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Abstract

This study investigates how well discriminative
transformers generalize in Natural Language
Inference (NLI) tasks. We specifically focus on
a well-studied bias in this task: the tendency
of models to rely on superficial features and
dataset biases rather than a true understanding
of language. We argue that the performance
differences observed between training and anal-
ysis datasets do not necessarily indicate a lack
of knowledge within the model. Instead, the
gap often points to a misalignment between the
decision boundaries of the classifier head and
the representations learned by the encoder for
the analysis samples. By investigating the rep-
resentation space of NLI models across differ-
ent analysis datasets, we demonstrate that even
when the accuracy is nearly random in some
settings, still samples from opposing classes re-
main almost perfectly linearly separable in the
encoder’s representation space. This suggests
that, although the classifier head may fail on
analysis data, the encoder still generalizes and
encodes representations that allow for effective
discrimination between NLI classes.

1 Introduction

With the rise of pre-trained language models
(PLMs), NLI models have surpassed human perfor-
mance on several benchmarks. However, this raises
questions about whether these models truly under-
stand the NLI task or merely exploit shortcuts and
superficial patterns to achieve high accuracy with-
out genuine linguistic comprehension. To address
these concerns, researchers have developed analy-
sis and controlled datasets to expose the limitations
of NLI models, revealing their reliance on spurious
correlations rather than deep linguistic understand-
ing (McCoy et al., 2019; Ravichander et al., 2019;
Naik et al., 2018a). For example, models often
struggle with numerical reasoning or generalize
poorly to adversarial datasets like HANS (McCoy
et al., 2019). However, does evaluating a model

solely based on its predicted labels provide a com-
plete picture of what it has learned? If a model
performs poorly on an out-of-distribution (OOD)
dataset, can we conclusively argue that it lacks the
essential knowledge for the task? Prior work chal-
lenges these assumptions. Studies show that clas-
sifier accuracy can be highly sensitive to decision
thresholds (Yaghoobzadeh et al., 2021; Zhao et al.,
2021a), and representation-space analyses reveal
rich task-relevant structures even when classifier
predictions fail (Marks and Tegmark, 2024; Amini
and Ciaramita, 2023). This highlights that the rep-
resentation space contains a meaningful structure
beyond what accuracy captures. Similar findings
exist in computer vision, where models trained on
digit recognition datasets—even with some labels
withheld—still cluster unseen categories meaning-
fully (Dyballa et al., 2024).

This paper revisits the generalization of NLI
models on OOD datasets1: Does poor performance
on OOD datasets truly indicate a lack of knowl-
edge, or is it a symptom of misalignment between
the encoder’s representations and the classifier’s
decision boundaries? Our findings reveal that the
latter could also be true in some settings. We ana-
lyze the representation space of NLI models (Sec-
tion 3), focusing on linear separability (LS) across
OOD datasets. The encoder representations ex-
hibit strong LS for all datasets—even those where
classifier accuracy is poor. For instance, on the
Stress Test Numerical subset, the encoder represen-
tations show near-perfect LS (>96%), despite the
classifier head achieving only 42% accuracy. This
stark contrast suggests that the encoder captures
task-relevant knowledge that the classifier fails to
exploit. In Section 4, we further examine whether
LS can serve as a reliable indicator of a model’s
knowledge in NLI, exploring encoder’s behavior

1In this paper, we use OOD and analysis datasets inter-
changeably.
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across different scenarios.

2 NLI Task and Analysis Datasets

NLI task requires determining the logical relation-
ship between two input sentences: the premise and
the hypothesis. The goal is to classify whether
the hypothesis entails the premise, contradicts it,
or is neutral (neither entailing nor contradicting).
The Stanford Natural Language Inference (Bow-
man et al., 2015, SNLI) and Multi-Genre Natural
Language Inference (Williams et al., 2018, MNLI)
dataset are among the most widely used bench-
marks for this task. Although fine-tuned PLMs
achieve high performance on these benchmarks,
their performance on analysis datasets suggests
that these high results do not necessarily indicate
a deep understanding of the task. In this section,
we introduce the analysis datasets we selected for
this study. These datasets are among the most pop-
ular and relatively large evaluation benchmarks for
NLI, each designed to target different aspects of
linguistic knowledge.

2.1 SICK
Sentences Involving Compositional Knowledge
(Marelli et al., 2014, SICK) is a benchmark dataset
designed for evaluating compositional distribu-
tional semantics models. Comprising over 10,000
pairs of sentences labeled as entailment, contradic-
tion, or neutral, SICK serves as a benchmark for
evaluating models’ ability to handle compositional
meaning and inference (see examples in Appendix
Table 6).

