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Abstract

Recent research has increasingly focused on the
extent to which large language models (LLMs)
exhibit human-like behavior. In this study,
we investigate whether the mental lexicon in
LLMs resembles that of humans in terms of
lexical organization. Using a word associa-
tion task—a direct and widely used method
for probing word meaning and relationships in
the human mind—we evaluated the lexical rep-
resentations of GPT-4 and Llama-3.1. Our find-
ings reveal that LLMs closely emulate human
mental lexicons in capturing semantic related-
ness but exhibit notable differences in other
properties, such as association frequency and
dominant lexical patterns (e.g., top associates).
Specifically, LLM lexicons demonstrate greater
clustering and reduced diversity compared to
the human lexicon, with KL divergence anal-
ysis confirming significant deviations in word
association patterns. Additionally, LLMs fail
to fully capture word association response pat-
terns in different demographic human groups.
Among the models, GPT-4 consistently exhib-
ited a slightly higher degree of human-likeness
than Llama-3.1. This study highlights both the
potential and limitations of LLMs in replicat-
ing human mental lexicons, offering valuable
insights for applications in natural language
processing and cognitive science research in-
volving LLMs.

1 Introduction

Large language models (LLMs) have made sig-
nificant progress in capturing complex linguistic
patterns through self-supervised learning on vast
corpora (Brown et al., 2020). Nevertheless, the
question remains whether these models merely ap-
proximate language based on surface regularities or
if they meaningfully align with the deeper cognitive
mechanisms underlying human language process-
ing (Cai et al., 2024; Chomsky et al., 2023). Inves-
tigating their internal lexical organization—what

psycholinguists call the “mental lexicon”—can
shed light on whether LLMs’ representations go
beyond statistical pattern matching to reflect how
humans store and retrieve word meanings.

In this study, we examine whether two leading
LLMs (at the time of testing, GPT-4o and Llama-
3.1) replicate essential properties of the human
mental lexicon by leveraging a classic psycholin-
guistic paradigm: the word association task. By
systematically comparing LLM-generated word as-
sociations to large-scale human data from the Small
World of Words (SWOW) project (De Deyne et al.,
2019), we explore how closely lexical organization
in LLMs resembles that in humans. In addition,
we investigate whether LLMs can accurately repro-
duce the lexical characteristics unique to different
demographic groups when instructed to generate
text from these perspectives.

1.1 The Mental Lexicon and Word
Association

The mental lexicon is commonly understood as
a highly structured, internal system that stores
and organizes word-related information, thereby
facilitating language comprehension and produc-
tion (Aitchison, 2012). It encompasses numer-
ous properties of words—including their semantic
content, phonological and orthographic represen-
tations, syntactic roles, morphological forms, and
frequency of use (Jarema and Libben, 2007). Schol-
ars often describe the mental lexicon as a network-
like structure, wherein words are interconnected
through semantic, phonological, and collocational
links (Monakhov and Diessel, 2024; Vitevitch et al.,
2014). These networks enable rapid retrieval of
lexical information and guide the flow of language
processing. Although the mental lexicon cannot
be directly observed, a variety of empirical stud-
ies—ranging from lexical decision tasks (Balota
and Chumbley, 1984) and priming paradigms (Fer-
rand and New, 2003) to analyses of speech errors
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(Stemberger, 1982)—offer converging evidence for
its functional organization. Moreover, its structure
likely emerges from distributed neural processes
underlying language (Jarema and Libben, 2007).

A cornerstone method for probing these lexi-
cal connections is the word association task, in
which participants list the first words that come
to mind given a cue (Rodd et al., 2016; Nelson
et al., 2004; Szalay and Deese, 2024). By having
participants produce the first word(s) that come to
mind, this paradigm helps to reveal associative con-
nections within the mental lexicon (De Deyne and
Storms, 2008; Ufimtseva et al., 2020). To capture
a richer and more diverse perspective on word re-
lationships, large-scale studies such as the Small
World of Words (SWOW) project (De Deyne et al.,
2013) employ a multiple-response format in which
participants generate three different associative re-
sponses for each cue. By assembling extensive
datasets from participants of various demographic
backgrounds, SWOW enables in-depth investiga-
tions of individual and demographic differences
in lexical organization (De Deyne et al., 2019).
When aggregated across many individuals, these
data yield large-scale semantic networks that ro-
bustly predict behavioral measures such as lexical
decision, naming reaction time, and human-rated
word relationships beyond the influence of straight-
forward lexical statistics like word frequency (Bar-
ber et al., 2013; De Deyne et al., 2019; Li et al.,
2024). The SWOW norm has proven robust across
multiple languages, leading to the construction of
mental lexicons for Dutch (De Deyne et al., 2013),
English (De Deyne et al., 2019), Mandarin Chinese
(Li et al., 2024), and Rioplatense Spanish (Cabana
et al., 2024), among others.

