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Abstract

Language models provide a key framework for
studying linguistic theories based on predic-
tion, but phonological analysis using large lan-
guage models (LLMs) is difficult; there are few
phonological benchmarks beyond English and
the standard input representation used in LLMs
(subwords of graphemes) is not suitable for an-
alyzing the representation of phonemes. In this
work, we demonstrate how word segmentation
can be used as a phonological probing task, al-
lowing us to study the representations learned
by phoneme-based language models trained
on child-directed speech across 31 languages.
Following computational models of word seg-
mentation, we present unsupervised methods
for extracting word boundaries from a trained
model using the observation that prediction-
error peaks at the start of words. We also use
linear probes to identify that these models im-
plicitly track word boundaries, even when they
do not appear in training. This cross-lingual
work corroborates statistical learning theories
of acquisition and empirically motivates new
methods for training subword tokenizers.
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1 Introduction

Small models trained on developmentally plausible
data have led to numerous advancements across
pre-training strategies, architectures and tools for
linguistic analysis (Hu et al., 2024). Yet most of
this work involves training on English orthographic
data with subword tokenization, restricting the abil-
ity to study phonological representations and word
learning. A few recent studies have demonstrated
that these so-called “BabyLLMs” can be trained on
individual phonemes (Goriely et al., 2024; Bunzeck
et al., 2024), supporting phoneme-based phono-
logical analysis. However, the majority of this

what do you see

wAt du: ju: si:
N

peak

strategy

relative
strategy

Boundary Cue

e

1
1
1
1
1

s

W A t d u i: #

Figure 1: Three strategies for unsupervised word seg-
mentation using cues extracted from an auto-regressive
language model trained to predict phonemes.

work continues to center on English, in part due
to the lack of phonological benchmarks for other
languages.

In this work, we explore the phonological capa-
bilities of phoneme-based BabyLLMs across 31 lan-
guages using the word segmentation task. Follow-
ing computational models of word segmentation
studies in the acquisition literature, we investigate
models by assessing their ability to correctly place
word boundaries in a sequence of phonemes when
word boundaries are not provided during training.
Successful segmentation indicates implicit phono-
logical knowledge and when performed zero-shot
on developmentally plausible data, contributes to
statistical learning theories of language acquisition.

In some of the earliest sequential models, it was
noted that prediction-error (the degree to which
the model struggles to predict the next token) of-
ten corresponded with word boundaries (Elman,
1990). Using this observation, we identify four
word boundary cues that can be extracted from
trained models and three unsupervised strategies
for placing boundaries using these cues, as illus-
trated in fig. 1. We additionally follow the super-
vised approach of Hahn and Baroni (2019), training
linear probes on final layer embeddings to deter-
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mine if word boundaries are implicitly tracked in
order to improve phoneme prediction.

We train phoneme-based BabyLLMs on the
phonemic transcriptions of child-centered speech
comprising the IPA CHILDES dataset (Goriely
and Buttery, 2025). We find that these models
implicitly encode word boundaries across all 31
languages and identify two factors that may pro-
vide useful priors depending on the language: the
length of words and the distribution of phonemes
at the end of words.

We discuss the validity of orthographic word
boundaries as gold labels and note the similari-
ties between our results and recent work that uses
byte-level prediction entropy to improve the tok-
enization step in large language model (LLM) pre-
training (Pagnoni et al., 2024). We conclude that
this framework not only supports the study of dis-
tributional phonology and acquisition, but could
also have implications for improving the efficiency
and robustness of LLMs.

Finally, we release our code and pre-trained mod-
els to facilitate future work.

2 Related Work and Motivations

Since their inception, language models have been
used to study the structures of language and explore
mechanisms that humans may use to learn them.

Early “connectionist” language models were
trained on sequences of letters or phonemes, of-
ten using developmentally plausible data in order
to explore theories of word learning and phonology
(Seidenberg and McClelland, 1989; Norris, 1994;
Coltheart et al., 2001). Modern large language
models (LLMs) are still probed for grammatical
information, but standard benchmarks are gener-
ally based on higher-order structures: syntax and
semantics rather than morphology and phonology.
This is due to LLM design being optimized for
downstream tasks, not linguistic analysis. For in-
stance, LLMs are typically trained on graphemic
text using subword tokens. While this represen-
tation is practical for large-scale training, these
tokens are not very cognitively plausible (Beinborn
and Pinter, 2023), are less effective than character-
based tokens for learning word structure (Bunzeck
and ZarrieB3, 2025) and cannot be used to explore
representations of phonological units. Additionally,
modern LLMs are inappropriate for theories of ac-
quisition, due to the scales of data they are trained
on (Warstadt et al., 2023).

Here, we are interested in evaluating models
that train directly on individual phonemes, with-
out word boundaries. When trained on individual
words, phoneme LMs have been used to study the
acquisition of morphological rules (Kirov and Cot-
terell, 2018) and compare phonotactic complexity
across languages (Pimentel et al., 2020). When
trained on running text, phoneme LMs have been
used for text-to-speech (Li et al., 2023) and lyric
generation (Ding et al., 2024). When compared
to grapheme-based models on standard linguis-
tic benchmarks, phoneme models slightly under-
perform (Nguyen et al., 2022; Bunzeck et al., 2024)
but this could be attributed to pre-processing, punc-
tuation and the fact that LLM architectures and
evaluation sets have been optimized for written
text (Goriely et al., 2024). Despite the benefits of
phoneme-based training, phonological evaluation
is limited, and few phoneme LMs exist beyond En-
glish. Goriely and Buttery (2025) trained phoneme
LMs on child-directed speech across 11 languages,
but were only able to use an English benchmark for
studying how phonological and syntactic knowl-
edge scales in phoneme LMs.

