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Abstract

In this paper, we introduce two resources:
(i) G2P+, a tool for converting orthographic
datasets to a consistent phonemic represen-
tation; and (ii) IPA CHILDES, a phonemic
dataset of child-directed and child-produced
speech across 31 languages. Prior tools for
grapheme-to-phoneme conversion result in
phonemic vocabularies that are inconsistent
with established phonemic inventories, an is-
sue which G2P+ addresses by leveraging the
inventories in the Phoible database (Moran and
McCloy, 2019). Using this tool, we augment
CHILDES (MacWhinney and Snow, 1985)
with phonemic transcriptions to produce IPA
CHILDES. This new resource fills several
gaps in existing phonemic datasets, which of-
ten lack multilingual coverage, spontaneous
speech, and a focus on child-directed language.
We demonstrate the utility of this dataset for
phonological research by training phoneme lan-
guage models on 11 languages and probing
them for distinctive features, finding that the
distributional properties of phonemes are suf-
ficient to learn major class and place features
cross-lingually.

phonemetransformers/ipa-childes
(CC BY 4.0)

codebyzeb/g2p-plus (MIT)

1 Introduction

Phonological research can be enriched by
large-scale data-oriented studies that investigate
phoneme function across the globe’s languages.
However, while written text is plentiful and easily
accessible across hundreds of languages, phonemic
data is much more limited in availability. Phone-
mic datasets can be created by employing expert
phoneticians to carefully transcribe speech, but this
is a time-consuming process and completely infea-
sible for creating large datasets. Instead, the typical
approach is to use grapheme-to-phoneme (G2P)

Figure 1: An overview of IPA CHILDES and G2P+,
which are introduced in this paper.

conversion tools, which use statistical rules and
pronunciation dictionaries to convert orthographic
text to a phonemic representation. Open-source
G2P tools have been used to create large and mul-
tilingual phonemic datasets with domains ranging
from telephone conversations to legal proceedings.
However, the fact that these tools are open-sourced
and use a variety of statistical approaches and tran-
scription schemes means that phonemic corpora
vary considerably according to their phonemic vo-
cabularies and level of phonetic detail, making it
difficult to compare findings and incorporate other
linguistic resources into analysis.

There is also a lack of phonemic data for certain
domains, preventing phonological research in these
areas. In particular, we note that it is difficult to
find phonemic data for child-centered speech1 and,

1Child-centered speech is speech occurring within a child’s
environment and includes child-directed and child-produced
utterances.
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in general, spontaneous speech across several lan-
guages. The de-facto repository for child-centered
data is the Child Language Data Exchange System
(CHILDES), which currently contains over 1.4TB
of transcript data in over 40 languages (MacWhin-
ney and Snow, 1985; MacWhinney, 2019). The
impact of CHILDES across clinical and linguis-
tic research has been profound (Ratner, 2024) but
the largely orthographic nature of the data has pre-
vented phonological experimentation.2

We thus identify two major challenges impeding
phonological research. First, the lack of consistent
G2P conversion, which we address by developing
G2P+, a tool for converting orthographic text to
a phonemic representation. G2P+ leverages exist-
ing G2P tools for conversion but carefully maps
the output to established phonemic inventories in
Phoible, a database of cross-linguistic phonological
inventory data. Using Phoible inventories not only
ensures consistency for each language regardless
of the G2P backend used, but the database also
contains phonological feature information, support-
ing fine-grained phonological analysis. Second,
we address the lack of a multilingual phonemic
dataset of child-centered speech by using G2P+ to
convert the majority of the CHILDES database to
phonemes. The resulting dataset, IPA CHILDES,
contains phonemic transcriptions of 31 languages
in CHILDES, totaling 45 million words. We illus-
trate these resources in fig. 1.

We exemplify how to use these resources by
training cross-lingual phoneme language models.
Phoneme LMs have a wide variety of applications
in NLP, including lyric generation (Ding et al.,
2024), text-to-speech (Li et al., 2023), and low-
resource language modeling (Leong and White-
nack, 2022). Developmentally plausible training
corpora also provide a means of studying emergent
phonology, but past work has been limited by the
availability of training and evaluation resources in
languages besides English. Here, after establish-
ing the scaling conditions of phoneme LMs, we
train monolingual models on the 11 largest lan-
guages in IPA CHILDES. Using the fact that G2P+
maintains a correspondence with Phoible during
conversion, we use linear probes to predict an input
phoneme’s phonological features from its contex-
tual embedding. We evaluate this approach against

2CHILDES does contain phonetic transcriptions for some
languages as part of the PhonBank project, but only for a select
few corpora and only for child-produced utterances, impeding
the phonological analysis of child-directed speech.

the phoneme’s feature description in Phoible and
find that the probes consistently correctly predict
the ‘syllabic’ and ‘consonantal’ features, indicat-
ing the broad separation of vowels and consonants
across languages and demonstrating the utility of
phoneme LMs for studying emergent phonology.

These experiments demonstrate the utility of our
tools for phonological analysis. We release G2P+,
IPA CHILDES, and all trained models to support
future work.

2 Related Work

2.1 Phonemic Datasets

Phonemic data is required to investigate a range
of linguistic phenomena. Recently, researchers
have used data-driven approaches to study mor-
phological theories of acquisition (Kirov and Cot-
terell, 2018), explore the role of distributional in-
formation in phonology (Mayer, 2020), calculate
cross-language phonological distance (Eden, 2018)
and simulate early lexicon learning (Goriely et al.,
2023). Despite the benefits of phonemic data, few
such datasets exist.