1.2 Exploring the Black Box of LLMs Using
Behavioral Experimentation

Recent advancements in natural language process-
ing (NLP) benchmarks—including SuperGLUE
(Wang et al., 2019) and BIG-bench (Srivastava
et al., 2022)—have demonstrated that LLMs ex-
cel in tasks such as translation, question answering,
cloze tests, textual entailment, and diverse forms
of reasoning (Wang, 2018; Srivastava et al., 2022).
While these accomplishments highlight the models’
versatility and the human-like character of their
outputs, they do not clarify whether the underly-
ing processes genuinely resemble human language
comprehension or merely represent sophisticated
pattern matching (Chomsky et al., 2023; Piantadosi,

2023; Futrell and Mahowald, 2025).
One promising way to bridge this gap is by

leveraging behavioral experiments as downstream
tasks to evaluate LLMs. These experiments have
been instrumental in modeling the cognitive mech-
anisms that shape human behavior. When adapted
for LLMs, they provide a framework to examine
whether these models display cognitive patterns
comparable to those found in humans. By compar-
ing LLM performance against human responses in
well-designed experiments, researchers can gain
valuable insights into the language capabilities of
these systems. For instance, various psycholinguis-
tic methodologies (e.g., priming) have been em-
ployed to explore whether LLMs exhibit language
processing patterns akin to human cognition (e.g.,
Ettinger, 2020; Prasad, 2019; Sinclair et al., 2022).

Several recent studies have applied this method-
ology to illuminate LLMs’ capabilities. Cai et al.
(2024) subjected LLMs to a variety of psycholin-
guistic tasks, finding that the models success-
fully replicated numerous human-like language
processes: forming sound-based associations for
unfamiliar words, displaying priming effects in am-
biguous word or sentence retrieval, interpreting
implausible sentences adaptively, overlooking mi-
nor semantic errors, and generating bridging in-
ferences. These models also adjusted causality
interpretations in response to verb semantics and
tailored language retrieval based on the interlocu-
tor’s role. Extending this line of research, Duan
et al. (2024b) devised a benchmark to quantify how
closely LLMs mirror human language use in phe-
nomena like priming and adaptive sentence inter-
pretation, showing that models such as Llama-3.1
and GPT-4o achieve appreciable levels of human-
likeness. Hu et al. (2024) likewise demonstrated
that LLMs can replicate human intuitive judgments
on diverse grammatical structures.

Despite these promising parallels, researchers
have identified key divergences from human cog-
nition. Qiu et al. (2023) reported that LLMs en-
counter difficulties in pragmatic reasoning, while
Cai et al. (2024) highlighted issues such as a fail-
ure to prefer shorter words for less informative
content and an inability to optimally use context to
resolve syntactic ambiguities. Likewise, Dentella
et al. (2023) noted that LLMs fall short of humans
in accuracy and consistency of grammatical judg-
ments.

Taken together, behavioural experimentation has
deepened our understanding of LLMs’ language
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processing abilities and underscored both their
human-like traits and their limitations. The mixed
results highlight the importance of continued re-
search aimed at refining our grasp of these models’
strengths and shortcomings, particularly through
systematic examinations of foundational aspects of
language cognition, such as lexical organization.

1.3 Exploring the Mental Lexicon in LLMs
Using Word Association

Since LLMs are trained on vast amounts of text
data but lack embodied sensory experience, an in-
triguing question arises: can they understand word
relationships purely through textual associations,
or is there a crucial role for non-linguistic sensory
experience in forming a rich, human-like mental
lexicon? Unlike humans, who accumulate word as-
sociations through multisensory interactions with
the world, LLMs can only infer relationships from
the patterns present in the text they are trained on.
This raises the central challenge of whether LLMs
can approximate the depth of human lexical orga-
nization without shared lived experiences.

