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Abstract

Recent work has investigated whether extant
neural language models (LMs) have an inbuilt
inductive bias towards the acquisition of at-
tested typologically-frequent grammatical pat-
terns as opposed to infrequent, unattested, or
impossible patterns using artificial languages
(White and Cotterell, 2021; Kuribayashi et al.,
2024). The use of artificial languages facili-
tates isolation of specific grammatical proper-
ties from other factors such as lexical or real-
world knowledge, but also risks oversimplifica-
tion of the problem.

In this paper, we examine the use of Gener-
alized Categorial Grammars (GCGs) (Wood,
2014) as a general framework to create artificial
languages with a wider range of attested word
order patterns, including those where the sub-
ject intervenes between verb and object (VSO,
OSV) and unbounded dependencies in object
relative clauses. In our experiments, we ex-
emplify our approach by extending White and
Cotterell (2021) and report some significant
differences from existing results.

1 Introduction

Attested natural languages (NLs) often have dif-
ferent grammatical properties, such as different
word orders, so it is reasonable to ask whether neu-
ral language models (LMs) have inductive biases
towards specific properties, including different pat-
terns of word order. There are thousands of NLs
which differ along multiple semi-independent lex-
ical and grammatical dimensions, so it is difficult
to isolate specific properties to evaluate LMs’ in-
ductive biases using natural data (Mielke et al.,
2019). To remedy this, artificial languages (ALs)
have been used in order to create more controlled
experiments. Researchers have designed ALs
of varying complexities, ranging from lexically-
simple but syntactically-complex formal languages,
such as the irreducibly context-free Dyck lan-

guages or irreducibly indexed (mildly context-
sensitive) languages such as cross-serial dependen-
cies (anbn(cn)) (Hewitt et al., 2020), to putatively
impossible languages based on permutations of En-
glish examples (Kallini et al., 2024).

White and Cotterell (2021) prioritise control of
word order in their research. They generate ALs us-
ing a Probabilistic Context Free Grammar (PCFG),
and use 6 parameters to reorder words and phrases
to create 64 ALs with the same lexicon, with the
aim of determining whether LMs exhibit an induc-
tive bias towards specific orders. The same dataset
of ALs is used by Kuribayashi et al. (2024) to ex-
plore a wider range of neural LMs. However, the
use of a PCFG precludes the handling of (mildly)
context-sensitive NL constructions and does not
support a fully general account of unbounded filler-
gap dependencies (Steedman, 1996). Furthermore,
the use of a VP constituent in the base PCFG means
Verb-Subject-Object (VSO) and OSV base orders
cannot be represented in the languages created by
White and Cotterell (2021).

We create a larger set of ALs that can be used
to further test LMs for word order inductive biases
covering a wider range of word orders. Specifically,
we cover VSO and OSV orders, which represent
approximately 8% of attested NLs according to
typologists (Dryer and Haspelmath, 2013). Fur-
thermore, we develop an extensible approach to
defining ALs that supports the inclusion of mildly
context-sensitive (indexed language) constructions,
such as cross-serial dependencies, and a general ap-
proach to unbounded filler-gap dependencies. We
introduce object relative clauses as one exemplar
of an unbounded dependency into our extended
dataset of ALs. We empirically test LMs on our
artificial languages and find significant differences
in results compared to existing studies (White and
Cotterell, 2021; Kuribayashi et al., 2024), for ex-
ample, a clearer preference of Transformers for
subject-before-verb word orders. This suggests
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that using more complex, but arguably naturalistic
ALs leads to rather different conclusions about the
inductive bias of neural LMs

2 Background

2.1 Artificial languages

One line of research has used ALs to evaluate
LMs capacity to learn ALs at different levels of
the Chomsky hierarchy. Someya et al. (2024) use
ALs to determine whether LMs can learn the prop-
erties of regular, context-free, and context-sensitive
languages, such as nested and long-distance de-
pendencies, and cross-serial dependencies. They
find that LSTMs (Hochreiter and Schmidhuber,
1997), Stack-RNNs (Joulin and Mikolov, 2015),
and Transformers (Vaswani et al., 2017) struggle to
learn nested, long-distance, and cross-serial depen-
dencies, but successfully learn regular languages.
Other context-free languages, such as Dyck lan-
guages, and mildly context-sensitive languages,
like anbncn, have been used to test recurrent LM
learning and generalization to longer sequences
(Suzgun et al., 2019; Weiss et al., 2018; El-Naggar
et al.) as well as establishing a correspondence
between the different LM models and the levels
of the Chomsky hierarchy (Delétang et al., 2023).
One limitation of this research is that the ALs used
diverge from NLs by using minimal vocabulary,
many levels of nested dependencies, and so forth.