2.2 HANS
The Heuristic Analysis for NLI Systems (McCoy
et al., 2019, HANS) is a synthetic dataset created
to expose the reliance of NLI models on the over-
lap heuristic. It features premise-hypothesis pairs
where all words in the hypothesis appear within the
premise. The dataset is divided into three heuristic
categories based on word overlap patterns: lex-
ical overlap, subsequence, and constituent. For
each category, half of the examples align with the
heuristic and are labeled as “Entailment,” while the
other half contradict the heuristic and are labeled
as “Non-Entailment.” Some examples from this
dataset are provided in Appendix Table 5. NLI
models often incorrectly classify samples that con-
tradict the heuristic as “Entailment,” demonstrating
their reliance on superficial cues rather than true
sentence understanding.

2.3 Stress Test

The Stress Test (ST) (Naik et al., 2018b) was de-
signed to uncover weaknesses in models fine-tuned
on the MNLI dataset by analyzing their perfor-
mance on challenging validation samples. It identi-
fies key linguistic phenomena, such as word over-
lap, negation, length mismatch, antonyms, spelling
errors, and numerical reasoning, that frequently
caused models to make errors.

To create subsets targeting these phenomena,
specific strategies were applied: for word over-
lap (ST-WO) and negation (ST-N), phrases like
“and true is true” and “and false is not true” were
appended to the hypotheses. For length mismatch
(ST-LM), the phrase “and true is true” was repeated
five times at the end of the premises. Numerical
reasoning (ST-NU) was crafted using premises ex-
tracted from the AQuA-RAT dataset, paired with
generated hypotheses (see examples Appendix Ta-
ble 7).2 Except for ST-LM, model performance
was significantly lower on these subsets compared
to the standard validation set, with particularly poor
accuracy on ST-N, where results approached ran-
dom chance.

3 Representation Space and Linear
Separability

Discriminative transformers are composed of two
key components: the encoder, which typically uses
a pre-trained language model, and the classifier
head, which is usually a shallow multi-layer per-
ceptron (MLP). In classification tasks, the [CLS]
token, representing the entire input sequence, is
passed to the classifier head to generate the final
prediction. Since the [CLS] token encodes all the
input information and serves as the primary fea-
ture for classification, our investigation centers on
understanding its representation within the model.

3.1 Experimental Setup

Baseline models. We explore the representation
space produced by the [CLS] token across three
models: RoBERTa (Liu et al., 2019b), BERT (De-
vlin et al., 2019), and DistilBERT (Sanh et al.,
2020). For consistency, we employ the base ver-
sions of all models. While BERT has been the focal
point in most analytical works, our study extends
this analysis to RoBERTa, known for its robust-

2We dismiss anatomy subset because it contains samples
of only one class.
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Dataset DistilBERT BERT RoBERTa

MNLI-m 82.1±0.2 84.3±0.4 87.5±0.1

MNLI-mm 82.2±0.2 84.4±0.5 87.4±0.2

SICK 54.4±0.6 56.4±0.8 57.5±0.5

HANS+ 97.3±0.8 97.7±1.2 98.7±0.1

HANS− 9.6±2.7 32.4±5.5 50.1±2.0

ST-NU 35.1±1.5 42.6±1.7 59.5±2.9

ST-LM 80.1±0.2 82.3±0.3 85.2±0.2

ST-N 54.6±1.0 56.0±0.3 57.1±0.7

ST-WO 60.1±1.3 59.0±1.3 63.0±2.7

Table 1: Accuracy of the three baseline models on NLI
analysis datasets SICK, HANS, and Stress Test (ST-X),
as well as the standard validation sets MNLI matched
(-m) and MNLI mismatched (-mm), reported for five
runs.

ness, and DistilBERT, a more lightweight alterna-
tive with less capacity to gain knowledge.3

Datasets. We fine-tune the baseline models on
the MNLI and SNLI datasets. Then, we exam-
ine the [CLS] token generated by these models for
analysis datasets mentioned in Section 2. Since
the training datasets have three labels (entailment,
contradiction, and neutral), while HANS only
has two (entailment and non-entailment), we map
both contradiction and neutral predictions to non-
entailment and leave entailment unchanged.

Fine-tuning. Each fine-tuning run consists of
training the models for 5 epochs with a learning
rate of 2 × 10−5, a batch size of 32, the AdamW
optimizer, and a learning rate decay of 0.02.