A well-established approach for probing lexical
structure is the word association paradigm (Ku-
mar et al., 2021), which offers a window into
the associative networks underlying lexical ac-
cess. The Small World of Words–English (SWOW-
EN) corpus (De Deyne et al., 2019), comprising
over 12,000 cue words and responses from ap-
proximately 80,000 participants, serves as a robust
benchmark for such comparisons. Recent stud-
ies by Abramski et al. (2024, 2025) adapted this
paradigm to LLMs such as Llama 3, Claude Haiku,
and Mistral, generating large-scale word associa-
tion datasets. Their work investigated lexical diver-
sity, concreteness effects, and bias patterns, and
evaluated model-derived semantic networks via
priming simulations. Vintar et al. (2024) explored
word associations in multilingual and monolingual
LLMs (e.g., mT5, SloT5) for Slovene and English,
focusing primarily on lexical overlap with human
data and categorizing response types

While our study adopts a similar SWOW-style
elicitation method, our analytic focus diverges in
important ways. We evaluate the extent to which
LLMs capture core psycholinguistic dimensions
of the mental lexicon—semantic relatedness, as-
sociative frequency, lexical entropy, and network
clustering—and assess their alignment with human
data. We also use KL divergence to quantify dis-
tributional differences. Beyond structural compar-

isons, we further examine whether LLMs reflect
sociolinguistic variability observed in human lex-
ical representations. Specifically, we test whether
model responses vary systematically across demo-
graphic groups, including education level, gender,
and age, based on significant sociolinguistic diver-
gence patterns reported in prior work (Garimella
et al., 2016, 2017). By integrating structural and
sociocognitive perspectives, our study provides a
comprehensive assessment of the extent to which
LLMs approximate both the organization and vari-
ability of the human mental lexicon.

Building on these open questions, the current
study examines:

1. To what extent does the mental lexicon in
LLMs resemble that of humans in terms of their
associative structure and organization?

2. How do different LLM architectures and train-
ing approaches influence the human-likeness of
their mental lexicon?

3.To what extent does the mental lexicon of
LLMs capture demographic variability, akin to the
way human word associations vary across factors
such as age, cultural background, and personal ex-
perience?

To address these questions, we adapted the
SWOW-EN word association paradigm for LLMs,
using identical cue words and controlling for demo-
graphic factors wherever possible. We then mod-
eled each LLM’s mental lexicon, with a focus on
association frequency, semantic relationships, net-
work properties (such as clustering coefficients),
and vocabulary diversity. Our comparisons ex-
tended across different LLMs (e.g., GPT-4o and
Llama-3.1), as well as between LLMs and human
participants. We also examined how demographic
aspects might be encoded or omitted in their asso-
ciative structures.

2 Method

2.1 Models and Human Data

Two state-of-the-art transformer-based language
models (at the time of testing) were employed for
data collection: GPT-4o, developed by OpenAI,
and Llama 3.1-70b-instruct, developed by Meta.
For simplicity, these models are referred to as GPT
and Llama, respectively, throughout this paper. Hu-
man responses were drawn from the SWOW-EN
dataset (SWOW-EN.R100.20180827.csv). Only
trials contributed by native English speakers were
retained, thereby excluding data from non-native
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speakers. Trials included in the analysis aligned
precisely with those replicated in the model experi-
ments.

2.2 Stimuli and Procedure
A total of 12,281 cue words from the SWOW-EN
project (De Deyne et al., 2019) served as stimuli.
1 In the original SWOW-EN dataset, thousands
of participants each provided responses to 14–18
of these cue words, resulting in over one million
trials.

LLM data were collected in two experiments:
one using GPT-4o and the other using Llama-3.1.
Each experiment encompassed 1,061,729 trials,
mirroring the number of trials from native English
speakers in the SWOW-EN dataset. In the exper-
iments, each trial consisted of a single cue word
embedded in an instruction prompt (e.g. ...You will
receive a cue word. Write the first word that comes
to mind...The cue word is...), accompanied by a sys-
tem prompt specifying the demographic informa-
tion corresponding to a trial from the SWOW-EN
dataset (i.e., educational level, age, gender, English
dialect, and location) (e.g. You are 33 years old.
You are a female...). This demographically targeted
prompting strategy was designed, on one hand, to
closely mimic human experimentation and, on the
other hand, to provide demographic cues for explor-
ing the potential influence of demographic factors
on LLM responses, akin to the variability observed
in human language processing. Full example of
prompt and response are provided in Appendix B.

All model responses were collected using the
R MacBehaviour package (Duan et al., 2024a),
a toolkit designed to facilitate behavioral exper-
iments on LLMs. Each trial was run as a discrete
chat session containing only one cue word to avoid
memory effects, and the package automatically
recorded all responses. The default temperature
settings for each model were retained: temperature
= 1 for GPT-4o and temperature = 0.6 for Llama-
3.1.

2.3 Data Preprocessing
Preprocessing steps were performed for both LLM-
derived and human-derived responses. Each partic-
ipant—human or model—provided three responses
per cue word, labeled R1, R2, and R3 according to
their order. Any additional responses beyond the
first three were truncated, and missing responses

1We excluded the cue “none” from the original 12,282-cue
list due to its potential to confound analyses.

were coded as NA. Cue words that were not recog-
nized (prompting the model to respond with “un-
known word”) were also coded as NA. Responses
in non-ASCII characters and duplicates within the
same cue word were removed.