In this work, we propose the word segmentation
task as a language-independent method for prob-
ing the representations learned by phoneme LMs.
Below, we summarize past approaches for inves-
tigating the phonological capabilities of language
models. We then give historical background on the
word segmentation task. Finally, we discuss past
examples of word segmentation being used as a
probing task.

2.1 Phonological Evaluation of LLMs

While many studies have explored the represen-
tations learned by phoneme LMs trained on indi-
vidual words, there are very few benchmarks for
phoneme LMs trained on running text.

One method for testing phonology is to use mini-
mal pairs of words and pseudowords as a lexical de-
cision task. One benchmark that uses this approach
is BabySLM (Lavechin et al., 2023), which pro-
vides a lexical decision metric for phoneme LMs
or speech LMs (which learn directly from audio)
using a vocabulary based on child-directed speech.
Bunzeck et al. (2025) use a similar approach in
order to compare grapheme LMs to phoneme LMs.
They also use two probing tasks to examine the
representations of sentences; age prediction and
rhyme prediction.
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PhonologyBench (Suvarna et al., 2024) is a
benchmark that uses prompts to test chat-based En-
glish LLMs. However, by using prompts, they treat
phonology as an emergent ability tested through
metalinguistic judgment, an evaluation strategy
which Hu and Levy (2023) argues is inferior to
using quantities directly derived from a model’s
representations.

These benchmarks also only test English mod-
els, in part due to the lack of phoneme LMs in
other languages, but also due to a lack of resources
for constructing phonological tasks. For example,
pseudowords are typically generated using wuggy
(Keuleers and Brysbaert, 2010), which only sup-
ports three languages for phonetic pseudoword gen-
eration. An example of language-independent eval-
uation of phoneme LMs is the phonetic feature
probe used in Goriely and Buttery (2025), which
only requires feature vectors for each IPA symbol.
The word segmentation task requires no language-
specific data, only utterances labeled with word
boundaries.

2.2 Computational Models of Segmentation

Unlike in written text, where lexical units are sepa-
rated by spaces and punctuation, spoken communi-
cation consists of continuous utterances with no
clear demarcation of words (see, e.g. Cole and
Jakimik, 1980). Somehow, without a lexicon to
consult, children are able to segment speech into
words and phrasal units by the age of six months
(Jusczyk, 1999). How children learn to segment
words and bootstrap their lexicon is known in psy-
cholinguistics as the word segmentation problem,
and statistical learning experiments have estab-
lished a wide variety of statistical cues which chil-
dren may use to segment speech (Cutler and Carter,
1987; Gleitman et al., 1988; Jusczyk et al., 1993;
Saffran et al., 1996b; Jusczyk et al., 1999a; Suomi
etal., 1997).

Particularly influential were the experiments of
Saffran et al. (1996a), who established that 8-
month-old children use distributional information
to segment speech, specifically noting that low con-
ditional probability between two adjacent sylla-
bles often indicated a word boundary. These ex-
periments inspired the development of computa-
tional models proposing cognitively plausible learn-
ing mechanisms for word segmentation, most of
which are based on the principle that units within
words are far more predictable than units across

word boundaries (Harris, 1955). Many models
draw on Brent (1999), who use unigram statis-
tics to segment speech, with later models using
higher-order n-grams (Venkataraman, 2001), in-
corporating phonological constraints (Blanchard
et al., 2010) or leveraging prior distributions over
word frequencies and phonological shapes (Gold-
water et al., 2009). Other models explicitly calcu-
late several statistical cues at each potential word
boundary and combine cues using a majority vot-
ing framework (Coltekin and Nerbonne, 2014; Col-
tekin, 2017; Goriely et al., 2023). Each cue pro-
vides a signal over the utterance (as illustrated in
fig. 1) with peaks in each cue indicating a potential
boundary.

Peaks in predictability can also be observed in
neural language models. In the foundational work
of Elman (1990), a simple recurrent network (SRN)
is trained to predict letters in an unsegmented se-
quence (one of the first examples of auto-regressive
language modeling). Elman observes that the
prediction-error increases at the onset of each new
word, concluding that “there is information in the
signal that could serve as a cue to the boundaries
of linguistic units which must be learned”.

Christiansen et al. (1998) later used an SRN to
segment speech by using the probability of an ut-
terance boundary, rather than prediction-error, to
place word boundaries. This followed previous
work suggesting that children could use utterance
boundaries to bootstrap their lexicon (Aslin et al.,
1996) and is a cue used in the models of Coltekin
and Nerbonne (2014); Goriely et al. (2023).

In this study, we combine ideas from past com-
putational models for word segmentation. Rather
than explicitly calculate n-gram statistics, our cues
are based on prediction-error and utterance bound-
ary probability extracted from LLMs trained on
the next-phoneme prediction task. As these cues
are based on the language model’s prediction of
phonemes, successful segmentation indicates that
implicit phonological knowledge of word-like units
in these models.