Dimension reduction. To gain a deeper under-
standing of the representation space in classifica-
tion, we visualized it by plotting the representations.
Since the embedding space is high-dimensional
(768 for base models), we applied Principal Com-
ponent Analysis (PCA) to reduce the dimension-
ality to three, allowing for a clearer visualization.
The reduced space captures approximately 77% of
the total variance, with each remaining component
contributing less than 2%, as shown in Figure 8 in
the Appendix. Therefore, this three-dimensional
representation provides a reasonable approxima-
tion of the original high-dimensional space.

3We also checked BERT-large, and the LS remains strong
despite poor accuracy.

3.2 Representation Space Visualization

The average performance of all baselines models
are reported in Table 1 for MNLI and in Table 8 (in
the Appendix) for SNLI. Consistent with the pur-
pose of the HANS dataset, the table confirms that
all models tend to classify HANS samples as en-
tailment, achieving near-perfect results on HANS+
but very poor performance on HANS−, which indi-
cates a strong reliance on overlap heuristics. For the
Stress Test dataset, the results for the ST-NU sub-
set are particularly poor, with performance close
to random chance for DistilBERT, suggesting that
these models struggle to infer anything meaningful
from mathematical or equation-based samples.

Figure 1 illustrates the representation space of
one trial from each model. Given that HANS has
the largest sample size (30000) compared to the
other datasets, we find it clearer to visualize its rep-
resentation in relation to the other analysis datasets.
As a result, all visualizations are for HANS un-
less otherwise specified. To match the number of
HANS samples, we selected 30K MNLI (train)
samples and plotted the 3D space for all 60K data
points.4

All the models show distinct regions within
the representational space, with each region cor-
responding to one class of MNLI. This structure
enables the classifier head to achieve linear separa-
tion. The representational space can be visualized
as a three-petaled flower, with each petal represent-
ing one of the three classes.

For the HANS dataset, however, the data is po-
sitioned beneath these petals. If the model’s ac-
curacy (trained on MNLI) on HANS matched its
performance on MNLI, we would expect the data
points to be similarly organized into distinct petals.
Instead, the majority of the HANS data is con-
centrated in the (blue) petal corresponding to the
entailment label, which cause the poor accuracy
presented in Table 1.

But the interesting point is that despite the clus-
tering of HANS data in the entailment region, the
orange and yellow points—representing entailment
and non-entailment labels, respectively—are still
clearly separated. This suggests that although the
HANS data is incorrectly categorized according to
the standard regions determined by the classifier
head, the opposite labels remain well-separated in

4Given the challenges of displaying 3D images, we provide
2D views from different angles to offer a clearer understanding
of the 3D representation space.
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Figure 1: 3D visualization of the [CLS] token representation space for the MNLI (in-distribution, ID) and HANS
(OOD) datasets, generated by the three baseline models. Colors indicate the gold labels. In all baseline models,
the orange and yellow points (representing the two classes of HANS) are clearly distinguishable. The 3D spaces
are visualized from two different perspectives (class 1: Entailment, class 2: Neutral, and class 3: Contradiction).
Despite encoder’s positioning of the OOD samples towards ID1, they are internally separated for their two classes
(OOD1, and OOD2,3), as particularly visible from the BERT visualization (middle, top).

the representational space. For additional clarity,
see Figure 2, which compares model outputs (la-
bels given by the classifier head) (2b) with the gold
labels (2a) of HANS.

3.3 Linear Separability (LS)

To evaluate whether the encoder’s [CLS] embed-
dings admit linear separability between classes,
we formalize the problem as follows. Let hi ∈ Rd

denote the last layer hidden state of the [CLS] to-
ken for the i-th input sample, and yi ∈ {1, . . . ,K}
its corresponding class label. We assess whether
there exists a linear decision boundary that sep-
arates classes in the embedding space. This re-
duces to solving for parameters W ∈ RK×d and
b ∈ RK such that ŷi = argmaxk (Whi + b)
achieves minimal cross-entropy loss over N sam-
ples:

L(W,b) = − 1

N

N∑

i=1

K∑

k=1

I[yi = k]

log

(
exp(Wkhi + bk)∑K
j=1 exp(Wjhi + bj)

)
, (1)

where I[·] is the indicator function. High accuracy
on held-out data implies the existence of a hyper-
plane Wkh+ bk = Wk′h+ bk′ separating classes
k and k′.