Further cleaning was conducted using the
SWOW-EN preprocessing script (preprocess-
Data.R). This script removed repeated responses
for specific cue words, corrected inconsistencies in
missing responses (for example, NA coded in R2
but not in R3), and standardized spelling variations.

2.4 Data Analysis
Following data collection and preprocessing,
we obtained three datasets—Human, GPT, and
Llama—each containing the same cue words, up
to three associated responses per cue, and demo-
graphic information. Multiple metrics were com-
puted to assess how closely model outputs aligned
with human data. These metrics capture distinct yet
interrelated key aspects of lexical representation,
including word prominence, semantic organization,
network topology, and lexical diversity.

Association Frequency. Association frequency,
defined as the number of times a word appears as
an associate (De Deyne et al., 2019). This measure
reflects a word’s prominence in the mental lexicon
and predicts reaction time (RT) in tasks such as
lexical decision, naming, and semantic judgment.
We conducted three analyses: (1) correlating asso-
ciation frequencies across datasets, (2) examining
correlations between association frequencies and
RTs (Balota et al., 2007; Pexman et al., 2017), us-
ing both Pearson correlations and partial correla-
tions that controlled for word frequency (English
SUBTLEX-US (Brysbaert and New, 2009)), and
(3) comparing the top 100 most frequent associates
across datasets to evaluate overlap and relative lex-
ical prominence.

Semantic Relatedness. We computed seman-
tic relatedness using a random-walk algorithm
applied to cue–associate networks derived from
word association data (De Deyne et al., 2016,
2019). Random-walk values for the human dataset
were obtained from SWOW-EN, while those for
GPT and Llama were generated using the original
SWOW-EN script (graphRandomWalk.R). Note
that semantic relatedness, as measured in this con-
text, encompasses not only taxonomic similarity
(e.g., car–automobile) but also broader associative
relationships, including functional, thematic, or-
thographic (e.g., favor–flavor), and collocational
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links (e.g., duty–free) (De Deyne et al., 2019). Be-
cause word association networks naturally encode
this diverse range of connections, the resulting
random-walk scores reflect the associative struc-
ture of the mental lexicon beyond pure similarity.
To assess the extent to which model-based related-
ness aligns with human intuitions, we conducted
two analyses: (1) correlating random-walk scores
across datasets, and (2) comparing random-walk
values with human judgments of semantic similar-
ity from benchmark datasets including MEN (Bruni
et al., 2012), MTURK-771 (Halawi et al., 2012),
and SimLex-999 (Hill et al., 2015). While these
benchmarks specifically target similarity, previous
work has shown that random-walk relatedness cor-
relates strongly with human similarity judgments
(De Deyne et al., 2019), making them a useful point
of comparison.

Network Attributes. Network science of-
fers a systematic framework for analyzing struc-
tural properties across diverse domains (Barabási,
2013; Lewis, 2011), including semantic networks
(Steyvers and Tenenbaum, 2005). The cluster-
ing coefficient is a key metric within this frame-
work, indicating how tightly interconnected the
neighbors of a given node are (Newman, 2003;
Saramäki et al., 2007). In semantic networks,
higher clustering coefficients signify denser inter-
connections among words, resulting in community-
like structures (Palla et al., 2005), as illustrated by
Figure 1. In this study, cue–response data were
transformed into a weighted directed graph using
the igraph package in R, creating edges for every
cue–response pair. The local clustering coefficient
for each node was then computed using the stan-
dard formula:

C(v) =
2× ei

ki(ki − 1)

where ei represents the number of edges among
neighbors of node i, and ki denotes the degree of
node i. The distributions of clustering coefficients
were compared across human, GPT and Llama net-
works to assess similarities and differences in struc-
tural connectivity.

Vocabulary Diversity. Vocabulary diversity
gauges the breadth and variety of words pro-
duced, reflecting linguistic adaptability and flex-
ibility (Malvern et al., 2004; Laufer and Nation,
1995). To assess this property, we calculated as-
sociation entropy for each cue word to evaluate
variability in word associations. Shannon entropy

Figure 1: Examples of high and low clustering coeffi-
cients. “Family” (left) demonstrates a high clustering
coefficient, reflecting dense interconnections among its
neighbors, whereas “time” (right) has a low coefficient,
indicating sparse connections. Although both words
share the same number of immediate neighbors (degree),
their internal connectivity differs markedly.