Written text and audio datasets are far more plen-
tiful than phonemic datasets. Written text, being
widely distributed and easy to collect through prac-
tices such as web-scraping (Bansal et al., 2022),
has steered years of NLP research, ranging from
the parsers trained on the Penn Treebank (Taylor
et al., 2003) to the large language models trained on
billion-word datasets like the Pile (Gao et al., 2020).
Despite the availability of written text, it is often
inappropriate for speech technology and phonolog-
ical research. Instead, since tape recorders became
widely available, researchers have created datasets
of human speech. These now include elicited
speech corpora such as TIMIT, (Garofolo et al.,
1993), FLEURS (Conneau et al., 2023), the MSWC
(Mazumder et al., 2021), GlobalPhone (Schultz,
2002) and CommonVoice (Ardila et al., 2020); au-
dio book corpora such as LibriSpeech (Panayotov
et al., 2015), MLS (Pratap et al., 2020) and the
CMU Wilderness Corpus (Black, 2019); and natu-
ralistic speech corpora such as Switchboard (God-
frey et al., 1992), the Fisher corpus (Cieri et al.,
2004), the British National Corpus (Consortium,
2007), the Buckeye corpus (Pitt et al., 2007), Ba-
bel (Harper, 2011) and VoxLingua107 (Valk and
Alumäe, 2021). Of these datasets, only TIMIT,
MLS and Switchboard include phonemic annota-
tions, limiting their use in phonological analysis.
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Later work augmented these datasets with phone-
mic transcriptions. These include Audio BNC de-
rived from the British National Corpus (Coleman
et al., 2011), LibriLight derived from LibriSpeech
(Kahn et al., 2020), VoxClamantis derived from
the CMU Wilderness Corpus (Salesky et al., 2020),
VoxCommunis derived from CommonVoice (Ahn
and Chodroff, 2022) and IPAPACK derived from
FLEURS and MSWC (Zhu et al., 2024).

These datasets and their phonemically-annotated
successors all vary considerably according to the
language coverage, number of words, domain and
the presence of text-based transcriptions. We pro-
vide a summary of these properties in appendix C.
Our dataset, IPA CHILDES, is the first phonemic
dataset for child-centered speech and the first mul-
tilingual phonemic dataset for spontaneous speech.

2.2 Grapheme to Phoneme Conversion

Ideally, phonemic transcriptions of speech would
originate from expert human annotators, but such
annotation is incredibly slow. For instance, it was
estimated that it would take 120 person-years to
transcribe and align the 1200 hours of speech in
the Audio BNC corpus (Coleman et al., 2011). Of
the phonemic datasets described above, only the
smallest, TIMIT, was fully transcribed by human
experts, at a rate of only 100 sentences per week
(Zue and Seneff, 1996; Lamel et al., 1989). Switch-
board also provides human-annotated phonemic
transcriptions but only for 5,000 utterances (Green-
berg et al., 1996).

In practice, phonemic transcriptions are pro-
duced using G2P. In the simplest case, this involves
the use of pronunciation dictionaries such as the
Carnegie Mellon University (CMU) Pronouncing
Dictionary3 or the English Pronouncing Dictionary
(Jones, 2011). These were used to create the phone-
mic transcriptions for the Buckeye Corpus, Audio
BNC and Babel, but pronunciation dictionaries are
limited by the items included in the dictionary and
so may fail to convert part-words, interruptions or
rare proper nouns, which frequently occur in spon-
taneous speech. More sophisticated G2P methods
combine pronunciation dictionaries with statistical
models. These systems have been developed for
many languages using rules or finite-state transduc-
ers to generalize to unseen words (Mortensen et al.,
2018; Hasegawa-Johnson et al., 2020; Bernard and
Titeux, 2021). Other G2P systems have applied

3
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Figure 2: Venn diagram of the inventories produced by
phonemizer, epitran and G2P+ compared to Phoible
inventory 2269 for French.

neural networks to automatically learn these rules
and generalize to new languages (Novak et al.,
2016; Zhu et al., 2022).

As G2P systems operate only from text, they
may fail to capture accents and the variation found
in natural speech (see appendix A for a discus-
sion). Nevertheless, G2P systems provide a useful
method for producing phonemic transcriptions at
scale, and were used to produce the transcriptions
for LibriSpeech, VoxClamantis and IPAPACK. The
fact that transcription errors may occur is often
acknowledged as a limitation, but rarely are the
outputs of different G2P systems compared to each
other or to established inventories. For instance,
epitran and phonemizer, two popular tools de-
scribed in section 3.1, produce very different inven-
tories for French, as demonstrated in fig. 2.

In this work, we leverage existing statistical G2P
tools, validate their outputs using maps to Phoible
inventories, and use our resulting tool to produce
phonemic transcriptions for the utterances in the
CHILDES database.

2.3 Phoneme LMs and Child-Centered Data

In this work, we illustrate one use of our dataset by
training small monolingual LMs on 11 languages
and examining the representations they learn for
individual phonemes.

Training models on such little data (here, only
500 thousand words) may be considered atypical
in the modern NLP landscape, but questions of de-
velopmental plausibility have led to an increased
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interest in pretraining with limited data. For in-
stance, the BabyLM workshop series challenges
participants to train smaller models on data that is
limited by both scale, 10–100 million words, and
by domain, with the pre-training corpus including
data from CHILDES, among other child-centered
corpora (Warstadt et al., 2023; Hu et al., 2024b).
Such limitations have led to the development of
new architectures (Georges Gabriel Charpentier
and Samuel, 2023; Charpentier and Samuel, 2024),
motivated cognitively-inspired pre-training strate-
gies (Huebner et al., 2021; Diehl Martinez et al.,
2023) and allowed for gaining insights into human
learning (Yedetore et al., 2023). The majority of
this work has centered on English. Exceptions in-
clude Capone et al. (2024); Shen et al. (2024), who
train Italian monolingual and bilingual models, re-
spectively, Yadavalli et al. (2023) who use data
from five language in CHILDES to explore sec-
ond language acquisition theories (but only train an
English LM) and Salhan et al. (2024), who use age-
ordered data from four languages in CHILDES to
explore fine-grained curricula inspired by language
acquisition.

However, these BabyLMs are typically trained
on orthographic text, limiting their ability to be
studied at the phonological level, and generally
use subword tokens, which do not generally cor-
respond to cognitively plausible units (Beinborn
and Pinter, 2023) limiting their value for psycholin-
guistic research (Giulianelli et al., 2024). Bunzeck
et al. (2024) and Goriely et al. (2024) both estab-
lish phoneme-based training of BabyLMs (where
tokens consist of individual phonemes, with word
boundaries removed) but only train on English
text. Here, we use IPA CHILDES to demon-
strate phoneme-based training for 11 languages and
leverage the fact that G2P+ maintains a correspon-
dence to Phoible in order to probe our BabyLMs
for knowledge of distinctive features.