While our experimental setup draws on previous
computational work in word segmentation, we do
not claim that our phoneme-level language models
simulate child language acquisition (see section 6).
Rather, we use the segmentation task — with
phoneme-level input — as a diagnostic tool that al-
lows us to characterize the cross-linguistic distribu-
tional structure of speech sounds and test whether
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language models naturally cluster sequences into
units that coincide with our notion of word-hood.
Although our findings may support aspects of sta-
tistical learning theories, we acknowledge the limi-
tations of using phoneme-based representations in
appendix A.

2.3 Probing for Word Boundaries

Previous work has explored the representations of
word boundaries in LLMs. Sanabria et al. (2021)
explored methods for extracting word boundaries
from attention weights in an LSTM, finding that
attention had limited value for segmentation. Hahn
and Baroni (2019) trained character-level RNNs
and LSTMs without word boundaries, finding that
individual activations correlated with word bound-
aries and that a linear probe trained on all activa-
tions also identified boundaries. They claimed that
removing word boundaries resulted in a ‘near tab-
ula rasa’ training paradigm but trained on billions
of graphemic words Wikipedia, which is not de-
velopmentally plausible. Here, we use this probe
on the final layer of phoneme LMs trained on de-
velopmentally plausible data, a more ‘tabula rasa’
paradigm.

Other studies have verified Elman’s observations
that prediction-error corresponds with word bound-
aries. For instance, Al-Rfou et al. (2019) train a
64-layer character-level transformer and in qualita-
tive analysis note that three measures of prediction-
error sharply increase at the start of words. How-
ever, their model is trained on graphemic text from
Wikipedia without removing the word boundaries
and they do not explicitly use these measures to
evaluate word segmentation performance. Here,
we use their three measures to propose an unsuper-
vised word segmentation algorithm using phoneme
LMs trained without word boundaries.

3 Word Segmentation Task

We use the word segmentation task as a zero-shot
method for studying the phonological properties of
language models trained on phoneme sequences.
Given a list of utterances, each of which con-
sists of a non-delimited phoneme sequence, the
task is to produce a segmentation of each utter-
ance by using an unsupervised method for placing
word boundaries. For instance, given the utterance
“what do you see”, represented phonemically as
watduryussiz, successful segmentation would re-
turn wat dur yu: sii, as demonstrated in fig. 1.

Note that phonemes are individual tokens (e.g. u:
is a single token, not two) and, crucially, word
boundaries are removed during training, although
utterance boundaries are present.

Our method for unsupervised word segmenta-
tion is based on the observation made by Elman
(1990), that cues for word boundaries can be ex-
tracted from a sequence prediction model. Given
a language model that at each position ¢ provides
the probability of a phoneme z given a context
x1...x;—1, we extract the following four cues at
each potential boundary position:

* Entropy: The entropy (in bits) across the proba-
bilities for all items in the vocabulary.

* Loss: The cross-entropy loss (bits) calculated
as the negative log probability of the subsequent
phoneme p;.

* Rank: The rank of z; in the list of possible to-
kens at position ¢ sorted by likelihood.

o Utterance Boundary Probability (UBP): The
probability assigned to the utterance boundary
token.

The first three cues are put forward by Al-Rfou
et al. (2019), where they are used to qualitatively
examine the error rate of their character-based lan-
guage model. Our use of these cues for word seg-
mentation is novel. The fourth cue, UBP, relates
to the model of Christiansen et al. (1998), who
found that the prediction of the utterance boundary
marker in a SRN increased at word boundaries. All
four cues are utilized in the segmentation models
of Coltekin and Nerbonne (2014); Goriely et al.
(2023) but rather than being explicitly calculated
using n-gram frequencies, we calculate them using
the probability distribution produced by a language
model.

For each of these cues, we have three methods
for placing word boundaries. The first is to iden-
tify peaks in each cue: placing word boundaries
whenever the cue’s value is higher at position
than at position 2 — 1 or ¢ + 1 in the sequence. The
second is to learn a single threshold value, placing
word boundaries when the cue exceeds it. The third
combines both strategies, placing word boundaries
when the relative increase of the cue’s value from
position ¢ — 1 to ¢ exceeds a learned threshold. We
call these the peak, threshold and relative strate-
gies, respectively, as illustrated in fig. 1. We ac-
knowledge that the threshold and relative strategies
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Suite Size Model Parameters Tokens (words) Languages

Tiny 400k 100k (~20k) 31

Small 600k 700k (~180k) 17
Medium 5M 1.8M (~500Kk) 11
Large 19M 18M (~5M) 1

Table 1: The model size in number of (non-embedding)
parameters and data size used for each suite of models.
Languages are sub-sampled according to the token count
for consistency, as word length varies across languages.

are not fully unsupervised, using a single learned
parameter.

Finally, in order to explore whether word bound-
ary information is present in the model’s representa-
tions, we follow Hahn and Baroni (2019) and train
a linear probe to predict word boundaries from the
final layer embeddings. We implement their ‘bal-
anced’ probe, training on embeddings taken from
an equal number of word-final and word-internal
positions, and ensure that no words in the training
set are contained in the test set.