H was computed as:

H(X) = −
n∑

i=1

p(xi) log2 p(xi)

where p(xi) is the proportion of a particular word
i among all responses to a given cue. Higher en-
tropy values reflected a greater spread of responses,
whereas lower entropy indicated stronger consen-
sus. These entropy distributions were then com-
pared across the human data and each LLM dataset.
Furthermore, we analyzed demographic variability
by incorporating demographic factors (e.g., educa-
tion level, gender) into entropy calculations. We
examined interaction effects between demographic
levels and groups (human, GPT, Llama) to deter-
mine whether demographic factors influence asso-
ciation variability similarly in humans and LLMs
or exhibit distinct patterns.

2.5 KL Divergence
In addition to the aforementioned metrics, we com-
puted Kullback–Leibler (KL) divergence to assess
the degree of divergence between human-generated
and model-generated word association distribu-
tions. KL divergence quantifies how much one
probability distribution P differs from a reference
distribution Q, with lower values indicating greater
similarity. It is defined as:

KL(P∥Q) =
∑

i

P (i) log
P (i)

Q(i)

In all calculations, we defined the human-
generated distribution as P and the model-
generated distribution (GPT or Llama) as Q, i.e.,
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Figure 2: Pearson correlations of association frequencies with lexical decision, naming, and semantic decision RTs.
Pink and gray bars depict partial correlations controlling for word frequency (SUBTLEX-US). Freq.R123 is defined
as the number of times being an associate, regardless of cue(s), across all associates (R1, R2, and R3) collected in
the experiment. For readability, RTs were z-transformed and log-transformed and then shifted to positive values
by adding the minimal z-score, while association frequencies were log-transformed after adding a constant of 1.
The key finding is that model-derived correlations were significantly weaker than human-derived ones, as indicated
by Steiger’s Z test (p < 0.001 for most comparisons, except for the partial correlation between Llama and human
association frequency-RT correlations, where p = 0.03). Significance levels: *: p < 0.05; **: p < 0.01; ***:
p < 0.001.

we computed KL(Human∥Model). This direction
reflects the information loss incurred when using
model outputs to approximate the human mental
lexicon—a standard approach in cognitive model-
ing. For each cue word, relative-frequency-based
probability distributions were derived separately
from the Human, GPT, and Llama datasets, and KL
divergence was computed accordingly.

3 Results

3.1 Association Frequency

Both GPT and Llama exhibited substantial correla-
tions with human association frequencies, though
GPT’s association frequency correlated more
closely with human data compared to Llama’s,
a difference confirmed by Steiger’s Z test (Z =
21.43, p < 0.001). See Figure 7 in Appendix C for
detail illustration.

Despite the overall correlation among datasets,
model-human misalignment emerged when assess-
ing the relationship between association frequency
and lexical processing speeds (lexical decision,
naming, and semantic decision RTs). Human as-
sociation frequencies showed the strongest corre-
lations with RT data. While both GPT and Llama
significantly predicted RTs, their correlations were
consistently weaker than those observed for human
data (Figure 2 and Table 1 in Appendix C). The

results suggest that while LLM-derived association
frequencies capture aspects of lexical processing,
they remain less predictive than human-derived
frequencies. Partial correlation analyses control-
ling for word frequency yielded a similar conclu-
sion. While human association frequency contin-
ued to show notable correlations with RTs, GPT
and Llama each accounted for less variance once
word frequency was taken into account (refer to
Figure 2 and Table 2 in Appendix C for statistical
details).

A comparison of the top 100 words by associa-
tion frequency (Figure 3 and Figure 4; see Figure 8
Appendix C for Llama’s) revealed both overlap and
divergence. Words such as “water” and “money”
appeared prominently in all lexicons, whereas “sex”
was more prominent among humans and “com-
puter” among LLMs. Overall, GPT shared 54% of
its top 100 list with humans, compared to Llama’s
43%, suggesting that GPT’s core associations more
closely mirrored human lexical prominence.

3.2 Semantic Relatedness

Random-walk relatedness scores computed using
all three associates (R1, R2, R3) revealed that
both GPT and Llama correlated strongly with hu-
man data, with GPT showing a significantly higher
alignment (Z = 489.38, p < 0.001). See Figure 9
in Appendix C for detailed illustrations.
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Figure 3: Top 100 words ranked by association fre-
quency in Human.

Figure 4: Top 100 words ranked by association fre-
quency in GPT.

In the benchmark comparison between model-
based relatedness and human semantic similar-
ity judgments, GPT exhibited consistently strong
alignment with human responses. According to
Steiger’s Z test (p > 0.05), there was no significant
difference between GPT’s correlations and those of
human random-walk scores across all three bench-
marks (MEN, MTurk, and SimLex-999). Llama
matched human performance on SimLex-999 alone
(see Figure 5). These results suggest that both mod-
els—especially GPT—are capable of producing
human-like semantic relatedness representations.