3 G2P+

We introduce G2P+ as a tool for converting datasets
from an orthographic representation to a phonemic
representation. It operates either as a python library
or as a command-line program; the user selects one
of four backends and the language to use for con-
version. Each backend supports a different set of
languages as described in section 3.1. The recom-
mended backends for each of the languages in IPA
CHILDES are given in appendix B and example

usage of the tool is given in appendix D.
Each line of orthographic text is converted to

phonemes, represented using the International Pho-
netic Alphabet (IPA). Regardless of the backend
selected, the representation is consistent, with
phonemes separated by whitespace (for convenient
tokenization) and unique delimiters used to sep-
arate words and utterances (see appendix E for
details).

The output representation is also consistent in
terms of the set of phonemes types produced, us-
ing folding, as described in section 3.2. Without
folding, each backend produces a different set of
phonemes (as demonstrated in fig. 2) which may
not align with established phoneme inventories.
Our folding maps not only ensure the output is con-
sistent regardless of the backend chosen, but also
makes it easy to leverage information in Phoible in
analysis, as demonstrated in section 5.2.

3.1 G2P Backends

In order to support a wide variety of languages,
we implement wrappers around four backend G2P
tools:

phonemizer: Phonemizer (Bernard and Titeux,
2021) is a python library for G2P in various lan-
guages based on eSpeak

4, an open-source speech
synthesizer which supports over one hundred lan-
guages and accents (Dunn and Vitolins, 2022).

epitran: Epitran (Mortensen et al., 2018) sup-
ports the automatic grapheme-to-phoneme conver-
sion of text across many languages, accents and
scripts, with a particular focus on low-resource lan-
guages. For the majority of the 92 languages sup-
ported,5 it uses greedily-interpreted grapheme-to-
phoneme maps augmented with context-sensitive
pre-processor and post-processor rewrite rules.

pinyin-to-ipa: Pinyin-to-ipa (Taubert, 2024)
is a python library for converting Mandarin written
in pinyin to IPA using a few contextual grapheme-
to-phoneme maps. The phoneme inventory is based
on the phonology of Mandarin as described by (Lin,
2007) and (Duanmu, 2007) and tone markers are
attached to the vowel of the syllable, rather than the

4For Japanese text written in Romanji, as is the case in
CHILDES, we use phonemizer with the the Segments backend
(Forkel et al., 2019).

5For English, Epitran uses the Flite Speech Sythesis Sys-
tem (Black and Lenzo, 2001) and for Simplified and Tra-
ditional Chinese it uses the CC-CEDict dictionary (https:
//cc-cedict.org).
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end of the syllable. The tool only converts individ-
ual pinyin syllables, so our wrapper first splits the
input into syllables before using the tool to convert
each syllable to IPA.

pingyam: Pingyam6 is a table storing conversion
information between the various romanization sys-
tems of Cantonese (including IPA) based on data
from the Open Cantonese Dictionary.7 Our wrap-
per converts from the Jyutping system to IPA by
first splitting the input text into syllables before
using the table to convert each syllable to IPA. For
consistency with pinyin-to-ipa, we move tone
markers to the vowel of each syllable.

Although pinyin-to-ipa and pingyam only
support one Chinese language each, we in-
clude them as backends because epitran and
phonemizer have relatively poor G2P quality for
these languages. This has prevented Chinese lan-
guages from being included in previous cross-
lingual phonemic datasets (Ahn and Chodroff,
2022) and has led to them being disregarded in
cross-lingual analysis (Pimentel et al., 2020). We
hope that by including these backends, we address
this gap. We also combine tone markers with their
preceding phoneme to create a unique token (e.g.,
a
Ă
£ is a single token, not two). We thus treat tone

markers as phonological features rather than as in-
dividual phonemes, similar to how diphthongs are
unique phonemes. However, this decision is still
debatable and does lead to a comparatively larger
phonemic vocabulary, so we provide an option to
disable this merging (see appendix D).

3.2 Phoneme inventory validation
In order to validate the set of phonemes produced
by each choice of backend and language, we com-
pare the output to the phoneme inventories for that
language listed in Phoible, a database containing
phoneme inventories extracted from source docu-
ments and tertiary databases for 2186 distinct lan-
guages (Moran and McCloy, 2019).

Phoible also contains typological data and
phonological feature information for each
phoneme, a useful resource for phonological
analysis. As there are often multiple inventories
in Phoible for each language, we choose the
inventory that best matches the output phoneme of
all backends that supports that language, according
to the number of phoneme types, the number of

6
https://github.com/kfcd/pingyam

7
https://www.kaifangcidian.com/han/yue/

consonants, the number of vowels and the number
of diphthongs.

Once the best inventory has been found, we use a
process called folding to align the output phoneme
set with the inventory and correct errors in the out-
put. This is achieved a manually-crafted look-up
table (a folding map) which is applied to the output
of the G2P wrapper. These maps are primarily used
to solve surface-level errors, instances where the
G2P tool outputs a specific Unicode string for a
specific phoneme but the inventory lists a differ-
ent string. For example, the phonemizer backend
with the ja language code (Japanese) outputs the
tied characters “ts as one of the phonemes, but the
Japanese inventory lists ts instead. These errors can
be solved with a simple one-to-one mapping. These
mappings will not affect the information-theoretic
properties of the output but do allow the output
symbols to be matched with entries in Phoible.

Besides these surface-level errors, other tran-
scription errors can also be solved with folding
maps. For example, the epitran backend for Ser-
bian always outputs d Z as two phonemes instead
of the single phoneme dZ, which can also be solved
with a single mapping. The construction of the
folding maps and these additional error types are
discussed further in appendix F.