3.4 LS Results

Table 2 quantifies the degree of LS for all analysis
datasets across the baseline models fine-tuned on
MNLI and SNLI. For comparison, we also present
the results of a random experiment, where the la-
bels of the [CLS] token are shuffled randomly, and
decision boundaries are then computed (in paren-
theses). It is important to note that, in higher-
dimensional spaces and when the dataset size is
small, the accuracy of purely random data can ex-
ceed the expected accuracy (50% for two classes
and 33% for three classes).

Universal Linear Separability (LS) All mod-
els achieve high LS scores (77–98% for models
fine-tuned on MNLI), confirming that learned rep-
resentations inherently encode task-relevant fea-
tures rather than relying on superficial patterns.
This is particularly evident in HANS, where LS
exceeds 90% (e.g., BERT: 95.6%). Despite the
high degree of overlap between entailment and non-
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MNLI SNLI

Dataset DistilBERT BERT RoBERTa DistilBERT BERT RoBERTa

MNLI 80.1±0.2 (48.2) 82.4±0.1 (48.0) 86.4±0.3 (47.7) 70.3±0.2 (48.5) 74.6±0.3 (48.4) 79.4±0.3 (48.5)

SNLI 77.8±1.2 (49.0) 82.0±1.2 (48.8) 85.6±0.2 (48.1) 85.6±0.5 (48.7) 88.2±0.6 (48.9) 89.3±0.8 (49.0)

SICK 84.4±0.8 (59.7) 87.4±0.8 (60.0) 89.4±0.6 (59.5) 86.6±1.5 (59.9) 87.8±0.8 (59.9) 89.7±0.5 (59.8)

HANS 91.1±0.5 (56.1) 95.6±0.7 (56.2) 95.4±0.7 (55.9) 88.4±0.8 (56.0) 93.9±0.6 (56.3) 95.6±0.4 (56.1)

ST-LM 77.7±0.2 (48.0) 80.3±0.2 (47.7) 84.3±0.3 (47.5) 69.0±0.3 (48.6) 72.7±0.2 (48.6) 77.2±0.3 (48.1)

ST-N 77.6±0.5 (48.3) 80.1±0.3 (47.9) 84.0±0.3 (47.3) 67.5±0.3 (48.0) 71.6±0.7 (48.3) 76.1±0.5 (47.7)

ST-WO 78.4±0.1 (48.0) 80.9±0.3 (48.0) 84.8±0.3 (47.5) 69.0±0.3 (48.3) 72.8±0.5 (48.6) 77.5±0.5 (48.5)

ST-NU 96.3±0.4 (51.5) 97.4±0.6 (51.5) 98.4±0.9 (50.3) 94.2±1.3 (51.5) 96.3±0.6 (51.6) 98.4±0.2 (51.7)

Table 2: Results of linear separability for analysis datasets, based on models fine-tuned on MNLI and SNLI. The
linear separability is the accuracy of linear boundaries reported for the evaluation set of HANS, the mismatched
subsets of the ST datasets (ST-X), and MNLI, as well as the validation sets of SICK and SNLI. The numbers in
parentheses represent results from random experiments.

(a) Gold Labels

(b) Predicted Labels

Figure 2: A comparison of (a) the scatter of [CLS]
tokens for two HANS classes in space and (b) how a fine-
tuned BERT model classifies them into three classes,
with MNLI data included for reference.

entailment data points in HANS, the models do not
treat them as identical—contrary to what accuracy
in Table 1 suggests. For ST-LM, ST-N, ST-WO,
and SICK, LS is slightly less pronounced com-
pared to HANS. The most striking result comes
from ST-NU (numerical reasoning), where all base-
line models achieve over 95% LS. Although the
classifier head’s poor accuracy suggests that mod-
els struggle with numerical reasoning, the high LS
indicates that they effectively capture the necessary
information for this task.

Accuracy Paradox While classifier head accu-
racy suggests that ST-NU and HANS are difficult,
and ST-WO and ST-N are easier, the representation
space reveals the opposite. ST-WO and ST-N are
as challenging as the MNLI validation set, while
ST-NU and HANS are much easier. Notebly, ST-
WO, ST-LN, and ST-LM, which are derived from
the MNLI validation set with some modifications,
exhibit LS values similar to MNLI itself. This is an
interesting finding, as it suggests that these subsets,
being structurally similar to MNLI, pose compa-
rable challenges for the model. Since they are as
difficult as MNLI, their LS does not exceed MNLI
accuracy or reach the high LS values observed in
easier datasets like HANS, SICK, and ST-NU.