3.3 Network Attributes

A linear mixed-effects (LME) model revealed that
both GPT and Llama exhibited significantly higher
clustering coefficients than humans (β = 0.043,
t = 36.08, p < 0.001; β = 0.047, t = 35.93,
p < 0.001). When comparing the models, Llama’s
clustering coefficient was significantly higher than
GPT’s (β = 0.004, t = 2.58, p = 0.01). See
also Figure 10 in Appendix C. These findings sug-
gest that LLM-based semantic networks are more
densely interconnected than human networks, with
Llama showing the highest degree of local cluster-
ing.

3.4 Vocabulary Diversity

An LME analysis showed that both GPT (β =
−2.863, t = −497.6, p < 0.001) and Llama (β =
−2.913, t = −506.3, p < 0.001) had significantly
lower association entropy compared to humans,
indicating reduced lexical diversity. Furthermore,
Llama exhibited lower entropy than GPT (β =
−0.050, t = −8.674, p < 0.001); see Figure 11 in
Appendix C.

3.5 KL Divergence

The KL divergence analysis revealed notable
differences between human word associa-
tions and those generated by GPT and Llama.
The average KL divergence—computed as
KL(Human∥Model)—was 11.09 for GPT and
12.46 for Llama, both indicating substantial
deviation from the human distribution. A t-test
comparing these values yielded a significant
difference (t = −49.04, p < .001), suggesting
that GPT’s word association distributions more
closely resemble human responses than those of
Llama.

3.6 Examining Demographic Variability in
LLM Mental Lexicon

A demographic analysis using association entropy
and linear regression revealed significant interac-
tions between education level and source group
(Human, GPT, or Llama). While models captured
general education-related entropy trends (with a
visually similar pattern for age in Figure 13, Ap-
pendix C), they diverged from human patterns,
particularly among higher education groups (Fig-
ure 6). In human data, bachelor’s degrees ex-
hibited significantly higher entropy than master’s
(β = 0.136, p < 0.001), a difference absent in
GPT and Llama (GPT: β = −0.025, p = 0.960;
Llama: β = 0.005, p > 0.999). Llama also
failed to replicate entropy differences between high
school and bachelor’s (β = −0.022, p > 0.999)
or master’s degrees (β = −0.017, p > 0.999),
compared to humans (high school vs bachelor:
β = −0.311, p < 0.001; high school vs mas-
ter: β = −0.174, p < 0.001). GPT captured these
differences with slightly smaller effect sizes for the
high school-bachelor comparison (β = −0.046,
p = 0.030). These findings suggest that while
models capture broad demographic-related entropy
trends (and align with human data in some aspects,
such as gender variability; see Figure 12 in Ap-

592



Figure 5: Pearson correlations and 95% confidence intervals between random-walk relatedness scores and direct
semantic similarity ratings from MEN, MTurk, and SimLex999. *: p < 0.05; **: p < 0.01.

Figure 6: Entropy differences in association for educa-
tion groups across Human, GPT, and Llama datasets.
**: p < 0.01; ***: p < 0.001.

pendix C), they exhibit limited capacity for captur-
ing fine-grained differences, particularly in educa-
tional entropy. Llama deviates more from human
patterns in educational contexts than GPT does.

4 Discussion

Our study provides mixed findings regarding the
human-likeness of LLMs in replicating the men-
tal lexicon, with semantic relatedness emerging
as the most consistent parallel to human perfor-
mance. This aligns with Abramski et al. (2025),
who noted comparable semantic priming effects
in both human and model-based networks, high-
lighting human-like features in LLMs’ semantic
associations. While association frequency analysis
suggests LLMs capture some aspects of human-like
prominence in word associations, they primarily
encode straightforward lexical statistics like word

frequency, rather than deeper cognitive associa-
tions.

A significant divergence was observed in the
higher clustering coefficient and lower lexical diver-
sity of LLM-based semantic networks compared to
human counterparts. Additionally, KL divergence
analysis revealed discrepancies between human
and model-generated word associations, indicat-
ing that while LLMs replicate certain human-like
semantic relations, they lack the depth and range
of human mental lexicons. This may be due to the
absence of embodied sensory experience during
model training, which limits their ability to fully
capture the complexities of human language cogni-
tion.

Our comparison of GPT and Llama highlighted
consistent patterns, with GPT generally displaying
stronger human-like qualities. This suggests that
variations in training strategies and data sources
may significantly influence model performance, un-
derscoring the impact of model architecture and
training choices on LLM behavior.