4 Experimental Setup

We train a suite of GPT-2 models on each of the 31
languages in the IPA CHILDES corpus. As the
size of each subset varies considerably,1 for a fair
comparison we must subsample our training data
to the size of the smallest subset and use a very
small model to prevent over-fitting. In order to
explore the use of larger models and more training
data, we train four suites of models, each using a
different sample size and model size, setting model
parameters according to the scaling experiments
of Goriely and Buttery (2025). These suites are
detailed in table 1 with parameter configurations
and training parameters given in appendix B. The
smallest model (only 2 layers) is trained on 100k
tokens from all 31 languages, and the largest model
(6 layers) is trained on 18M tokens of English.

For the linear probes, we follow Hahn and Ba-
roni (2019) and report accuracy. They claim that
chance performance is 50% due to the balanced
training data, but our results suggest otherwise. In
order to evaluate our unsupervised strategies, we
follow past work (see section 2.2) compute the F1
score of boundary placement, excluding boundaries
placed at the start and end of utterances (as these
are ‘free’ from the utterance boundaries).

"The North American English section contains 10M words
but Farsi only contains 40k.

5 Results

We present the results of the word boundary probe
in fig. 2 and the maximum boundary F1 scores of
our unsupervised segmentation strategies in fig. 3.
The individual scores for each combination of lan-
guage, suite size, boundary cue and segmentation
strategy are provided in appendix C.

Overall, both the word boundary probe and the
unsupervised strategies successfully identify word
boundaries — all probes achieve accuracies sig-
nificantly higher than the untrained baseline, as
do the unsupervised strategies (see appendix D
for details on significance tests). The probe ac-
curacies show that models implicitly track word
boundaries in their contextual embeddings, sug-
gesting that they are learning phonological rules to
aid in next-phoneme prediction. The unsupervised
segmentation results indicate that word boundaries
can be extracted through prediction across many
languages, corroborating previous statistical learn-
ing results about the role of distributional cues in
language acquisition.

Below, we analyze these results in more detail.

180k words are sufficient for learning word
boundaries. We note that across all languages,
the accuracy of the word boundary probes increases
from the Tiny suite to the Small suite (where mod-
els are trained on about 180k words, as seen in
table 1), but improvements are minimal for mod-
els in the larger suites. This also occurs with the
unsupervised approach, despite receiving several
orders of magnitude more training data and train-
ing with many more parameters. We conclude that
180k words is sufficient for a model to learn word-
like units in our framework, but other models may
require more or less data.

Utterance boundaries are better predictors of
word boundaries than prediction-error. Fig-
ure 3 provides the maximum boundary F1 score
achieved for each model in each suite across the
four boundary cues and three segmentation strate-
gies, for a total of 12 combinations. In table 2
we summarize the cue and strategy combinations
that achieved these scores. The UBP cue is the
most effective in each suite, out-performing the
three cues based on prediction-error, and the rela-
tive strategy out-performs the other two strategies.
For reference, we give the best combinations for
each language in appendix C. Generally, the best
cue stays consistent across suites for a particular
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Figure 3: Boundary placement F1 scores achieved using the unsupervised segmentation strategies across models in
each suite. For each score, we report the maximum across the 4 cues and 3 segmentation strategies. The Untrained
row give the maximum scores achieved by each model in the Tiny suite before training.

Cue & Strategy Tiny Small Medium Large
UBP (threshold) 3 2 1 -
UBP (relative) 3 6 4 -
UBP (peak) 11 4 3 1
Entropy (threshold) 1 - 1 -
Entropy (relative) - 4 2 -
Entropy (peak) - 1 - -
Loss (relative) 9 - - -
Rank (relative) 3 - - -
Rank (peak) 1 - - -

Table 2: Counts of the word boundary cues and segmen-
tation strategies that achieved the highest F1 scores in
each suite.

language (e.g. Entropy is the best cue for Italian),
but this is not always the case, and the best strategy
also varies.

The peak segmentation strategy fails to cap-
ture subsequent boundaries. We compare the
four segmentation cues using the peak strategy seg-
ment utterances from the EnglishNA section of
IPA CHILDES in fig. 4. We identify two fail-
ure modes for this strategy. The first is that since
two peaks cannot directly follow one another, sub-
sequent boundaries cannot both be successfully

placed. In this example, the h in “help” is incor-
rectly placed by all four cues. A second failure case
is that the relative size of peaks is not considered;
three cues incorrectly place a boundary within the
word “fingers” due to a very small peak at o. The
threshold and relative segmentation strategies ad-
dress both of these issues but for English the peak
strategy is still best overall.

Italian has a strong prior for learning word
boundaries. Hahn and Baroni (2019) claim that
since the probes are trained on balanced examples,
chance accuracy should be 50%. However, we find
that the probes trained on completely untrained
models (see fig. 2) achieve accuracies ranging from
51% for French up to 68% for Italian. This is be-
cause the balancing procedure does not account
for the fact that phonemes have different probabil-
ity distributions depending on their position within
words. For example, in fig. 5 we find that at the end
of Italian words, a small number of phonemes have
particularly high frequencies (the vowels ®, o, e
and i end 84% of words) whereas the distribution of
French word-final phonemes is not as skewed. This
skewed distribution provides a useful prior for the
Italian probe, which can achieve high accuracies
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Figure 4: Per-phoneme boundary probability, entropy, loss and rank assigned by the Medium English model for the

sequence of utterances “can I help you by opening your fingers”,
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there”, ““you got it”. Spaces indicate utterance

boundaries, vertical lines indicate gold word boundaries and phonemes are marked as green if they are correctly
identified as word boundaries using the peak strategy or if they follow an utterance boundary (red otherwise).
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by relying on these phoneme frequencies (the only
signal available when using embeddings from an
unsupervised model). To measure the relative ben-
efit of each prior, we can compute the normalized
entropy of the word-final phoneme distributions in
each language,