3.3 Qualitative Analysis

In fig. 2, we compare the matching Phoible in-
ventory for French to the output of G2P+ (using
phonemizer as a backend) and the outputs pro-
duced by phonemizer and epitran when applied
to the French section of CHILDES. The outputs of
phonemizer and epitran both differ considerably
from the inventory and from each other whereas
the G2P+ only fails to produce a single phoneme, 4,
and produces two additional phonemes dZ and tS,
which we allow as they come from loanwords such
as “pizza” and “sandwich”.

4 IPA CHILDES

IPA CHILDES contains 45 million words of
monolingual child-centered speech for 31 lan-
guages. The data is sorted by child age in order to
support curriculum learning experiments, such as
in the work of Huebner et al. (2021), and we also
provide an ‘is_child’ feature to allow for filtering
child or adult utterances.

In order to create the dataset, we first download
all monolingual and non-SLI corpora in CHILDES.
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CHILDES has 48 languages but only 31 are sup-
ported by a backend in G2P+ (either because the
language is not supported, or because they have
been transcribed using an irregular script). For
languages supported by multiple backends, we pro-
duce a sample transcription using each backend
and carefully examine the output. The ‘best-fitting’
backend (the one that produces a phonemic vocab-
ulary closest to one of the inventories in Phoible) is
selected and is the backend for which we produce
a folding map, as described in section 3.2. Having
selected the best backend, we use G2P+ to convert
all orthographic utterances for each language to a
phonemic representation, producing a CSV con-
taining the original representation, the phonemic
representation as well as additional data stored in
CHILDES (such as target child age, morpheme
count, part of speech information, and the IDs of
each utterance, transcript, corpus and collection).

An illustration of the dataset is given in fig. 1
and a description of each language section is given
in appendix B, detailing the matching Phoible
inventory and CHILDES section for each lan-
guage. Note that English is divided into British
English (EnglishUK) and North American En-
glish (EnglishNA) to mirror the split present in
CHILDES and Portuguese is also split into Euro-
pean and Brazilian varieties, following previous
work (Caines et al., 2019; Goriely et al., 2023). For
these splits, we use different phonemizer accents.
Data is not uniformly distributed across languages.
EnglishNA is the most represented, with close to
10 million words, and Farsi is the least represented,
with only 43 thousand words. We discuss limita-
tions of the dataset in appendix A.

5 Cross-Lingual Phoneme LMs

Phoneme LMs trained on developmentally plausi-
ble corpora allow for the testing of phonological
representations but recent work has only explored
English models trained on 10 – 100 million words
(see section 2.3). Here, we establish the size re-
quirements for models trained on data available in
IPA CHILDES and then demonstrate how models
trained on the 11 largest languages in our dataset
can be used to explore emergent phonology.

Each of our models are auto-regressive, trained
to predict phonemes in a sequence. This is similar
to how standard auto-regressive models are trained,
except that each token represents a single phoneme,
rather than a word or subword. We refer to the suite

of models as “cross-lingual” as each individual
model is monolingual, only trained on data from a
single language. This is in contrast to “multilingual”
models that are trained on multiple languages at
once.

5.1 Size Requirements of Phoneme LMs

We use the BabySLM benchmark (Lavechin et al.,
2023) to evaluate syntactic and phonological knowl-
edge. The syntactic score is calculated using a pref-
erence task over pairs of grammatical and ungram-
matical sentences across six syntactic phenomena
commonly seen in naturalistic speech. For example,
models should assign D @ g U d k I t i (“the good
kitty”) a higher likelihood than D @ k I t i g U d
(“the kitty good”). The lexical score is similarly cal-
culated using minimal pairs of words and pseudo-
words, such as ô u: l @ ô z (“rulers”) compared to
the pseudo-word m u: k @ ô z (“mukers”). Lavechin
et al. (2023) demonstrated that an LSTM model
trained on 1.2 million words from Providence (one
of the corpora in CHILDES) achieved a lexical
score of 75.2 and a syntactic score of 55.18. Goriely
et al. (2024) later achieved lexical and syntactic
scores of 87.8 and 83.9 when training a larger
transformer-based model on the 100-million-word
BabyLM challenge dataset (Hu et al., 2024a).

Here, we use IPA CHILDES and BabySLM
to establish the scaling laws of phoneme LMs in
terms of data size and model size. We subsam-
ple the EnglishNA portion of the dataset, remove
word boundaries and child-produced utterances and
train a suite of GPT-2 models ranging from 400
thousand to 19 million non-embedding parame-
ters. To prevent overfitting, we train three models
for each combination of model size and data size
using dropouts of 0.1, 0.3 and 0.5, selecting the
model with the lowest perplexity for each. Model
parameters, training configurations and scripts are
provided in appendix G.

The scaling graphs for the lexical and syntactic
scores are given in fig. 3. For every model size,
performance increases with more training data but
for a particular data size the largest model is not
always the best. For instance, the second smallest
model is the best choice for the lexical task if only
300 thousand tokens of data are available, likely
due to larger models overfitting with a sample this
small (even with high dropout). It is also clear that

8Chance performance for both BabySLM scores is 50 and
100 indicates perfect performance
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Figure 3: BabySLM lexical score (left) and syntactic score (right) achieved by a phoneme-based GPT-2 model
trained on the EnglishNA portion of IPA CHILDES across model sizes and subsample sizes.

although small models with very little data seem
to acquire phonological knowledge (as measured
by the lexical score), much more data is required
to achieve syntactic scores past 60, in line with the
results of Lavechin et al. (2023) and Goriely et al.
(2024). The best model parameters for each score
and data size are given in appendix H.

5.2 Probing for Phonological Features

As the phonemic utterances in IPA CHILDES
maintain a correspondence with Phoible, we can
use the distinctive feature information in Phoible
to probe cross-lingual phoneme LMs for phonolog-
ical knowledge.

We select the 11 largest languages in the dataset
and train a GPT-2 model on each, subsampling
500 thousand words9 and using the best-fitting
model for this data size according to the previous
experiment (the 5-million-parameter model with
a dropout of 0.3). The training configuration re-
mains the same (see appendix G). These models
allow us to compute contextual embeddings c(x)
for phonemes.