4 LS as Evidence of Encoder Knowledge

In the previous section, we observed that despite
the NLI model’s poor accuracy on the analytical
dataset, their encoder’s outputs remain nearly lin-
early separable. In this section we argue that low
accuracy does not necessarily indicate a lack of
NLI or linguistic knowledge. Instead, our results
highlight a misalignment between the encoder’s
learned representations and the classifier head’s
decision boundaries.

4.1 LS and Training Dynamics

In traditional machine learning, feature engineer-
ing was guided by domain experts who carefully
crafted features based on their deep understanding
of the task. These features were designed to effec-
tively differentiate between classes, making them
easy to separate with a simple MLP. In contrast,
transformer models delegate this responsibility to
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Model MNLI H+ H- HANS

BERTFull 84.7±0.2 97.7±1.2 32.4±5.5 65.0±2.6

BERTBalanced 81.6±0.4 79.1±3.5 48.8±3.4 63.9±1.2

Table 3: Comparison of BERT model accuracy when
fine-tuned on the full MNLI dataset (with 392K sam-
ples) and the balanced dataset (with 235K samples).
The mean accuracy is reported over 5 different seeds.

the encoder, which is tasked with generating mean-
ingful representations from raw input data. The
classifier head, on the other hand, merely maps
these representations to labels without any inher-
ent understanding of the task itself. If a model
truly grasps the underlying task, this understanding
should be reflected in the features produced by the
encoder. The fact that the encoder can generate
linearly separable features, even for datasets that
differ significantly from the training data, suggests
that it has captured genuine, task-relevant knowl-
edge. Moreover, we demonstrate that this LS is
not just an artifact of the model’s representation
but also correlates with its process of acquiring
knowledge during training. By varying the amount
of training data and limiting the number of update
steps, we explored the relationship between task
understanding (as reflected by standard validation
set accuracy) and LS of analysis dataset, with the
following findings:

• Effect of Training Data Size: Fine-tuning
BERT on varying proportions of the MNLI
dataset (from 5% to 100%) revealed a clear
trend, as the amount of training data increased,
LS improved for both the MNLI validation set
and the HANS dataset (Figure 3).

• Effect of Training Iterations: Similarly,
tracking the model’s performance on the full
dataset at 500-step intervals (Figure 9 in the
Appendix) showed that as validation accuracy
increased, the LS of analysis datasets also im-
proved.

These findings suggest that as the model refines its
understanding of the NLI task, it simultaneously
enhances its ability to produce clearer and more dis-
tinguishable representations, reinforcing the con-
nection between knowledge acquisition and LS.

4.2 Re-evaluating the Lexical Overlap Bias in
NLI Models

One common argument against NLI models achiev-
ing true linguistic mastery is their poor perfor-

Figure 3: LS of the HANS and MNLI (matched)
datasets for BERT fine-tuned on different percentages
of the MNLI dataset, along with model accuracy. The
consistent rise in LS alongside accuracy shows that im-
proved LS is not incidental but emerges as the model
learns the task more deeply with more data; reflecting
the accumulation of generalized, task-relevant knowl-
edge in the encoder.

mance on heuristic-based datasets. This is often
cited as evidence that these models rely on short-
cuts in the training data rather than acquiring gen-
uine linguistic knowledge. HANS, as a prominent
example of such datasets, is frequently used to
support this claim due to its design, which specif-
ically targets lexical overlap heuristics. Since we
argue that the model does acquire sufficient lin-
guistic knowledge, we challenge this assumption
by conducting an experiment to remove the poten-
tial influence of lexical overlap bias and examine
whether the model’s performance improves.

To explore this, we calculated the overlap per-
centage for all training examples and grouped them
into 100 bins, each representing a 1% range (e.g.,
[88, 89) overlap). Within each bin, we ensured
an equal distribution of examples across all three
labels by selecting a balanced number of samples
from the least frequent label. This process elim-
inated label imbalance across different levels of
lexical overlap, as shown in Figure 4. Using this
balanced dataset, we fine-tuned a BERT model for
five epochs, with results reported in Table 3. While
accuracy on HANS− improved, this came at the
cost of decreased accuracy on HANS+, leading to
an overall drop in HANS performance compared
to the model trained on the full MNLI dataset. Fig-
ure 5 visualizes the representation space of the
[CLS] tokens from the model trained on the bal-
anced dataset. The HANS representations remain
largely clustered together within the entailment re-
gion, rather than forming distinct groups. If the
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Figure 4: Histograms of label frequency across different overlap percentages, before and after balancing the dataset.
The original experiment used 100 bins, but for the sake of space, we present both histograms with 10 bins.