H(P)
Hnorm = H =
max

Y - pilog; p;
loga(n)

which ranges from O (deterministic distribution)

to 1 (uniform distribution). We find that not only
do Italian and French have the lowest and highest
normalized entropies with 0.51 and 0.84, respec-
tively, but in general, this normalized entropy has a
high negative correlation with probe accuracy for
the untrained models (Pearson p = —0.69). This
correlation is still present for the Tiny suite (Pear-
son p = —0.52) but is not significant for the Small
and Medium suites, indicating that although the
word-final phoneme distribution prior is useful, the
embeddings do still encode information about word
boundaries that the probes can detect.

Word length is a confounding factor for unsu-
pervised segmentation. Just as with the probes,
using our unsupervised methods on untrained mod-
els can reveal confounding factors, as shown in
fig. 3. The F1 scores for the untrained models
range from 20 for Quechua up to 55 for Cantonese.
For 25 of the 31 languages, this score comes from
the UBP cue with the relative strategy; since the
probability of an utterance boundary from an un-
trained model will randomly vary over the phoneme
sequence, boundary placement using the relative
strategy essentially places boundaries randomly,
which can still yield relatively high F1 scores if
words are short. This seems to be the case here;
Quechua has the highest average word length in
IPA CHILDES and Cantonese has the lowest, with
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6.2 and 2.4 phonemes per word, respectively. Gen-
erally, we find that word length has a high neg-
ative correlation with the F1 scores with Pearson
p=—0.94,-0.71,-0.79, —0.42 for the Untrained,
Tiny, Small and Medium suites, respectively (al-
though the final correlation is not significant).
This confounding factor means that we cannot
easily compare word segmentation scores between
languages, only scores for each language across
suite sizes. Compared to the untrained models,
the unsupervised word segmentation strategy still
achieves significantly higher F1 scores for every
language, demonstrating that distributional infor-
mation is a useful cue for bootstrapping a lexicon.

6 Discussion

In this work, we train BabyLMs on phonemic tran-
scriptions of 31 languages in IPA CHILDES and
explore the word segmentation task as a method
for probing these models for phonological knowl-
edge. Our results indicate that prediction-error and
utterance boundary probability can be used as cues
for unsupervised word segmentation. Our study
is the first to use prediction-error extracted from
LLMs for unsupervised word segmentation, extend-
ing previous work that explicitly calculated these
cues using n-gram models (Coltekin and Nerbonne,
2014; Coltekin, 2017; Goriely et al., 2023). We
also update previous neural models of word recog-
nition (Elman, 1990; Christiansen et al., 1998) by
using modern architectures and evaluating cross-
lingually. We now turn to the broader implications
of our findings.

Statistical learning. Viewing our models as sta-
tistical learners, we find that no single cue or strat-
egy consistently yields the best segmentation per-
formance across different model sizes and lan-
guages. This is perhaps unsurprising, as many
of the cues are highly interrelated (for example,
entropy and surprisal often correlate) and all seg-
mentation strategies are grounded in the same un-
derlying principle: identifying boundaries at points
of high prediction uncertainty. It is this general
principle, rather than any specific cue or strategy,
that proves sufficient for segmenting utterances
into word-like units. Nevertheless, most cues and
strategies perform reasonably well on their own.
Previous segmentation models have explored com-
bining multiple distributional cues through unsu-
pervised majority voting (Coltekin, 2017; Goriely
et al., 2023), an approach that could be fruitfully

applied to the cues investigated here in future work.

Cross-lingual comparison. Comparing models
across languages is a challenge. Our study is the
first cross-lingual study using the word segmenta-
tion task to compare 31 languages, but we identify
two confounding factors that inhibit cross-lingual
comparison. Firstly, we find that the distribution
of phonemes in word-final slots provides a prior
not previously accounted for in studies that probed
contextual embeddings for word boundary informa-
tion. Secondly, we find that word length provides
a prior for the unsupervised strategies, since ran-
domly placing boundaries yields a higher F1 score
when words are shorter, which has not previously
been accounted for in cross-lingual word segmenta-
tion studies. Nevertheless, both the probes and the
unsupervised strategies achieve significant scores
for all 31 languages, indicating the importance
of the distributional cue for learning to segment
speech in any language. These findings also high-
light the importance of accounting for frequency
information as a prior when training probes or com-
paring models trained on different datasets.

Simulating acquisition. Our results focus on the
performance of our models at the end of training,
whereas past work has compared the learning dy-
namics of phoneme-based models to developmen-
tal patterns observed in human acquisition (Kirov
and Cotterell, 2018). Although our findings indi-
cate the utility of the distributional cue for iden-
tifying word-like units, we do not claim that our
models simulate language acquisition. In particu-
lar, given recent advances in models that operate
directly on raw audio, the use of phoneme-level rep-
resentations may be insufficient for capturing the
full complexity of language learning, as discussed
in appendix A.