We then look up the distinctive features of each
phoneme in each language using the matching in-
ventories in Phoible (see table 1). We find the set
of features for which, in all 11 languages, there are
at least 4 phonemes that exhibit the feature and 4
that do not. For each feature f , we train a linear
probe pf to predict that feature from the contex-
tual embeddings c(x) of phonemes. Each probe is
trained with an equal number of positive and neg-
ative examples and is evaluated using leave-one-
group-out cross-validation (i.e for each phoneme x
in the phoneme inventory V , the probe is trained on
the contextual embeddings of all other phonemes

9As the number of phonemes per word varies across
these languages, we actually subsample 1.8 million tokens
(phonemes) for each language, which is roughly 500 thousand
words.

Figure 4: Accuracy of the phonological distinctive fea-
ture probe across 11 languages in IPA CHILDES and
9 distinctive features from Phoible.

{c(y)∣y ∈ V \ {x}}, then evaluated by predict-
ing the feature from contextual embeddings of the
left-out phoneme pf(c(x)), and the final score is a
macro-average across all phonemes x ∈ V ).

The results of each probe are provided in fig. 4.
The majority of the probes achieve accuracies sig-
nificantly10 higher than chance (50%), indicating
that the models learn representations that encode
distinctive features. While the scores for each fea-
ture are broadly consistent across languages, some
notable differences emerge. For example, nearly
all feature probes achieve statistically significant re-
sults in Mandarin, whereas only two do so in Span-
ish. This disparity can be partly attributed to the
number of unique phonemes in each language. Be-
cause we treat each combination of vowel and tone
as a distinct phoneme, Mandarin has 99 phoneme
types, compared to just 24 in Spanish. The smaller
phoneme inventory in Spanish greatly reduces n for
each probe, making it more challenging to obtain

10Statistical significance was assessed using a binomial test,
where the null hypothesis assumes a probability of success
p0 = 0.5 and the number of trials n is equal to the number
of phonemes tested by the probe. A result was considered
significant if the computed p-value was less than 0.05.
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Figure 5: Average silhouette scores when using each
distinctive feature to cluster contextual embeddings of
the phonemes in each language.

statistically significant results.
In all 11 languages, the highest result is achieved

by the probe for the ‘syllabic’ feature which gen-
erally11 separates vowels from consonants. As
these models only learn to predict phonemes and
have no concept of how each phoneme is pro-
nounced, the fact that this separation is learned
clearly indicates that vowels and consonants pro-
vide a strong distributional signal across languages.
The consonantal feature similarly separates vow-
els from consonants12 and is learned by a probe
in every language. However, not every feature
can be learned by these probes. For instance,
the delayedRelease feature, which distinguishes
stops from affricates, is not learned by any probe.
Our models do not encode the rate of phoneme de-
livery, so it is unsurprising that a feature that relates
to the temporal properties of phonemes is difficult
to probe.

Distributional Phoneme Clusters
To better understand why the probes capture certain
phonological features, we examine whether contex-
tual embeddings cluster according to these features.
For each language, we sample 50 contextual em-
beddings per phoneme and label them with their
associated phonological features. For each label-
ing, we then compute the silhouette score for each
embedding — a metric ranging from –1 to 1, where
higher values indicate that an embedding is more
similar to others in its assigned cluster than to those

11In some languages there are also syllabic consonants,
which like vowels can act as the nucleus of a syllable.

12This feature indicates an audible constriction of the vocal
tract, separating obstruents, nasals, liquids, and trills from
vowels, glides and laryngeal segments (Gussenhoven and Ja-
cobs, 2017).

in neighboring clusters (Rousseeuw, 1987). Aver-
aging these scores across all embeddings allows us
to compare how well different features cluster the
phoneme representations, as shown in fig. 5.

The scores are all relatively close to zero, likely
due to the curse of dimensionality — our embed-
dings have 256 dimensions, far exceeding the num-
ber of distinct phonemes in each language. Despite
this, the results are consistent with the probe find-
ings: the syllabic feature yields the highest cluster-
ing quality.

We further visualize this clustering using den-
drograms, created by averaging the contextual em-
beddings for each phoneme and applying an incre-
mental clustering algorithm. Figure 6 shows ex-
amples for Japanese and French, with the syllabic
feature marked for each phoneme. In both cases,
vowels are almost entirely separated from conso-
nants, with one notable exception: n in Japanese.
We also observe some alignment with traditional
phoneme groupings (e.g., b and p), though overall
the dendrograms diverge from standard phonologi-
cal classifications. This suggests that the distribu-
tional behavior of phonemes in context may not
neatly align with their articulatory or categorical
properties.

6 Discussion

IPA CHILDES addresses several limitations of
past datasets, as the first large multilingual cor-
pus of child-centered phonemic speech. In this
study we demonstrate how this data can be used
to train phoneme LMs, but this dataset could also
support information-theoretic studies of language
processing and acquisition, which have previously
based their calculations on word types (Piantadosi
et al., 2011; Dautriche et al., 2017a; Pimentel et al.,
2020) or orthographic text (Mahowald et al., 2013;
Dautriche et al., 2017b; Futrell et al., 2020), often
citing a lack of phonemic data as a limiting fac-
tor. The child-centered domain of our dataset could
also be beneficial for studying the ‘Goldilocks’ hy-
pothesis (Kidd et al., 2014) and the properties of
‘Parentese’ (Ramírez-Esparza et al., 2017). We pro-
vide an example of an experiment investigating the
later in appendix I, where we compute the average
information of utterances directed to children aged
0–6 across 10 languages and find a general trend
of increasing informative content.

Our G2P+ tool also provides new avenues for
linguistic analysis by ensuring that phonemes pro-
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(a) Japanese (b) French

Figure 6: Similarity of the contextual embeddings for each phoneme learned by the Japanese and French phoneme
LMs. Similarities are computed using Euclidean distance considering the average of 50 contextual embeddings for
each phoneme and linkages are created using the incremental algorithm. The ‘syllabic’ distinctive feature is marked
below each phoneme.

duced for each language are consistent with estab-
lished inventories in Phoible. This not only ad-
dresses transcription errors, but also allows for the
use of distinctive feature information provided by
Phoible in analysis. We demonstrate this by train-
ing linear probes to extract distinctive features from
the contextual embeddings of phonemes learned
by our monolingual models. We find that certain
features (e.g. consonantal) emerge solely from
the distributional properties across all 11 languages,
while others (e.g. delayedRelease) do not.