Figure 5: Visualization of the [CLS] representation
space for BERT fine-tuned on the blended MNLI dataset.
Colors indicate the gold labels.

overlap heuristic was the primary cause of the bias,
balancing the dataset should have improved the
results.

4.3 Effect of Random Seed on Performance

Prior works (McCoy et al., 2020; Zhou et al., 2020)
have reported that models trained on standard NLI
datasets exhibit consistent in-domain (ID) valida-
tion performance across different random seeds,
yet their performance on challenge datasets (OOD
cases) such as HANS fluctuates significantly. In
some subsets of HANS, accuracy varies between
0% and 66% depending on the seed. As shown in
Table 1, accuracy variance is large for HANS and
ST-NU, whereas the MNLI validation set shows al-
most no variance. Notably, these results are based
on only five random seeds; increasing the number
of trials would likely reveal even greater variance.

Based on these results, prior work suggests that
while the model consistently learns patterns that
perform well on the validation set, its generaliza-
tion to OOD or adversarial cases is unstable. How-
ever, a closer analysis points to an alternative ex-
planation. The encoder, which encodes linguistic
knowledge, exhibits a high degree of consistency
across random seeds. Its representations maintain
LS even for adversarial inputs, regardless of ini-

Trial HANS Accuracy Linear Separability

High-performing 67.6 95.5
Low-performing 52.8 95.0

Table 4: Comparison of HANS accuracy and LS for a
high-performing and a low-performing trials.

tialization. In Table 4 we compare the accuracy
and LS of two BERT models with two different ini-
tial seeds, one with very poor HANS performance
and one with very strong performance, yet their en-
coder representations remain distinguishable in the
same way. This suggests that the encoder reliably
captures task-relevant linguistic features which are
preserved across seeds.

Instead, the classifier head—a shallow, randomly
initialized MLP—is highly sensitive to weight ini-
tialization. Different random seeds result in di-
vergent decision boundaries within the encoder’s
representation space. While these boundaries work
well for ID validation data (MNLI), they fail to
generalize to OOD datasets like HANS. This is
because the classifier is primarily optimized for
MNLI’s feature distribution, which does not nec-
essarily align with the structure of adversarial or
OOD samples.

Thus, rather than instability arising from dif-
ferences in learned knowledge, it stems from the
classifier’s inconsistent mapping of the encoder’s
representations, leading to poor generalization be-
yond the training domain.

5 Discussion

We have shown that despite the poor and unstable
performance of NLI models on OOD datasets, the
encoder representations of these datasets remain
consistently and highly discriminative with respect
to class labels. This suggests that the model ac-
quires core linguistic knowledge relevant to the
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NLI task that generalizes beyond the training dis-
tribution. If this were not the case, it would be
unclear why the encoder organizes unseen data in
a way that permits linear separation. Notably, this
behavior does not universally occur for all types
of OOD data; it stands in contrast to tasks such as
paraphrase detection, where the encoder often fails
to produce similarly structured representations.

For example, QQP is a standard benchmark for
paraphrase detection, while PAWS (Zhang et al.,
2019) was introduced to challenge models that rely
on shallow heuristics such as word overlap. A
BERT model fine-tuned on QQP performs poorly
on PAWS, misclassifying most examples as para-
phrases, despite nearly half being non-paraphrases.
In this case, LS is close to random—61.4% com-
pared to 57.2%—and the PAWS examples appear
scattered within the QQP duplicate region in the
representation space, as shown in Figure 6.

As discussed in Section 4.3, one potential ex-
planation for why encoder representations can be
discriminative for OOD datasets despite low accu-
racy is that, from the perspective of the PLM, the
MNLI dataset occupies a distinct and well-defined
region in the representation space, whereas ana-
lytical datasets reside elsewhere (Figure 7). Dur-
ing fine-tuning, the encoder and classifier head are
updated jointly to establish decision boundaries.
However, this optimization process focuses only
on MNLI training examples, which are explicitly
supervised. As a result, the encoder is shaped to
structure MNLI data effectively while ignoring how
these changes affect other parts of the space. Since
OOD data are not included during training, mis-
alignments in those regions incur no penalty, lead-
ing to reduced generalization performance.

It is important to emphasize that the LS values
we report are not the result of any additional train-
ing. Rather, they reflect the decision boundaries al-
ready present in the representation space after fine-
tuning. This distinction is critical, as it rules out
multitask learning as a source of the observed pat-
terns. In multitask learning, the encoder is jointly
trained on multiple objectives, encouraging knowl-
edge sharing across tasks. In our setting, however,
the encoder is fine-tuned solely on MNLI, and the
analysis datasets are never seen during training. We
simply train a linear classifier on frozen represen-
tations using cross-entropy loss, thereby probing
the task-relevant structure already encoded by the
model.

