject-verb agreement for a
successful case (“The customers near the guard prefer quiet evenings.”) and a failure case (“The senators behind the
architects avoid spicy dishes.”). Red highlights indicate the correct subject.

Figure 6, successful cases show a sequential pattern
where BERT-base first constructs micro-syntactic
structures within the subject phrase in early layers,
subsequently aligning the subject (authors) with
the verb (avoid) around layer 5 after stabilizing
the internal subject dependencies. In contrast,
failure cases reveal premature alignment of macro-
syntactic structures, with the subject (consultants)
prematurely linked to the verb (avoid) before fully
establishing necessary micro-syntactic details.
This premature commitment might have negatively
impacted the overall syntactic representation,
disrupting correct subject-verb agreement.

BERT-large. BERT-large exhibited higher
expected layers for macro-syntactic structures in
failure cases, suggesting delayed integration of
macro-syntactic information. Figure 7 illustrates
representative successful and unsuccessful cases
for BERT-large. Successful predictions demon-
strate early alignment of the subject (customers;
highlighted in red) with the verb (prefer) around
layer 5, facilitating accurate subject-verb agree-
ment. Conversely, in unsuccessful cases, this align-
ment emerged considerably later (around layer 12),
highlighting delayed macro-syntactic integration.

These analyses suggest an optimal intermediate
range of layers for integrating macro-syntactic in-
formation. Forming macro-syntactic structures ei-
ther prematurely or excessively late can negatively
affect syntactic processing, highlighting the impor-

tance of appropriately timed integration for accu-
rate predictions. These visualizations underscore
how deviations from this optimal timing contribute
to subject-verb agreement errors.

8 Discussion and Conclusion

In this paper, we introduced Derivational Probing—
a method that integrates structural probing with
an expected layer metric to trace the construction
process of syntactic structures in neural language
models. Our experiments revealed that BERT mod-
els tend to build micro-syntactic dependencies first
and gradually assemble them into a coherent macro-
structure.

BERT’s bidirectional context supports a step-
wise, bottom-up construction—starting with the
formation of local, micro-syntactic structures and
culminating in a fully integrated macro representa-
tion. These findings offer valuable insights into the
internal mechanisms by which deep neural models
construct syntactic trees and highlight the impor-
tance of examining layer-wise structural formation
for improved model interpretability.

One promising direction for future research is to
incorporate multilingual probes, which will help
determine whether these syntactic structures gen-
eralize beyond English or are not mere artifacts
of the particular training corpus. Another exciting
direction would be to explore incremental parsing
strategies in autoregressive language models as an
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alternative to non-incremental derivation processes
across layers (cf. Eisape et al., 2022), which could
yield further insights into the syntactic knowledge
of neural language models.

Limitations

First, our experiments were conducted on only two
neural language models (BERT-base and BERT-
large). It remains unclear whether similar results
would be obtained for larger models or other archi-
tectural variants. However, our method is applica-
ble to any open neural model, making it feasible to
extend this analysis to a broader range of models
in future research.

Second, this study focused solely on English
data. It is uncertain whether similar layer-wise
syntactic structure construction patterns would be
observed when applying our method to other lan-
guages. Nevertheless, our approach is language-
agnostic, making cross-linguistic analysis an im-
portant direction for future work.

Furthermore, semantic cues may influence the
results of syntactic probes. Our study does not fully
account for these potential semantic confounds. Fu-
ture research should consider methods to more rig-
orously isolate syntactic information, such as using
Jabberwocky sentences as demonstrated by Maud-
slay and Cotterell (2021).

Lastly, our method relies on dependency pars-
ing, primarily due to the use of the structural probe
from Hewitt and Manning (2019), which analyzes
distances between tokens in the embedding space.
This approach is inherently tied to formalisms like
dependency grammar that focus on relationships
between terminal symbols (tokens). As a result,
our method may not be directly applicable to other
grammatical theories or parsing approaches that in-
volve non-terminal symbols, such as constituency
grammar. This limitation arises because analyzing
distances between tokens does not capture the hi-
erarchical structures represented by non-terminals.
Future work could explore adapting our method or
developing new probing techniques that can handle
non-terminal representations to verify the general-
izability of our findings.

Ethical considerations

The training corpus is extracted from public web
pages and thus could be socially biased, despite its
popular use in the NLP community.
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A The Experimental Results for GPT-2
Models

Figures 8 and 9 show the experimental results
with the same experimental setup as §5, but con-
ducted with GPT-2 small3/medium4 (Radford et al.,
2019). In contrast to BERT, GPT-2 (both small and
medium) displays a more parallel derivation: the
expected layer values for both micro-syntactic and
macro-syntactic structures are closely aligned, sug-
gesting parallel derivation rather than a bottom-up
or top-down derivation.

B Hyperparameters

Hyperparameters for our experiments are shown
in Table 2. All models were trained and evaluated
on 4× NVIDIA RTX A5000 (24GB). The total
computational cost for all experiments in this paper
is about 120 GPU hours.

Optimizer Adam
Learning rate 1e-3
Number of epochs 40
Learning rate scheduler ReduceLROnPlateau
Batch size 32

Table 2: Hyperparameters for our experiments

C License of the Data and Tools

The licenses of the data and tools used in this paper
are summarized in Table 3. We confirmed that
all the data and the tools were used under their
respective license terms.

Data/tool License

spacy (Honnibal et al., 2020) MIT
transformers (Wolf et al., 2020) Apache 2.0
Wikitext-103 (Merity et al., 2016) CC-BY-SA 3.0

Table 3: License of the data and tools

3https://huggingface.co/openai-community/gpt2
4https://huggingface.co/openai-community/

gpt2-medium
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Figure 8: Expected layer for each GPT-2 model across different structure sets. Error bars represent standard
deviation across 5 random seeds.

Figure 9: Global UUAS by each layer for each GPT-2
model. Error bars represent standard deviations across
5 random seeds.
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