In another line of research, Chomsky et al.
(2023) argued that neural LMs can learn both possi-
ble and impossible human languages, so cannot dis-
tinguish between them. Kallini et al. (2024) empir-
ically address this claim, by developing putatively
impossible AL variants by permutation and modi-
fication of an English dataset, following Ravfogel
et al. (2019). They find that GPT-2 models struggle
to learn the impossible languages, contradicting
Chomsky’s claim. However, it is difficult to de-
termine precisely what makes the impossible ALs
harder to learn because of the multi-dimensional
nature of the altered English input.

White and Cotterell (2021) take inspiration from
Ravfogel et al. (2019) but use ALs generated by
a PCFG to examine the inductive biases of LMs
towards different word orders. They use six param-
eters (‘switches’) which invert the order of daughter
categories within distinct CF productions to deter-
mine the structure of their sentences, and evaluate
LSTM and Transformer models on the ALs gen-
erated by the PCFGs defined by each distinct set-

ting of these parameters. Extending this research,
Kuribayashi et al. (2024) evaluate the performance
of further cognitively-motivated LMs on the same
ALs. However, as a consequence of the use of
PCFGs containing a VP constituent, the ALs used
by White and Cotterell (2021) and Kuribayashi
et al. (2024) do not generate Verb-Subject-Object
(VSO) or Object-Subject-Verb (OSV) word orders.
In this paper, we generate a wider set of ALs using
GCGs and replicate the experiments of Kuribayashi
et al. (2024) on this new dataset. Our approach to
controlled AL generation is, in principle, expres-
sive enough to generate all attested NL construc-
tions documented by linguists to date, so provides
a general framework to support further AL-based
investigation of neural LMs. In this paper, we ex-
emplify this by also extending White and Cotterell
(2021) dataset to include object relative clauses.

2.2 Categorial Grammar
Classic Categorial Grammar (CG) is a formalism
which aims to represent NL syntax isomorphically
with compositional semantics (Ajdukiewicz, 1935;
Bar-Hillel, 1953). We focus on the syntactic gen-
erative properties of extensions to classical CG in
this paper. The components of a CG are a lexicon
pairing words with basic or functor categories, and
a small set of rules defining how functor categories
combine with basic categories syntactically and se-
mantically. The "slash" notation is often used to in-
dicate the direction of the arguments relative to the
resulting category. For example, X/Y is a functor
category looking for an argument basic category Y
to the right to create result category X . In classical
CG, there are just two rules forward functional ap-
plication (a) or backward functional application
(b), shown below.

(a) X/Y Y ⇒ X

(b) Y X\Y ⇒ X

In English, a transitive verb like "met" is a functor
category (S\NP )/NP . The derivation shown be-
low for "Kim met Sandy" shows both forward and
backward application.

Kim met Sandy

NP (S\NP)/NP NP
>

S\NP
<

S
Most if not all of the variation between languages is
captured by variation in the set of lexical categories
assigned to words.
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CG is equivalent to a binary-branching context-free
grammar. There are extensions and generalizations
of CG, such as Combinatory Categorial Grammar
(CCG), (Steedman, 1996), which we refer to gener-
ically as Generalized Categorial Grammars (GCGs)
(Wood, 2014). In CCG and GCGs, additional oper-
ations can be used to combine categories.

One such operation is coordination, where 2
constituents of the same category separated by con-
junction can be combined into a single constituent
of the same type,

X CONJ X ⇒ X

Coordination (Φ) is shown in the derivation below.

Kim and Sandy met Felix

NP CONJ NP (S\NP)/NP NP
<Φ>

NP
>

S\NP
<

S
Forward composition and backward composi-

tion operations are utilized in CCG, where adjacent
functions are composed. We show the rules of for-
ward (a) and backward (b) composition below.

(a) X/Y Y/Z ⇒ X/Z

(b) Y \Z X\Y ⇒ X\Z
Composition (B) is shown in the derivation below.

the elf on the shelf laughed

NP (NP\NP)/NP NP S\NP
>

NP\NP
<B

S\NP
<

S
Permutation is included in our GCG as a more

computationally tractable alternative to type raising
in CCG. We use the version from Briscoe (1997,
2000), which allows for a cyclic permutation of
the functor arguments without changing their di-
rectionality. The definition of permutation is as
follows:

(X|Y1)...|Yn ⇒ (X|Yn)|Y1
Permutation (P) is shown in the derivation below.