Figure 6: Representational space of the [CLS] token
generated by the BERT model fine-tuned on the QQP
dataset.

Figure 7: Visualization of the [CLS] representation of
the MNLI training set and HANS from the perspective
of pre-trained BERT.

6 Related Work

6.1 Probing Knowledge

Probing the representation space of PLMs has been
central to understanding the knowledge they en-
code. Early studies analyzed layer-wise represen-
tations to identify where syntactic and semantic
information is captured, revealing a hierarchical or-
ganization of linguistic features (Liu et al., 2019a;
Jawahar et al., 2019; Tenney et al., 2019). Follow-
up work examined attention mechanisms, showing
that specific attention heads specialize in tasks such
as coreference and syntax (Clark et al., 2019; Voita
et al., 2019). Other approaches explored the ge-
ometry of the representation space, finding that
upper layers tend to produce more context-specific,
anisotropic embeddings (Ethayarajh, 2019). While
initial work focused on static PLMs, later studies
investigated how fine-tuning alters representations,
showing that core structural properties often remain
stable despite task-specific adaptations (Merchant
et al., 2020; Zhou and Srikumar, 2022).

6.2 Discrepancies Between Final Predictions
and Model Representations

Yaghoobzadeh et al. (2021) showed that adjust-
ing the classification threshold for HANS data can
significantly impact BERT’s accuracy. This phe-
nomenon is not exclusive to encoder models, gen-
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erative models also exhibit discrepancies between
what they learn and what their final outputs imply.
Zhao et al. (2021b) highlighted a similar issue in
generative models, showing that the structure of
a prompt can influence the threshold required for
classification tasks such as sentiment analysis. By
calibrating models with a null input, they achieved
more reliable results. Amini and Ciaramita (2023)
argue that the sensitivity of encoder-decoder model
to instruction phrasing stems from the constraint
that models must verbalize their predictions. By
bypassing the decoding step and directly probing
the encoder representations, they achieved more
stable and improved results. Marks and Tegmark
(2024). Furthermore, Marks and Tegmark (2024)
found that LLMs encode the truth or falsehood of
factual statements in a linear manner, despite their
tendency to generate incorrect information.

6.3 Instability in OOD Generalization

Models that appear stable and performant on stan-
dard ID test sets often exhibit significant variability
when evaluated on OOD datasets (McCoy et al.,
2020; Zhou et al., 2020), raising concerns about
their generalization capabilities. Similarly, Zhao
et al. (2021b) demonstrated that even powerful gen-
erative models like GPT-3 suffer from notable in-
stability in few-shot learning scenarios. This in-
stability has been attributed to several factors, in-
cluding catastrophic forgetting during fine-tuning
(Lee et al., 2020), limited size and diversity of
available datasets (Dodge et al., 2020), and opti-
mization difficulties such as vanishing gradients
in deeper architectures (Mosbach et al., 2021). In
addition to these architectural and data-related chal-
lenges, the structure of prompts and the order in
which training examples are presented have also
been shown to significantly influence performance
in few-shot settings (Zhao et al., 2021b), highlight-
ing the sensitivity of model behavior to seemingly
minor variations in input.

7 Conclusion

In this paper, we revisited the performance of fine-
tuned PLMs on challenging NLI datasets. Our
experiments revealed that, despite poor classifier
accuracy, the encoder’s representation space of-
ten demonstrates clear linear separability between
classes. This suggests that the models possess rel-
evant task-specific knowledge, but there is a mis-
alignment between the classifier’s decision bound-

aries and the knowledge embedded in the encoder’s
representations. While we proposed some hypothe-
ses for this misalignment, further in-depth investi-
gation is required, which we leave for future work.

8 Limitations

One limitation of this study is that the analysis
was limited to three pretrained language mod-
els—DistilBERT, BERT, and RoBERTa. While
these models are widely used, they do not repre-
sent the full spectrum of transformer-based mod-
els, and therefore, the findings may not be fully
generalizable to newer or more specialized mod-
els. Additionally, this study does not provide a
direct solution for improving classification accu-
racy. Although we demonstrate the existence of lin-
ear boundaries, determining the optimal decision
boundaries for each dataset still requires access to
the full dataset, which may not be efficient or fea-
sible for OOD datasets. Furthermore, relying on
linear separability as a proxy for model knowledge
may oversimplify the complexity of how models
truly understand the nuances of inference. There
is room for further exploration using alternative
probing techniques to assess and deepen our under-
standing of model comprehension.
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Figure 9: Linear separability (LS) of the analysis datasets along with the accuracy of BERT reported at every 500
optimization steps.