Rather, we use this framework to investigate
the distributional patterns of phonemes across lan-
guages and whether language models trained to
predict upcoming phonemes implicitly track mean-
ingful sub-sequences that align with words. While
many computational models of word segmenta-
tion treat segmentation as a necessary precursor
for language understanding, this assumption has
been questioned. For example, Baayen et al. (2016)
show that a tri-phone model, operating on unseg-
mented utterances can make predictions consis-
tent with infants’ sensitivity to linguistic structure.
Likewise, recent phoneme-level language models
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perform well on both linguistic benchmarks and
downstream tasks without explicit segmentation
(Goriely et al., 2024) — although our results sug-
gest that some degree of implicit segmentation may
be occurring to enhance these models’ predictive
performance.

Word boundaries as gold labels. Throughout
this work, we have used word boundaries from or-
thographic text as the gold labels for evaluation, but
these boundaries may not correspond with lexical
units in speech. In early stages of acquisition, chil-
dren may treat both predictable multi-word phrases
as single lexical units (MacWhinney, 1978) and
unsupervised word segmentation strategies may be
segmenting morphemes, rather than words (Fleck,
2008). From an information-theoretic angle, word
boundaries may only exist to optimize the trade-off
between syntax and morphology across languages
(Koplenig et al., 2017; Mosteiro and Blasi, 2025)
and in general, what exactly defines a ‘word’ is
still up for debate (Dixon and Aikhenvald, 2003;
Haspelmath, 2023).

Unsupervised segmentation for tokenization.
Instead of evaluating against word boundaries,
we can treat our cues as graded measures of co-
occurrence statistics, as noted by Elman (1990).
This idea can be leveraged to improve the tokeniza-
tion step in modern LLLM pre-training. Instead of
forming subwords by merging frequently occur-
ring byte pairs, token sequences that are highly
predictable can be combined. Pagnoni et al. (2024)
apply this concept to a “token-free” model, where
bytes are joined into ‘patches’ according to the
entropy of the probability distribution for each
byte (probabilities are computed using a byte-level
LLM). They use two constraints for merging bytes
which exactly correspond to our threshold and rela-
tive segmentation strategies, but only use entropy
as a cue. In our experiments, entropy was less ef-
fective than utterance boundary probability (UBP)
for unsupervised word segmentation and in an ini-
tial investigation (see appendix E) we found that
creating a subword tokenizer using both cues im-
proves the linguistic abilities of models trained on
phonemes compared to regular BPE and that the
UBP cue is more effective than entropy. This cre-
ates a parallel between word segmentation research
and practical applications for tokenization in NLP
and we encourage further work in this area.

7 Conclusion

Phoneme-level language models trained on devel-
opmentally plausible corpora are a valuable tool
for studying cross-lingual phonology and theories
of acquisition. In this study, we demonstrate how
the word segmentation task can be used to probe
these models for phonological knowledge and in-
troduce novel unsupervised methods leveraging
prediction-error and utterance boundary probability
to identify words. Our findings show that models
trained on 31 languages can all detect word bound-
aries; however, cross-linguistic comparisons are
influenced by confounding factors such as word
length and word-final phoneme distribution. These
factors, while positing challenges, also offer new
avenues for understanding the role of distributional
cues in language processing cross-lingually. Fi-
nally, we explore the connection between word
segmentation and information-driven tokenization
schemes, highlighting how this research can in-
form and improve practical applications in natural
language processing.
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A Limitations

We acknowledge the following limitations of our
work.

Limitations of phonemic data: Using phonemic
data for the word segmentation task is the typical
framework for exploring relevant acquisition the-
ories. However, the phonemic transcriptions in
IPA CHILDES do have limitations. Having been
generated using grapheme-to-phoneme (G2P) con-
version, they may have been subject to conversion
error, and the original transcriptions may also con-
tain errors. The G2P process also removes natural
variation in speech, such as accents and allophonic
variation. The symbolic nature of phonemes may
also be an unrealistic starting point for acquisi-
tion; it is unclear if infants have access to phonetic
categories at this stage of acquisition (Feldman
et al., 2021; McMurray, 2022). Researchers who
advocate for using language models as cognitive
models argue that the training data should be as de-
velopmentally plausible as possible (Dupoux, 2018;
Warstadt and Bowman, 2022), and that phonemes
may be as implausible as text for simulating early
acquisition (Lavechin et al., 2023).

From this perspective, a more appropriate frame-
work is to learn segmentation directly from raw au-
dio, as pursued in the Zero Resource Speech Chal-
lenge (Nguyen et al., 2020; Dunbar et al., 2021).
Audio-based models naturally incorporate prosodic
cues, which play a key role in language acquisi-
tion (Cutler and Carter, 1987; Jusczyk et al., 1993,
1999b). Unsupervised models have demonstrated
the ability to perform statistical learning directly
from raw speech (Lavechin et al., 2022; de Seyssel
et al., 2023), and have found that the resulting units
tend to be shorter than phonemes, consistent with
early perceptual categories (Schatz et al., 2021).
While such models show promising signs of early
phonetic learning and perform well on word-level
tasks, they currently require significantly more data
to match the performance of text-based models
(Lavechin et al., 2023). Moreover, training on
curated audiobook datasets gives these models a
considerable advantage over learning from noisier,
long-form audio that better resembles real-world
input—but ongoing work is making such realistic
simulations increasingly viable (Lavechin et al.,
2024).