Our resources could also support the training
of self-supervised speech models (e.g. Hsu et al.,
2021). These models are trained directly on au-
dio and lag behind phoneme or text-based models,
often requiring several orders of magnitude more
data to learn semantic representations (Cuervo and
Marxer, 2024), but recent work has found that fine-
tuning on phoneme classification can reduce this
gap (Feng et al., 2023; Poli et al., 2024). Our work
is closely related to recent efforts in low-resource
cross-lingual language modeling — for example,
the Goldfish suite of monolingual models spanning
350 languages, some trained on as little as 5MB of
orthographic text (Chang et al., 2024). IPA is also
a more universal representation than orthographic
text, which varies considerably across languages,
with multilingual IPA models proving to be effec-
tive for force-alignment (Zhu et al., 2024) and zero-
shot cross-lingual NER (Sohn et al., 2024). In this
study we only train monolingual models, but future
work could extend this to the multilingual setting.

7 Conclusion

This work introduces G2P+ and IPA CHILDES,
two new resources for phonological research. G2P+
improves open-source G2P tools by ensuring

phonemic vocabularies align with the established
inventories in the Phoible database. Using this tool,
we create IPA CHILDES by converting the ortho-
graphic transcriptions in CHILDES into phonemic
representations, resulting in a large corpus of child-
centered spontaneous speech across 31 languages.

We demonstrate the utility of these resources for
phonological analysis using phoneme LMs by ex-
tending prior work to the cross-lingual setting. Our
results establish the corpus size requirements for
phoneme LMs trained on developmentally plausi-
ble corpora and we show that models trained on
11 languages effectively implicitely encode distinc-
tive features. These findings support the role of
phoneme LMs in studying emergent phonology.
We anticipate that G2P+ and IPA CHILDES will
enable a wide range of future studies in linguistics
and NLP, particularly in phonological acquisition,
cross-linguistic analysis, and speech processing.
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A Limitations

We consider the following limitations of our work.

Phonemes as a representation of speech: While
phonemic data more closely represents how words
are pronounced compared to orthographic text (the
degree of this difference varies between languages),
phonemes are still abstract symbolic units which
do not contain many of the detailed and contin-
uous features of speech, such as prosody. They
also abstract away from phones, which are detailed
realizations of phonemes, representing the physi-
cal sound produced rather than a language-specific
meaningful unit. When comparing modalities that
may be close to the sensory signal available to in-
fants for developmentally plausible language mod-
eling, some researchers consider phonemic data to
be as implausible as orthographic data (Lavechin
et al., 2023) and instead create language models
that can be trained directly on audio (Kamper et al.,
2017; Nguyen et al., 2020; Hsu et al., 2021; Dunbar
et al., 2021). Nevertheless, phonemes still provide
a useful unit of analysis and are necessary for cer-
tain linguistic theories and information-theoretic
calculations. While phones could offer another use-
ful representation, they are even harder to source
than phonemes.

G2P conversion inaccuracies: Despite improv-
ing G2P conversion by mapping to inventories in
the Phoible database, there are still limitations
with G2P+. Firstly, our method integrates exist-
ing G2P tools, which may vary in quality between
languages. When converting each language in
CHILDES, we selected the most appropriate back-
end for each language, in particular adding two
backends to support G2P for Mandarin and Can-
tonese, but the quality may still vary. Many of the
G2P tools for certain languages convert words in-
dividually, so we do not capture vowel reduction,
allophonic variation or other differences found in
natural speech. We also use a single accent for
each language, losing inter-speaker variability. The
phonemizer backend supports multiple accents for
certain languages (here we use a different accent
for EnglishNA and EnglishUK) and future work
could try to maintain accent differences during
grapheme-to-phoneme conversion, but this would
require speaker information or audio, as was done
during the creation of Audio BNC (Coleman et al.,
2012). Finally, we note that G2P methods may not
produce correct transcriptions for child-produced

utterances, which are often corrected by the tran-
scriber, especially for young infants. Initially we in-
tended to distribute IPA CHILDES without child-
produced utterances (and in this study only train
models with the child-directed utterances) but as
they might be useful in future research, we instead
note this limitation.

Phoible inventories: Although the Phoible
database collects established phonemic inventories
and provides distinctive feature vectors, there are
still often multiple phoneme inventories for a sin-
gle language. This the exact phonemic inventory
for a particular language is still a matter of debate
among expert phonologists. When creating folding
maps we choose the ‘best-fitting’ inventory to map
to, as detailed in table 1, but we acknowledge that
these inventories may not be exact.

Phoneme LMs: We train phoneme LMs on 11
languages from IPA CHILDES but the specific
architecture we use is based on our scaling ex-
periment for the EnglishNA model. Although we
do not directly compare these LMs, we note the
possibility that other parameters may have better
suited the non-English languages. We were only
able to conduct the scaling experiments for English
due to the lack of phonological benchmarks for
other languages but we hope that the release of IPA
CHILDES facilitates further work in multilingual
phonological evaluation of phoneme LMs.

Languages: Although our dataset is multilingual,
there are still limitations in terms of language cov-
erage. The languages are predominantly European
and Asian, with no languages indigenous to the
Americas, Australia or Africa. English is also
still the dominant language of the dataset and the
Farsi section is very small, only containing 43 thou-
sand words. In creating this dataset, we were lim-
ited by the languages available in CHILDES. The
languages in CHILDES we were not able to con-
vert were Greek, Arabic, Hebrew, Thai, Georgian,
Tamil, Taiwanese, Jamaican, Sesotho, Berber, Cree
and Slovenian and Russian due to missing G2P
backends or unsupported orthographies.