Kim met Sandy

NP (S\NP)/NP NP
<P>

(S/NP)\NP
<

S/NP
>

S

We develop our ALs from a GCG utilizing these
rules of application, coordination, composition,
and permutation.

3 Dataset

As a first case study employing our GCG to create
ALs, we mostly reproduce the dataset of White
and Cotterell (2021) using GCG but also add some
novel word order constructions. Specifically, we
adapt the parameters defined by White and Cot-
terell (2021) to create a GCG for each of the 64
AL configurations they define. We then created
lexicons for SOV and VOS languages to create an
additional 32 ALs for VSO and OSV languages.
We also extend each AL with object relative clauses
as an exemplar of a potentially unbounded depen-
dency (‘filler-gap’) construction.

3.1 The Lexicon

We define lexical syntactic categories, e.g., NP, first,
as listed in Table 1, and then define a set of lexicons.
We use a set of mostly English words that is of the
same size and has the same categories as White
and Cotterell (2021), including singular and plural
nouns, and past and present tense verbs, but we
ignore subject-verb number agreement, in our ini-
tial, simple setting. In addition, following White
and Cotterell (2021), we avoid lexical ambiguity,
and thus each word in the lexicon is assigned to ex-
actly one category. Following White and Cotterell
(2021), we use subject and object markers in all the
artificial languages.

3.2 Dataset Generation

Dataset generation involves several steps:

1. Determining the GCG categories: We
set a GCG lexical syntactic category (e.g.,
SCOMP\S) for each of word types (e.g., COMP),
as shown in Table 1. These GCG categories
are parameterized by seven word order param-
eters shown in Table 2. For example, if the S
parameter in Table 2 is set to 0 (head-final),
the GCG syntactic type of VI (walked) should
be S\NPSUBJ as follows:

Kim ga walked

NP NPSUBJ\NP S\NPSUBJ
<

NPSUBJ
<

S
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Category GCG syntactic type Example

NP (Noun Phrase) NP Kim ga kissed Sandy o
SUBJ (Subject Marker) NPSUBJ\NP Kim ga kissed Sandy o
OBJ (Object Marker) NPSUBJ\NP Kim ga kissed Sandy o
ADJ (Adjective) NP|NP red car ga ran
VT (Transitive Verb) (S|NPSUBJ)|NPOBJ Kim ga kissed Sandy o
VI (Intransitive Verb) S|NPSUBJ red car ga ran
VCOMP (Complementary Verb) (S|NPSUBJ)|SCOMP Kim ga believed that Sandy ga lied
COMP (Verb Complement) SCOMP|S Kim ga believed that Sandy ga lied
CONJ (Conjunction) var\var/var Kim and Sandy ga ate
PREP (Preposition) (NP|NP)|NP elf on shelf ga laughed
REL (Relativizer) (NPSUBJ|NPSUBJ)|(S|NPOBJ) man ga whom I ga met laughed

Table 1: Lexical syntactic categories used in our artificial grammar. The bars “|” in the GCG lexical categories
indicate either forward- or back-slash, which is controlled by word order parameters in Table 2. The examples in the
English grammar are also shown, where the word(s) belonging to the category being described are shown in bold.

Param. Description 0 (head-final) 1 (head-initial)

S Order of subject
and verb

VI→ S\NPSUBJ
VT→ (S\NPSUBJ)|NPOBJ
VCOMP→ (S\NPSUBJ)|SCOMP

VI→ S/NPSUBJ
VT→ (S/NPSUBJ)|NPOBJ
VCOMP→ (S/NPSUBJ)|SCOMP

VP Order of object
and verb

VT→ (S|NPSUBJ)\NPOBJ
VCOMP→ (S|NPSUBJ)\SCOMP
REL→ (NPSUBJ|NPSUBJ)|(S\NPOBJ)

VT→ (S|NPSUBJ)/NPOBJ
VCOMP→ (S|NPSUBJ)/SCOMP
REL→ (NPSUBJ|NPSUBJ)|(S/NPOBJ)

O Order of subject
and object

Restriction to make an S precede O as canon-
ical word order

Restriction to make an O precede S as canon-
ical word order

COMP Position of com-
plementizer

COMP→ SCOMP\S COMP→ SCOMP/S

PP Postposition or
preposition

PREP→ (NP\NP)/NP PREP→ (NP/NP)\NP

ADJ Order of adjec-
tive and noun

ADJ→ NP/NP ADJ→ NP\NP

REL Position of rela-
tivizer

REL→ (NPSUBJ/NPSUBJ)\(S|NPOBJ) REL→ (NPSUBJ\NPSUBJ)/(S|NPOBJ)

Table 2: Word order parameters and their associated GCG categories. “A→B” indicates A|B (A is expanded to B)
in the GCG derivation.