Distribution of languages: When training mod-
els cross-lingually, we were limited by the scale

of each language partition of the IPA CHILDES
dataset. The dataset has a very skewed distribu-
tion: the EnglishNA section contains 18M words
but the Farsi section only contains 43k words. We
addressed this skew by training four suites of mod-
els in order to provide a cross-lingual compari-
son while also exploring how segmentation perfor-
mance increased in scale for the languages with
more data available.

Language coverage: To the best of our knowl-
edge, our work is the most cross-lingual explo-
ration word segmentation to date, but is still limited
in language coverage: the languages we compare
are predominantly European and Asian, with no
languages indigenous to the Americas, Australia
or Africa. Word segmentation of languages that
are more globally distributed should be explored in
future work.

B Implementation Details

We conduct our experiments using the PyTorch
framework (Paszke et al., 2019) and the
Transformers library (Wolf et al., 2020).

B.1 Hardware Details

We use a server with one NVIDIA A100 80GB
PCle GPU, 32 CPUs, and 32 GB of RAM for all
experiments. Below, we report a subset of the out-
put of the Iscpu command:

Architecture:
CPU op-mode(s):
Address sizes:

x86_64

32-bit, 64-bit
46 bits physical,
48 bits virtual

Byte Order: Little Endian

CPU(s): 32

On-line CPU(s) list: 0-31

Vendor ID: GenuineIntel

Model name: Intel(R) Xeon(R)
Silver 4210R CPU
@ 2.40GHz

CPU family: 6

Model: 85

Thread(s) per core: 1
Core(s) per socket: 1

Socket(s): 8
Stepping: 7
BogoMIPS: 4800.11

\

B.2 Model Parameters and Training
Procedure

We describe the model and training parameters in
table 3. The model parameters were chosen accord-
ing to the scaling experiments of Goriely and But-
tery (2025), who trained a suite of GPT-2 models
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Parameter Tiny Small Medium Large
Layers 2 3 6 6
Heads 4 4 8 8
Dropout 03 03 0.3 0.1
Embedding Size 128 128 256 512
Inner Size 512 512 1024 2048
Max Example Length 128

Learning Rate 0.001

Optimizer AdamW
Scheduler Type Linear

Max Steps 200k

Warm-up Steps 60k

Per Device Batch Size 32

Table 3: Hyperparameter settings for training the GPT-2
architecture in each suite. Vocabulary size varies accord-
ing to the language, but all other parameters are constant
across experiments. Where values are not reported, they
may be assumed to be default values.

for different subsets of the English section of IPA
CHILDES and used the lexical score in BabySLM
(Lavechin et al., 2023) to determine the best param-
eters. We note that since these parameters were op-
timised for English, there may be better parameters
for the other languages, but differences in perplex-
ity between languages were generally larger than
the differences in perplexity between models in the
scaling experiments we reference.

Data is prepared into batches by first tokeniz-
ing the entire dataset, combining all tokens into
one long vector, and then splitting the vector into
chunks of 128 tokens. Only the very last example
is padded, if required. At each step during train-
ing, random chunks are selected and combined into
batches.

Checkpoints are taken every 20,000 steps dur-
ing training. At each checkpoint, the perplexity is
evaluated on the held-back evaluation set, and at
the end of training the checkpoint with the lowest
perplexity is returned as the best model. For the
Tiny suite, many of the best models were from the
very first checkpoint, since due to the small training
dataset and small model, the model had already fit
the data by this point.

C Full Word Segmentation Results

All boundary placement F1 scores for the Tiny,
Small, Medium and Large suites are given in fig. 6,
fig. 7, fig. 8 and fig. 9, respectively. The best com-
bination of cue and segmentation strategy for each
language is given in table 4.

D Significance Tests

All word boundary probes for a particular language
are trained and tested on the same evaluation set.
We compute significance between two probes using
McNemar’s Test (McNemar, 1947) over the pre-
dicted word boundaries for the evaluation set, with
a significance threshold of p < 0.05. The same pro-
cedure is used when comparing the unsupervised
methods.

E Using Word Segmentation Cues for
Subword Tokenization

We briefly explore the use of our unsupervised
word boundary cues to create a subword tokenizer.
Typically, the vocabularies for these tokenizers are
generated using methods like Byte-Pair Encoding
(Sennrich et al., 2016), where the vocabulary ini-
tially consists of each individual byte, and pairs of
bytes that frequently co-occur in a training dataset
are ‘merged’ into a new token, with this process
repeated until a fixed vocabulary size is reached.
We use the same principle, but base merges on the
word boundary cues from a language model trained
on the dataset.
Our method is as follows:

1. We take a trained phoneme-level LM and com-
pute either the UBP cue or the entropy cue at
every position in the a given dataset.

2. We initialize our vocabulary V' to match the
vocabulary of the phoneme LM (so it contains
every phoneme plus the utterance boundary
token).

3. For every pair of tokens z;,z; € V that co-
occur in the dataset, we compute the score
for that pair by finding the average value of
the word boundary cue at the position of the
second token in the pair (e.g. for the pair 9,¢,
we find the value of the cue at every position
where € appears after 0 and return the aver-

age).