Heuristic Hypothesis Premise Label

Lexical Overlap
The banker near the judge saw the actor. The banker saw the actor. E
The lawyer was advised by the actor. The actor advised the lawyer. E

Subsequence

The doctors visited the lawyer. The lawyer visited the doctors. N
The judge by the actor stopped the banker. The banker stopped the actor. N
The artist and the student called the judge. The student called the judge. E
Angry tourists helped the lawyer. Tourists helped the lawyer. E
The judges heard the actors resigned. The judges heard the actors. N
The senator near the lawyer danced. The lawyer danced. N

Constituent

Before the actor slept, the senator ran. The actor slept. E
The lawyer knew that the judges shouted. The judges shouted. E
If the actor slept, the judge saw the artist. The actor slept. N
The lawyers resigned, or the artist slept. The artist slept. N

Table 5: Examples from the HANS dataset, where E represents the entailment label and N represents the non-
entailment label.
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Premise Hypothesis Label
A woman is painting a man’s face Makeup is being put on the man

by the woman
Entailment

The women are singing and danc-
ing

The persons are singing and danc-
ing

Entailment

A group of kids is playing in a
yard and an old man is standing
in the background

A group of boys in a yard is play-
ing and a man is standing in the
background

Neutral

A black, red, white and pink
dress is being worn by a woman

A woman is taking off a cloak,
which is very large, and revealing
extravagant apparel

Neutral

Two large persons are sitting on a
park bench and they have a bottle
of soda between them

Two large persons are standing
near a park bench and they have
nothing between them

Contradiction

A man is playing a violin There is no man playing a violin Contradiction

Table 6: Examples from the SICK dataset.

Subset Premise Hypothesis Label

LM
The chain wielder smiled at her and true
is true and true is true and true is true
and true is true and true is true.

The chain wielder was friends with the
woman.

Neutral

The two programs are currently housed
in buildings about a block apart and true
is true and true is true and true is true
and true is true and true is true

The two buildings are on opposite sides
of the city.

Contradiction

oh i did and i laughed real hard when
i took it in for the two thousand mile
checkup and uh and true is true and true
is true and true is true and true is true
and true is true

I had a good laugh when I took it for the
two thousand mile checkup.

Entailment

WO
I can’t do any jumping up and down be-
cause it makes it hurt.

The pain is too much after jumping, it
needs surgery and true is true.

Neutral

Both professors soon realized that creat-
ing a new language was not an easy task.

Professors realized it was easy to make
a new language and true is true.

Contradiction

Well that’s good that’s great. That is not bad, it is actually pretty good
and true is true.

Entailment

N
They did this to us. The practical joke was played on them

and false is not true.
Neutral

No, Dave Hanson, you were too impor-
tant to us for that.

Yes, Dave Man, you are not important
to us and false is not true.

Contradiction

Then he sobered. He had sobered up and false is not true. Entailment

NU
Jose joined him less than 6 months later,
investing Rs.

Jose joined him 2 months later, investing
Rs.

Neutral

On every Adidas shoe the restaurant
makes a profit of $ 10 while on every
Puma shoe it makes a profit of $ 8

On every Adidas shoe the restaurant
makes a profit of $ more than 10 while
on every Puma shoe it makes a profit of
$ 8

Contradiction

A train leaves Delhi at 9 a.m. A train leaves Delhi at more than 3 a.m. Entailment

Table 7: Examples from different subsets of the stress test dataset.
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Dataset DistilBERT BERT RoBERTa

SNLI 89.3±0.1 90.9±0.3 91.8±0.1

SICK 53.5±1.0 56.6±0.3 57.1±0.4

HAN 52.9±0.6 58.9±1.1 66.6±1.0

ST-NU 35.3±0.7 37.8±4.6 38.1±2.1

ST-LM 65.1±0.7 70.6±0.6 76.6±0.2

ST-N 45.8±2.3 51.4±2.5 63.4±1.6

ST-WO 56.7±3.6 59.2±2.6 69.8±1.8

Table 8: Accuracy of SNLI fine-tuned models on NLI
analysis datasets, SICK, HANS, and Stress Test (ST)
alongside the standard validation sets of SNLI.
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