In contrast, if S is set to 1 (head-initial), the
possible word order will be like:

walked Kim ga

S/NPSUBJ NP NPSUBJ\NP
<

NPSUBJ
<

S

Different ALs are generated by different com-
binations of the seven word-order parameters,
which control the directionalities in the lexical
categories, resulting in different word orders
(Table 2).

2. Generating the grammars: We use the seven
binary parameters (Table 2) to generate our
96 grammars based on GCG. The parameters,
except for O, are the same as White and Cot-
terell (2021), and the O parameter biases the

S-O order (as a part of postprocessing). This
is needed because the permutation operation
for the VT will eliminate the bias regarding the
order of S and O, so to align the experimen-
tal settings with White and Cotterell (2021),
we add this parameter. The O parameter is
set to either 0 or 1 only when the subject and
object are positioned on the same side of a
(transitive) verb (SOV, OSV, VSO, VOS); oth-
erwise, the O parameter is automatically deter-
mined by the first two parameters of S and VP
(SVO and OVS). This process results in 96
grammars – less than the mathematically pos-
sible combinations of seven binary parameters
(27=128). Each language is associated with
a specific combination of parameter assign-
ments and denoted, for example, as 0001111
(S=0, VP=0, O=0, COMP=1, PP=1, ADJ=1,
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ADJ NP SUBJ REL NP SUBJ VT VI CONJ VI
NP/NP NP NPSUBJ\NP (NPSUBJ\NPSUBJ)/(S/NPOBJ) NP NPSUBJ\NP (S\NPSUBJ)/NPOBJ S\NPSUBJ X\X/X S\NPSUBJ

>
NP

< < <Φ>
NPSUBJ NPSUBJ S\NPSUBJ

<P>
(S/NPOBJ)\NPSUBJ

<
S/NPOBJ

>
NPSUBJ\NPSUBJ

<B
S\NPSUBJ

<
S

Figure 1: Example of a template and its derivation. The sentence structure is like “Tall man whom she met walked
and talked.” The word categories shown in black (e.g., SUBJ) correspond to a single lexical item (e.g., ga). The
remaining categories in blue have several candidates of lexical items, and these are uniformly sampled from the
predefined dictionary.

Algorithm 1 Template Generation Algorithm
Require: Set of word categories C, 96 parsers [p1, · · · , p96]

Initialize empty dictionary V alidTemplates
for length = 3 to 10 do

for each sequence of c ∈ Clength do ▷ Generate all
word category sequences

if c matches heuristics then
skip ▷ Exclude immediately invalid templates

end if
for each parser pi in 96 parsers do

if pi successfully parses c then
Add c to V alidTemplates[i] ▷ Select

grammatically valid templates
end if

end for
end for

end for
return V alidTemplates

REL=1).

3. Template Generation: To cover all possi-
ble valid syntactic structures in each of our 96
ALs, we first enumerate all possible sequences
of word categories (e.g., “NP ADJ VT CONJ
REL...”), up to length 10, in a brute-force
manner. We then parse these sequences with a
GCG parser with the corresponding grammar
configuration.1 Word category sequences, and
by extension, sentences created from them,
are considered grammatically valid if we ob-
tain at least one derivation resulting in S based
on the GCG parser. An example of a valid tem-
plate is shown in Figure 1. This template gen-
eration is summarized in Algorithm 1. Note
that in order to make this process more effi-
cient, we apply some heuristics (detailed in
Appendix A.1) to eliminate templates that can-
not result in a valid sentence.

1We adapt the NLTK CCGChartParser (Bird et al., 2009),
removing type raising and adding the permutation operation
as defined by Briscoe (1997, 2000), and use this to parse our
templates.

Algorithm 2 Generating Sentences from Templates
Input: Valid templates T , dictionary D mapping word
category c ∈ C to lexical items Vc = D[c]
Output: Set of grammatical sentences S
S ← ∅
for each template t ∈ T do

for 0 to 500 do
s← dummy string of length |t|
for each category ci in t = [c1, · · · , cn] do

Randomly sample wi ∼ D[ci] (uniform distri-
bution)

s[i] = wi

end for
if s /∈ S then

Add s to S
end if

end for
end for
return S

4. Sentence Generation: Once we have our tem-
plates for each of the 96 grammars, we gen-
erate 500 sentences for each template in each
grammar by random sampling of the lexicon.
We ensure that all of the generated sentences
are unique by removing duplicate sentences
when they occur. This is shown in Algorithm
2.