4. We find the pair with the lowest score, create a
new token V; +V}, add it to the vocabulary and
apply the merge to every token in the dataset.
The cue’s value at the newly merged token
is set to be the sum of the cue’s value of the
two tokens before the merging occurs. For
the entropy cue this follows from the chain
rule and for the UBP cue this results in the
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Figure 6: Boundary placement F1 scores achieved by the models in the Tiny suite for each cue and segmentation
strategy, with the highest score for each language highlighted.
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Figure 7: Boundary placement F1 scores achieved by the models in the Small suite for each cue and segmentation
strategy, with the highest score for each language highlighted.
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Figure 8: Boundary placement F1 scores achieved by the models in the Medium suite for each cue and segmentation
strategy, with the highest score for each language highlighted.

UBP

Ent
+ Entropy

S Loss

Rank

UBP
Entropy
Loss
Rank

threshold

UBP

~
~

Entropy

~
~

Loss
Rank

~
(&)

relative

~
N

EnglishNA

Figure 9: Boundary placement F1 scores achieved by the models in the Large suite for each cue and segmentation
strategy, with the highest score for each language highlighted.
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Language 100k 700k 2M 18M
Basque Loss (relative)

Cantonese UBP (relative) UBP (threshold)

Catalan Loss (relative)

Croatian Rank (peak)

Danish UBP (peak)

Dutch UBP (peak) Entropy (relative) Entropy (relative)
EnglishNA  UBP (peak) UBP (peak) UBP (peak) UBP (peak)
EnglishUK  UBP (peak) UBP (peak) UBP (peak)
Estonian UBP (peak) UBP (relative) UBP (relative)
Farsi Loss (relative)

French UBP (peak) UBP (peak) UBP (peak)
German UBP (peak) Entropy (relative) Entropy (relative)
Hungarian ~ UBP (peak)

Icelandic UBP (peak)

Indonesian  Loss (relative) UBP (relative) UBP (relative)
Irish Loss (relative)

Italian Entropy (threshold) Entropy (relative)

Japanese UBP (relative) UBP (relative) UBP (relative)
Korean Rank (relative) Entropy (relative)

Mandarin UBP (threshold) UBP (relative) UBP (threshold)
Norwegian ~ UBP (peak)

Polish Loss (relative) UBP (relative)

PortugueseBr UBP (relative)

PortuguesePt UBP (threshold) UBP (threshold)

Quechua UBP (threshold)

Romanian Loss (relative)

Serbian Rank (relative) UBP (relative) UBP (relative)
Spanish Rank (relative) Entropy (peak)  Entropy (threshold)
Swedish UBP (peak) UBP (peak)

Turkish Loss (relative)

Welsh Loss (relative)

Table 4: Best combination of boundary cue and segmentation strategy for each language and each suite.

probability that either original token was an
utterance boundary.

5. We repeat (2)-(3), adding new tokens and ap-
plying merges until a fixed vocabulary size is
reached.

Conceptually, creating merges using minimum
average entropy will join highly predictable tokens
together and result in tokens with comparable infor-
mation and a uniformly dense signal that the model
can learn from. Creating merges using the mini-
mum average probability of an utterance boundary
is similar, but instead tokens are joined according
to the model’s certainty that they do not cross an
utterance boundary.

In order to test this method, we use the phoneme-
level LM trained by Goriely et al. (2024) on
a phonemized version of the 100-million word
BabyLM dataset (Choshen et al., 2024) and train
subword tokenizers using a phonemized version of
the 10-million word BabylLM dataset. We create
two tokenizers with a vocabulary size of 16k using
the UBP cue and the entropy cue. We compare
these to the BPE tokenizer trained by Goriely et al.

(2024) on the same dataset, which also has a vocab-
ulary size of 16k. Note that all three tokenizers are
trained on a dataset without word boundaries, so it
is possible for tokens to span word boundaries.

Goriely et al. (2024) trained a large model us-
ing their BPE tokenizer on the 100-million word
BabyLM dataset and evaluated their results on two
linguistic benchmarks, BLIMP (Warstadt et al.,
2020) and BabySLM (Lavechin et al., 2023). We
train and evaluate a model using the same proce-
dure but replace their tokenizer for ours.

The results of this experiment are provided in
table 5. We find that our two tokenizers improve
all three scores compared to the BPE tbut instead
okenizer with the UBP cue leading to a particu-
larly large improvement for the BabySLM syntac-
tic score.

Our method is similar to Pagnoni et al. (2024),
who calculate the entropy cue over bytes using
a small byte-level LLM, and use either a global
constraint (corresponding to our threshold segmen-
tation strategy) or a monotonic constraint (corre-
sponding to our relative segmentation strategy) in
order to group bytes into latent ‘patches’. These

538



BabySLM Syntactic
BabySLM Lexical

BLIMP

Tokenizer

BPE 71.7 74.7 71.2
Entropy 72.7 77.6 81.3
UBP 72.6 85.6 84.4

Table 5: BLIMP and BabySLM scores achieved by
a GPT-2 model trained on the BabyLM dataset. We
compare BPE to our subword method, where merges
are assigned using either entropy or UBP as a cue. BPE
results are taken from Goriely et al. (2024).

patches are then fed into the main model, a large
transformer, and the encoded patches are ‘un-
patched’ and fed back into the byte-level LLM
to predict the next byte. Future work should inves-
tigate whether their method is improved by using
the cues explored in this study. When training with
word boundaries, the prediction of the space char-
acter (or other word boundary characters) could
also be used to group bytes.
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