Our findings also carry implications for the use
of LLMs as surrogate participants in cognitive sci-
ence research, a notion gaining traction in recent
studies (e.g. Duan et al., 2024a; Qin et al., 2024).
While LLMs offer a cost-effective alternative for
semantic-relatedness studies, their discrepancies
with human mental lexicons caution against overre-
liance on them as surrogates. Issues such as the mis-
representation of social identities, raised by Wang
et al. (2025), are particularly relevant here, as our
results suggest LLMs fail to fully capture demo-
graphic variability and diversity accurately, at least
in terms of word association. This reinforces con-
cerns that LLMs may oversimplify or misrepresent
human experiences, especially in studies involving
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identity and diversity. This concern is further com-
pounded by the growing reliance on synthetic data
in model training (del Rio-Chanona et al., 2024;
Shumailov et al., 2024), which may lead to even
less spontaneous and more constrained language
representations, thereby limiting LLMs’ ability to
reflect nuanced human variability.

A key interpretive challenge is whether the ob-
served demographic insensitivity stems from inher-
ent limitations in model representations or from in-
sufficiently strong persona conditioning. Findings
by Hu and Collier (2024) suggest that even struc-
tured demographic prompting typically explains
less than 10% of the variance in human responses
across subjective NLP tasks. This modest effect im-
plies that LLMs may require more detailed and con-
textually grounded persona descriptions to mean-
ingfully reflect individual-level variation. Thus,
our findings likely reflect both limited model re-
sponsiveness to demographic cues and the inade-
quacy of surface-level prompts in shaping behav-
iorally distinct outputs. Future work should ex-
plore more effective strategies for enhancing demo-
graphic control and further delineate the conditions
under which persona prompting can elicit inter-
pretable variation aligned with human diversity.

A key methodological consideration concerns
our reliance on prompting, rather than directly ex-
tracting conditional probabilities from the model’s
output distribution or other internal representations.
While prompting provides an intuitive and human-
aligned interface that mirrors task formats com-
monly used in psycholinguistic research, it may
introduce a layer of metalinguistic reasoning that
obscures the model’s underlying semantic repre-
sentations. Recent work by Hu and Levy (2023)
highlights this limitation, arguing that prompting re-
quires models to interpret linguistic input, thereby
testing metalinguistic judgment rather than directly
revealing internal representations. To explore the
feasibility of probability-based evaluation, we con-
ducted preliminary analyses using log-probabilities
sampled directly from the model. However, a
substantial proportion of high-probability outputs
consisted of subword tokens (e.g., "un", "ther"),
complicating alignment with human lexical data
and introducing nontrivial post-processing assump-
tions for reconstructing full-word responses. Given
these practical constraints, we adopted prompt-
ing to ensure interpretability and consistency with
behavioral baselines. Nonetheless, we acknowl-
edge that this approach may limit access to deeper

representational signals within the model. Future
work should consider hybrid frameworks that inte-
grate prompting with direct probability-based mea-
sures, enabling a more comprehensive assessment
of model–human alignment under varying input
modalities.

5 Conclusion

In conclusion, while LLMs demonstrate some
human-like properties in their mental lexicons, they
fail to fully replicate the complexity of human se-
mantic networks. The observed discrepancies in
lexical diversity and network structure reveal fun-
damental differences between human and machine
cognition. As LLMs continue to evolve, further
research is essential to refine these models to bet-
ter capture the nuanced, multimodal nature of hu-
man language. Caution is also needed when using
LLMs as substitutes for human participants, par-
ticularly in studies involving social identity and
linguistic diversity.
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A Appendix A: Limitations

This study uses a psycholinguistic method (word
association) to explore the mental lexicon of LLMs
and the extent to which it resembles that of humans.
A more comprehensive understanding of LLM lex-
ical organization could involve additional metrics,
such as network attributes that capture both local
and global properties. Furthermore, a philosoph-
ical or theoretical grasp of an LLM’s human-like
capabilities in language understanding, production,
and acquisition necessitates broader examination
frameworks and careful analysis of internal mecha-
nisms.

Our significant finding is that the divergence be-
tween LLM and human mental lexicons in terms of
lexical diversity may be partly constrained by tech-
nical factors, such as the temperature parameter
used to ensure consistent output. In addition, dur-
ing model training, “meta-controls” are added to
regulate content generation (e.g., overly vulgar con-
tent), which is crucial for safe use but objectively
limits word association divergence. This might
explain why certain words prominent in human
mental lexicons, such as “sex,” are less so in LLMs
according to our results. Some immediate associ-
ations might have been restricted based on these
factors. Nonetheless, we believe these factors do
not account for all divergences and likely represent
only a small portion influencing our results.