5. Sampling from the Datasets: Similarly to
the dataset size per grammar as White and
Cotterell (2021), we randomly sample 50K
sentences from the datasets generated for each
grammar. We also ensure that all sampled
sentences are distinct. These datasets are the
ones that we use in our experiments.

4 Experiments

4.1 Settings
We evaluate the same models as White and Cot-
terell (2021), which are the LSTM (Hochreiter and
Schmidhuber, 1997) and Transformer (Vaswani
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(c) Early-stop

Figure 2: PPLs over 96 grammars. The blue and orange box plots correspond to Transformer and LSTM, respectively.
The bars in the graph show the percentage of world languages for each grammar (blue) and word order group, e.g.,
SOV (gray).

et al., 2017) models. We evaluate perplexity (PPL)
over the sentences of the different word orders and
investigate the inductive biases that models may
have towards specific word order configurations.
For each of our 96 languages, similarly to Kurib-
ayashi et al. (2024), the 50K sentences are divided
across 5 runs. In each run, the 10K sequences
are divided into train/dev/test split with a ratio of
8:1:1. Different random seeds are used in each run.
We will basically follow the experimental settings
in White and Cotterell (2021) and Kuribayashi et al.
(2024) but also extend some analyses focusing on
learning dynamics across different training epochs,
rather than focusing only on a specific epoch (10
epochs in Kuribayashi et al. (2024)) or the end of
learning based on specific criteria (early stopping
with patience of 5 in White and Cotterell (2021)).

4.2 Results

What kind of language is harder to learn? Fol-
lowing White and Cotterell (2021); Kuribayashi
et al. (2024), we show the PPL distribution across
96 grammars in Figure 2. The distributions at 5
epochs (Figure 2a), 10 epochs (Figure 2b), and
the end of training based on early-stopping (con-
sistently longer than 10 epochs; Figure 2c) are re-
ported. Comparing our early-stopping results with
those reported in White and Cotterell (2021) with
the same stopping criteria, we replicate a high-level
trend that Transformers exhibit more PPL varia-
tions than LSTMs. At the same time, we observe
a somewhat clearer preference of Transformers to-
ward head-final word orders (grammars with many
0s) than reported in White and Cotterell (2021).

We also observe a dynamic change in word or-
der preference during training. Specifically, at the
earlier training phase (5 epochs; Figure 2a), the
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Figure 3: The PPL trajectories for different S-O-V word orders and models (measured on validation data in the
early-stopping setting). The y-axis is logarithmic. For better visibility of the preference transition, we cut off large
PPLs (y-axis) in the first few epochs and results after the 18th epoch (x-axis), but there is almost no PPL difference
across different word order conditions in these epochs.
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Figure 4: Correlations between PPL and typological
distributions, which are measured in each epoch dur-
ing training (on validation data in the early-stopping
setting). The correlations from five runs are averaged.
To highlight that a negative correlation is expected, the
y-axis is inverted.

PPL tends to be lower in head-initial languages
(grammars with many 1s) or more neutral than
in the latter phase (early-stopping), which indi-
cates that head-initial languages can be more ef-
ficiently learned at first, and then head-final lan-
guages outperforms ultimately. Comparing these
dynamic preference changes (head-initial→head-
final) with the diachronic word order changes in the
world’s languages, our results, interestingly, con-
trast with the common view that natural languages
have evolved from head-final (SOV) to more neu-
tral (SVO) or head-initial (VSO/VOS) ones (Gell-
Mann and Ruhlen, 2011). Figure 3 further summa-
rizes this dynamic change in word order preference.

Typological (mis)alignment The percentage of
world languages for each grammar and word or-