B Breakdown of IPA CHILDES

IPA CHILDES contains transcriptions of child-
centered speech for 31 languages. Details of each
language section are provided in table 1.
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Language CHILDES Collection Backend Inventory ID Words Phonemes % Child

EnglishNA EnglishNA (49) phonemizer 2175 9,993,744 30,986,218 36
EnglishUK EnglishUK (16) phonemizer 2252 7,147,541 21,589,842 39
German German (10) epitran 2398 5,825,166 21,442,576 44
Japanese Japanese (11) phonemizer 2196 2,970,674 11,985,729 44
Indonesian EastAsian/Indonesian (1) epitran 1690 2,347,642 9,370,983 34
French French (15) phonemizer 2269 2,973,318 8,203,649 40
Spanish Spanish (18) epitran 164 2,183,992 7,742,550 46
Mandarin Chinese/Mandarin (16) pinyin_to_ipa 2457 2,264,518 6,605,913 39
Dutch DutchAfricaans/Dutch (5) phonemizer 2405 1,475,174 4,786,803 35
Polish Slavic/Polish (2) phonemizer 1046 1,042,841 4,361,797 63
Serbian Slavic/Serbian (1) epitran 2499 1,052,337 3,841,600 29
Estonian Other/Estonian (9) phonemizer 2181 843,189 3,429,228 45
Welsh Celtic/Welsh (2) phonemizer 2406 666,350 1,939,286 69
Cantonese Chinese/Cantonese (2) pingyam 2309 777,997 1,864,771 34
Swedish Scandinavian/Swedish (3) phonemizer 1150 581,451 1,782,692 45
PortuguesePt Romance/Portuguese (4) phonemizer 2206 499,522 1,538,408 39
Korean EastAsian/Korean (3) phonemizer 423 263,030 1,345,276 37
Italian Romance/Italian (5) phonemizer 1145 352,861 1,309,489 39
Croatian Slavic/Croatian (1) epitran 1139 305,112 1,109,696 39
Catalan Romance/Catalan (6) phonemizer 2555 319,726 1,084,594 36
Icelandic Scandinavian/Icelandic (2) phonemizer 2568 279,939 1,057,235 35
Basque Other/Basque (2) phonemizer 2161 230,500 942,725 49
Hungarian Other/Hungarian (3) epitran 2191 237,062 918,002 48
Danish Scandinavian/Danish (1) phonemizer 2265 275,170 824,314 42
Norwegian Scandinavian/Norwegian (2) phonemizer 499 227,856 729,649 43
PortugueseBr Romance/Portuguese (2) phonemizer 2207 174,845 577,865 44
Romanian Romanian (3) phonemizer 2443 152,465 537,669 43
Turkish Other/Turkish (2) phonemizer 2217 79,404 421,129 51
Irish Celtic/Irish (2) phonemizer 2521 105,867 338,425 34
Quechua Other/Quechua (2) phonemizer 104 46,848 281,478 40
Farsi Other/Farsi (2) phonemizer 516 43,432 178,523 40

Table 1: A breakdown of each language available in IPA CHILDES. The bracketed number in the CHILDES
Collection column refers to the number of corpora downloaded from that collection. The Backend, Lang Code
and Phoneme Inventory columns refer to the G2P+ configuration used to convert utterances for that language to
phonemes and the Phoible inventory used for that language in folding. The Words and Phonemes columns refer to
the number of words and tokens in each subset and % Child refers to the percentage of the data that is spoken by a
child.

C Dataset comparison

In section 2.1 we discuss previous phonemic
datasets in relation to IPA CHILDES. We provide
a full comparison of these datasets in table 2.

D G2P+ Usage

G2P+ is a python library that can be used as an
API or as a command-line tool in order to con-
vert orthographic text to a phonemic representation.
The tool allows the user to select the backend and
language code to use for G2P with text provided
through filepaths or standard input. Additional op-
tions include --keep_word_boundaries to output
a dedicated WORD_BOUNDARY token between words
and --uncorrected to skip the folding process
and output the phonemes exactly as produced by
the backend tool. Each backend also supports in-
dividual options. For instance, --split-tones
outputs tones as individual tokens instead of merg-

ing them with the syllabic phoneme for our two
Chinese language backends. See the repository’s
README.txt for further details.

E Phoneme Stream Representation

In order to ensure that phonemes are output using a
consistent representation, we define the phoneme
stream representation as follows:

• Each phoneme is represented using the Inter-
national Phonetic Alphabet (IPA).

• Each phoneme is separated by a space.

• Word boundaries and utterance boundaries are
represented using unique symbols.

IPA is used to represent each phoneme due to be-
ing the most widely used and comprehensive pho-
netic alphabet. It is important to separate phonemes
by spaces because IPA symbols may be represented
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Dataset Modality Scale (words) Domain Languages

The Pile (Gao et al., 2020) Orth 100B† Web-scraped written text English only
GlobalPhone (Schultz, 2002) Orth, Phon, Audio 5M† Read speech 22
CommonVoice (Ardila et al., 2020) Orth, Audio 30M† Read speech 38
VoxCommunis (Ahn and Chodroff, 2022) Orth, Phon, Audio 23M† Read speech 40
CMU Wilderness (Black, 2019) Orth, Audio 170M† Read speech 699
VoxClamantis (Salesky et al., 2020) Orth, Audio, Phon 152M† Read speech 635
TIMIT (Garofolo et al., 1993) Orth, Phon, Audio 40k Read speech English only
FLEURS (Conneau et al., 2023) Orth, Audio 15M† Read speech 102
MSWC (Mazumder et al., 2021) Orth, Audio 20M Read speech 102
IPAPACK (Zhu et al., 2024) Orth, Phon 15M† Read speech 115
LibriSpeech (Panayotov et al., 2015) Orth, Audio 10M† Audio books English only
Libri-Light (Kahn et al., 2020) Orth,* Phon,* Audio 700M† Audio books English only
MLS (Pratap et al., 2020) Orth,* Phon,* Audio 600M† Audio books 8
Switchboard (Godfrey et al., 1992) Orth, Phon, Audio 3M† Telephone conversations English only
Fisher (Cieri et al., 2004) Orth, Audio 12M† Telephone conversations English only
Buckeye (Pitt et al., 2005) Orth, Phon, Audio 300k Spontaneous speech English only
British National Corpus (Consortium, 2007) Orth, Audio 100M Written & spontaneous speech English only
Audio BNC (Coleman et al., 2012) Orth, Phon, Audio 7M Spontaneous speech English only
VoxLingua107 (Valk and Alumäe, 2021) Audio 80M Spontaneous speech 107
Babel (Harper, 2011) Orth, Audio 60M Telephone conversations 25
CHILDES (MacWhinney and Snow, 1985) Orth 59M Child-centered speech 45
BabyLM (Choshen et al., 2024) Orth 100M Speech and text** English only