Further limitations arise from the demographic
variability analysis where certain groups—like
those with “no formal education,” “elementary
school,” or specific accents—had limited data. This
reduced sample size weakens statistical compar-
isons and underscores the need for more balanced
datasets reflecting diverse human profiles. Addi-
tionally, filtering for native English speakers led to
an imbalanced word association dataset with 63 to
100 valid trials per cue (M = 86, SD = 6.55). Al-
though both human and model groups faced similar
testing conditions, future research would benefit
from more evenly distributed data to enhance re-
liability and detail. Despite these constraints, our
findings offer preliminary insights into how LLMs
resemble and differ from human mental lexicons
and suggest promising avenues for further investi-
gation.

B Appendix B Sample Prompts and
Response

System Prompt: You are 33 years old. You are
a female. You are a native speaker of English who
grew up in Australia.

Prompt: On average, an adult knows about
40,000 words, but what do these words mean to
people? You can help scientists understand how
meaning is organized in our mental dictionary by
playing the game of word associations. This game
is easy: Just give the first three words that come to
mind.

Instructions: You will receive a cue word. Write
the first word that comes to mind when reading this
word. If you don’t know this word, write ’unknown
word’. Then write a second and third word, or write
’unknown word’ if you can’t think of any.

Please respond in the following format: [FIRST
WORD; SECOND WORD; THIRD WORD].
Please don’t ask any questions or give any other
information.

The cue word is: although
Response: but; however; yet
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C Appendix C Supplementary Figures
and Tables for Results

Figure 7: Correlation of association frequencies among
Humans, GPT, and Llama. For readability, values were
log1p-transformed (adding 1 before taking the natural
logarithm). The upper triangle displays Pearson corre-
lation heatmaps, the lower triangle shows scatter plots
with fitted regression lines, and the diagonal provides
histograms of Freq.R123 distributions. (Freq.R123 is
defined as the number of times being an associate, re-
gardless of cue(s), across all associates (R1, R2, and
R3) collected in the experiment). ***: p < 0.001.

Figure 8: Top 100 words ranked by association fre-
quency in Llama.

Figure 9: Pearson correlation coefficients for random-
walk measures based on all associates (R1, R2, R3) from
the Human, GPT, and Llama datasets. ***: p < 0.001.

Figure 10: Clustering coefficients in the semantic net-
works of Human, GPT, and Llama. **: p < 0.01; ***:
p < 0.001.
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Table 1: Pearson and partial correlations between association frequency and lexical processing RTs, along with
Steiger’s Z tests comparing model correlations and human correlations. Significance in Steiger’s Z tests indicates
misalignment with human association frequency–RT correlation size.

Pearson correlation Steiger’s Z test Partial correlation Steiger’s Z test

r p N Z p r p N Z p

Lexical decision
Human 0.54 <0.001 11,928 – – 0.27 <0.001 11,928 – –
GPT 0.39 <0.001 11,928 21.18 <0.001 0.18 <0.001 11,928 18.99 <0.001
Llama 0.33 <0.001 11,928 27.10 <0.001 0.13 <0.001 11,928 12.48 <0.001

Naming
Human 0.39 <0.001 11,968 – – 0.18 <0.001 11,968 – –
GPT 0.25 <0.001 11,968 12.96 <0.001 0.08 <0.001 11,968 7.35 <0.001
Llama 0.22 <0.001 11,968 16.07 <0.001 0.05 <0.001 11,968 9.34 <0.001

Semantic decision
Human 0.31 <0.001 3,932 – – 0.19 <0.001 3,932 – –
GPT 0.17 <0.001 3,932 7.27 <0.001 0.05 0.002 3,932 6.54 <0.001
Llama 0.25 <0.001 3,932 3.82 <0.001 0.15 <0.001 3,932 2.19 0.03

Table 2: Pearson correlation and Steiger’s Z test results for random walk measures between Human, GPT, and
Llama on MEN, MTurk, and SimLex999 benchmarks.

Pearson correlation Steiger’s Z test

Benchmark Model r p Z p

MEN Human 0.80 <0.001 – –
GPT 0.79 <0.001 1.80 0.07
Llama 0.77 <0.001 3.15 0.002

MTurk Human 0.77 <0.001 – –
GPT 0.77 <0.001 0.39 0.70
Llama 0.71 <0.001 2.06 0.04

SimLex-999 Human 0.66 <0.001 – –
GPT 0.67 <0.001 0.13 0.90
Llama 0.66 <0.001 1.08 0.27

Figure 11: Entropy values for cue words across Human,
GPT, and Llama data. ***: p < 0.001.

Figure 12: Entropy differences in association for gender
groups across Human, GPT, and Llama datasets. ***:
p < 0.001.
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Figure 13: Entropy differences in association for age groups across Human, GPT, and Llama datasets.
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