der group is superimposed on Figure 2 (blue and
gray bars). To calculate these typological distri-
butions, we basically adopted the statistics used
in Kuribayashi et al. (2024) and enriched them
by integrating the S-O order statistics from Dryer
and Haspelmath (2013) and complementizer po-
sition statistics from Skirgård et al. (2023). The
two distributions of PPLs and word order frequen-
cies are compared using Pearson correlation coeffi-
cients, following Kuribayashi et al. (2024). After
5 epochs, the correlation between PPLs and typo-
logical distributions was 0.40 (p<0.05) and 0.25
(p<0.05) for LSTM and Transformer, respectively.
The positive correlation indicates that the worse
the PPL is, the more frequent the word order is in
the world, contrasting with the common claim that
natural language is optimized toward better pre-
dictability (Gibson et al., 2019; Hahn et al., 2020).
After further training in the early-stopping setting,
the correlation scores decreased to 0.05 (not sig-
nificant) and −0.33 (p<0.05) for LSTM and Trans-
former, respectively. These dynamics are shown
in Figure 4, where the correlation between typo-
logical distributions and PPL distributions for each
training epoch is reported. There is a general trend
that stable results (i.e., not changing suddenly in
adjacent epochs) and better typological correlations
are obtained at the later phase of training, but the
typological alignment of the LSTM ultimately de-
creased and lost word order preferences as shown
in Figure 2c.

Regression analysis Figure 5 shows quantitative
statistics on which word order parameters are asso-

546



SV OV SO COMP PP ADJ REL

SV
OV

SO
CO

M
P

PP
AD

J
RE

L

0.017 -0.154 0.075 -0.097 -0.007 0.014 -0.091

0.117 -0.096 -0.104 0.015 -0.036 -0.006

-0.168 0.027 0.009 -0.037 0.081

0.106 0.001 0.012 -0.024

-0.012 0.005 -0.004

0.014 -0.017

0.054

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(a) LSTM (5 epochs)

SV OV SO COMP PP ADJ REL

SV
OV

SO
CO

M
P

PP
AD

J
RE

L

0.001 0.008 -0.020 0.015 -0.002 -0.002 -0.009

0.003 -0.013 0.001 0.006 -0.003 0.006

0.013 0.002 0.003 -0.007 0.004

-0.000 -0.005 -0.006 0.005

-0.003 0.002 0.005

0.011 -0.002

-0.007

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(b) LSTM (early-stop)

SV OV SO COMP PP ADJ REL

SV
OV

SO
CO

M
P

PP
AD

J
RE

L

0.078 -0.061 0.003 -0.065 -0.006 -0.141 0.012

0.218 -0.137 0.030 -0.010 -0.068 -0.006

-0.027 0.052 0.003 -0.016 0.017

-0.101 0.006 0.008 0.007

-0.000 0.012 -0.001

0.269 0.002

-0.034

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(c) Transformer (5 epochs)

SV OV SO COMP PP ADJ REL

SV
OV

SO
CO

M
P

PP
AD

J
RE

L

0.211 0.079 0.007 0.099 -0.042 0.035 -0.062

0.137 -0.125 -0.119 0.016 -0.062 0.024

-0.038 -0.004 0.032 -0.050 0.049

-0.011 -0.019 0.045 0.018

0.005 0.002 0.005

-0.021 -0.003

-0.058

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(d) Transformer (early-stop)

Figure 5: Coefficients of word order parameters (and their interactions) estimated by the regression models to
predict PPL from word order parameters

ciated with the PPL differences. Similarly to White
and Cotterell (2021), we train a regression model
to predict PPLs from word order parameters and
their interaction terms.2 Positive coefficients for
a single word-order parameter (diagonal elements
of matrices in Figure 5) indicate that head-initial
assignment leads to worse PPLs. Positive coeffi-
cients for interaction terms indicate that the consis-
tent head-directionality between the two parame-
ters leads to worse PPLs, and these are expected
to be negative if the common patterns of consis-

2We used the statsmodels package (Seabold and Perktold,
2010). The formulation is PPL ∼ SV*OV + SV*SO + SV*COMP
+ SV*PP + SV*ADJ + SV*REL + OV*SO + OV*COMP + OV*PP
+ OV*ADJ + OV*REL + SO*COMP + SO*PP + SO*ADJ +
SO*REL + COMP*PP + COMP*ADJ + COMP*REL + PP*ADJ +
PP*REL + ADJ*REL, where each parameter is a binary factor
with dummy coding (head-final as 0 and head-initial as 1),
and X*Y represents to both main effects of X and Y and their
interaction effect of X:Y. We normalized PPL scores with
min-max scaling. In contrast to White and Cotterell (2021),
we did not include the sentence-level random effect because
our dataset does not have strict alignment between sentences
across different grammars.

tent head-directionalities in natural language are
from learners’ biases. The coefficients for inter-
action terms are frequently positive; thus Trans-
formers and LSTMs do not exhibit inductive biases
toward typologically plausible, consistent head-
directionality, which is consistent with the results
in White and Cotterell (2021).

The coefficient matrices also suggest that both
training setting differences (e.g., Figures 5a vs. 5b)
and model architecture differences (e.g., Figures 5a
vs. 5c) had an impact on the results. As for the REL
parameter, where our inclusion of object relative
clauses may impact results, we did not observe pre-
viously reported trends, for example, a relatively
large positive interaction between OV and REL re-
ported in White and Cotterell (2021) disappeared.

4.3 Discussion

There are several possible reasons that could ex-
plain the differences between our findings and
those of White and Cotterell (2021) and Kurib-
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ayashi et al. (2024). One reason may be that the
GCG-generated datasets are potentially more com-
plex than the PCFG-generated datasets used by
White and Cotterell (2021) and Kuribayashi et al.
(2024). Our datasets include some long-distance
dependencies, and in some cases, as a result of
permutation, more flexible word orders. Another
source of the difference is the addition of 32 gram-
mars (VSO and OSV), which were not included
in previous studies. At the same time, we sim-
plified the grammar to omit subject-verb number
agreement in this study; thus, the impact of adding
such strict agreement rules should be considered in
future work.

The dynamic change of word order preference
over training epochs emphasizes the effect of in-
ductive biases from training hyperparameters (e.g.,
training length) beyond model architectures. We
have reported experiments only using specific
LSTM and Transformer LMs (see Appendix B), but
as an orthogonal endeavor to refining ALs, testing
a more diverse set of models, including syntactic
LMs (Kuribayashi et al., 2024) and more compre-
hensive exploration of model configurations (e.g.,
layer numbers, parameter sizes), should yield fur-
ther insights.

5 Conclusions

In this paper, we extend the work of White and
Cotterell (2021) and create a broader set of ALs
to evaluate the inductive biases of LMs towards
different word orders. This includes the OSV and
VSO word orders that were not represented in previ-
ous works (White and Cotterell, 2021; Kuribayashi
et al., 2024) and permits the inclusion of construc-
tions, which can represent more complex or flexible
structures and orders, including longer distance de-
pendencies. We evaluate LSTM and Transformer
learning of our ALs and calculate perplexity. We
find that the models prefer head initial languages,
which contrasts with the findings obtained in pre-
vious work. This is intriguing and raises questions
that we intend to address and explore further in
future work.

We intend to investigate the effects of different
training settings and paradigms, on the learning
of different language configurations. We also in-
tend to investigate and explore how the models
generalize beyond the training data, e.g., to longer
sequences. We also intend to investigate and under-
stand model learning and behavior when exposed

to different types of long-distance dependencies,
such as nested dependencies and cross-serial depen-
dencies, as they occur in NLs. The lexicon we use
here disregards verb tenses and number agreement.
In future work, we plan to extend our lexicon to
contain more detail about the specific features of
words and, in general, inject more realistic proper-
ties into our ALs.

Limitations

In this work, we use artificial languages to evaluate
our LMs’ inductive biases. Artificial languages,
though controlled, often do not reflect many of the
properties and complexities of natural languages,
such as subject-verb agreement, lexical ambigu-
ity, and long-distance dependencies. We do not
currently distinguish between nouns of different
pluralities or verbs of different tenses in our lexi-
con. More critically, the meaning of sentences in
our artificial language is nonsensical in the sense
that terminal lexical symbols are randomly sam-
pled, while natural language will have selectional
preferences (Hopkins, 2022), or more generally,
grounding to events/propositions in the real world.
Although our study is a step in the direction of re-
solving such limitations with GCG, in the future,
we plan to extend our lexicon and grammar, includ-
ing crosslingual perspectives (Xu et al., 2025; Yang
et al., 2025), to include more detail and more re-
alistic properties of natural language step-by-step.
There is also room to explore the design of typo-
logically impossible/implausible features (Hunter,
2025). Our artificial languages go beyond context-
free, and allow us to evaluate the different types of
longer-distance dependencies, which we have not
explored in detail in this work, but plan to address
in the future.

Such future work should also include more in-
depth ablations on what kind of additional complex-
ity, compared to the existing PCFG data, affected
the results. The evaluation framework also has
room to be extended; for example, we can evalu-
ate the compositional generalization of LMs using
out-of-domain, longer sequences in evaluation. It
will also be fruitful to integrate the perspective of
interpretability research to answer how and why
LMs struggle with specific word order languages
internally.

From an engineering perspective, our dataset
generation pipeline can be improved. We first gen-
erated possible word sequences in a brute-force
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manner, and then these were filtered with some
heuristic rules and a CCG parser. This brute-
force process will limit generation of a corpus with
longer sentence lengths, and should be replaced
with a more efficient method.

Lastly, while the training paradigms we use in
this work are very commonly used, our tested LMs
are limited with respect to, e.g., their parameter
size, types, and training procedures. In the future,
we would like to develop a better understanding of
the learning dynamics and explore LM learning of
our ALs using different learning paradigms.
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A Dataset Details

A.1 Heuristics Used in Template Generation
In order to make the template generation process
more efficient, we apply some heuristics to elim-
inate templates that would not result in valid sen-
tences in any of our artificial languages. We elimi-
nate templates with the following properties:

1. Shorter than 3 words (the shortest valid sen-
tence in all grammars is 3 words),

2. Starting with a conjunction,

3. Ending with a conjunction,

4. Containing 2 consecutive conjunctions,

5. Containing 2 consecutive prepositions,

6. Starting with subject or object markers,

7. The total number of subject and object mark-
ers is greater than the number of NPs,

8. A complementizer appears in the template
without a complement verb.

A.2 Restrictions Applied to Parser
In order to parse our templates and assign them
to the suitable languages, we adapt the NLTK
CCGChartParser (Bird et al., 2009) by disabling
type raising, which is included in Combinatory
Categorial Grammar (CCG) (Steedman, 1996) and
implement and integrate the permutation operation
as defined by Briscoe (1997, 2000), which is in-
cluded in Generalized Categorial Grammar (GCG)
(Wood, 2014). We disallow crossed composition
and restrict the composition operations in the parser
to forward and backward composition.

In the NLTK CCGChartParser, restrictions can
be applied to prevent composition, crossing, and
substitution by adding ",","." or "_", respectively,
before the argument when defining the grammar.
When we implement permutation, we introduce an
additional character "@" that prevents permutation
from being applied.

When defining our grammars, we restrict per-
mutation to categories with S functors only, i.e.,
verbs. Additionally, in order to restrict the subject
and object markers to only combine with NP, we
restrict composition when defining the NPSUBJ and
NPOBJ categories in the grammar.

Using GCGs to create our artificial languages
can allow for flexible word orders as a result of

Figure 6: Histogram showing the distribution of the
number of templates in the 96 artificial languages

permutation. This would result in OSV sentences
being present in SOV datasets, VSO sentences be-
ing present in VOS datasets and vice versa. We
inhibit permutation when parsing templates into
OSV, SOV, VOS and OVS languages, except in the
sentences where a REL category is present. This
way, there is a clearer distinction between these
languages.

A.3 Dataset Statistics
We calculate statistics for our 96 artificial lan-
guages and the templates from which we gener-
ate the sentences to provide more insight into the
properties of the datasets.

We calculate the average sequence length for the
templates and sentences used in evaluation, and
they are both approximately 9.42 words long. We
count the number of sequences in each template
and plot the distribution of them in Figure 6. The
smallest and largest template files consist of 875
and 1195 template sequences, respectively. We
calculate the average template size as 1022.75 se-
quences.

We show the number of overlapped sentences
and overlapped templates, and the percentage of
overlapped sentences and templates in Figures
7,8,9, and 10. As shown in the heatmaps, there
is some overlap in the templates for the different
languages (Figures 9 and 10). However, there is
negligible overlap between the datasets used for
experiments (Figures 7 and 8).

B Model Details

Hyperparameters of the Transformer and LSTM
LMs are shown in Table 3, which is the same
as Kuribayashi et al. (2024). Models are trained
with the Fairseq (Ott et al., 2019) toolkit.

551



Fairseq
model

share-decoder-input-output-embed True
embed_dim 128
ffn_embed_dim 512
layers 2
heads 2
dropout 0.3
attention_dropout 0.1
#params. 462K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training batch size 512 tokens
sample-break-mode none
epochs 10

(a) Transformer.

Fairseq
model

share-decoder-input-output-embed True
embed_dim 128
hiden_size 512
layers 2
dropout 0.1
#params. 3,547K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training batch size 512 tokens
sample-break-mode none
epochs 10

(b) LSTM.

Table 3: Model hyperparameters

552



Figure 7: Heatmap showing the number of overlapping elements in the datasets for the 96 artificial languages we
use in experiments.

553



Figure 8: Heatmap showing the percentage of overlapping elements in the datasets for the 96 artificial languages we
use in experiments.
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Figure 9: Heatmap showing the number of overlapping elements in the template datasets for the 96 artificial
languages.
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Figure 10: Heatmap showing the percentage of overlapping elements in the template datasets for the 96 artificial
languages.
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