IPA CHILDES Orth, Phon 45M Child-centered speech 31

Table 2: A comparative summary of the datasets discussed in section 2.1. The datasets are described in terms of their
modality, scale, domain and languages. IPA CHILDES is the first multilingual phonemic dataset of spontaneous
speech and the first phonemic dataset of child-centered speech.
†Word counts estimated from the size in bytes or the hours of audio in the dataset, using a heuristic based on the size
of Switchboard of 5 bytes per word and 12,000 words per hour.
*Libri-Light and MLS only have orthographic and phonemic transcriptions for 10 hours of audio per language..
**BabyLM contains a mix of speech and text data from a mix of adult-directed and child-directed sources, only 29% is
child-directed speech.

using multiple Unicode characters. For instance,
the word “enjoy” can be transcribed in IPA as End-
ZOI which uses six characters but only contains four
phonemes, since dZ is a single consonant and OI
is a diphthong. By instead representing the word
as E n dZ OI, it is much easier to split the word
into individual phonemes by using whitespace as
a delimiter. Similarly, word boundaries and utter-
ance boundaries are represented using the unique
symbols WORD_BOUNDARY and UTT_BOUNDARY.

F Folding Maps

Folding maps are primarily used to make surface-
level adjustments, but they can also be used to solve
several other error types in order to create a better
alignment with a Phoible inventory. These errors
are detailed in table 3.

The many-to-one mappings and those that split
or merge tokens may alter the number of output
tokens or types. Since such a mapping will change
the information-theoretic properties of the output,

it is important that they are linguistically motivated
and carefully implemented.

In order to construct the folding map for each
backend-language pair, we run G2P+ on ortho-
graphic text for that language and compare the
output set of phonemes PO to the phonemes in
the closest inventory in Phoible PI . We call the
set of phonemes present in PO but not PI the “un-
known phonemes” UK where UK = PO \ PI and
the set of phonemes present in PI but not PO the
“unseen phonemes” US where US = PI \ PO. We
then construct the folding map as follows:

1. Find pairs (k, s) ∈ UK × US that differ ac-
cording to an accent or diacritic and obviously
represent the same phoneme (determined by
ruling out alternatives or examining where k
is produced in the output). Create a one-to-
one mapping k ∶ s for each such pair, e.g. t :
th.

2. Find pairs (k, s) ∈ UK×US that clearly repre-
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Error type Consequence Example

One-to-one: The backend uses one symbol for a
phoneme but the inventory lists a different symbol
for that phoneme.

The one-to-one mapping does not change
the number of types or tokens in the output.

phonemizer with language code sv (Swedish) out-
puts n but the matching inventory uses n”.

Many-to-one: The backend produces two different
phonemes that should only map to a single phoneme
in the inventory.

The many-to-one mapping reduces the
number of phoneme types.

phonemizer with language code pt (Portuguese) out-
puts both ô and r but the matching inventory only lists
K.

Consonant merging: The backend outputs two sym-
bols for a consonant that should be written as a single
phoneme.

The mapping merges the pair of conso-
nants, reducing the number of phoneme
tokens produced.

epitran with language code srp-Latn (Serbian)
outputs the sequence d Z but these are should be
written as a single phoneme dZ.

Vowel merging: The backend outputs a pair of vow-
els as separate phonemes but they are typically anal-
ysed as a single diphthong.

The mapping merges the pair of vowels,
reducing the number of phoneme tokens
produced.

pingyam with language code cantonese outputs the
sequence o u but these are should be treated as a
diphthong ou.

Vowel splitting: The backend outputs a diphthong
that is not listed in the inventory and should be split
into individual phonemes.

The mapping splits the pair of vowels, in-
creasing the number of phoneme tokens
produced.

phonemizer with language code en-us (North Amer-
ican English) outputs aIU as a single phoneme but
this should be aI U.

Phoneme duplication: The backend outputs dupli-
cate phonemes to represent long vowels or conso-
nants or because of an error.

The mapping replaces the pair of phonemes
with just one, reducing the number of
phoneme tokens.

phonemizer with language code et (Estonian) out-
puts d d but should output the long consonant d:.

Diacritic error: The backend incorrectly outputs the
diacritic as a separate symbol instead of attaching it
to the phoneme.

The mapping may change the number of
phoneme types or tokens.

phonemizer with language code ko (Korean) out-
puts the diacritic for aspiration as h instead of h so
sequences kh and ph are mapped to kh and ph.

Orthographic error: Due to an invalid symbol in the
orthographic text, the backend outputs an incorrect
phoneme.

The contextual mapping changes the fre-
quency statistics for the resulting phoneme,
possibly reducing the number of phoneme
types.

epitran with language code hun-Latn (Hungarian)
outputs ô when the orthographic letter ő is incorrectly
written as ô and so the phoneme is mapped to ø:.

Table 3: A list of errors that can occur during grapheme-to-phoneme conversion that can be fixed with a folding
map but that may change the information-theoretic properties of the output.

sent the same phoneme (determined as above)
but may use entirely different symbols, possi-
bly due to an alternative transcription scheme.
Create a one-to-one mapping for each pair,
e.g. a : æ.

3. For remaining items k ∈ UK , determine
whether these result from one of the other
errors in table 3. Carefully examine instances
where k is produced in the output and create
a suitable mapping k ∶ p for some p ∈ PI to
solve the error (the mapping may need to be
contextual or include several characters, e.g.
Ä : @ ô or U O : w O).

4. For remaining items s ∈ US , determine
whether these result from one of the other
errors in table 3. Carefully examine instances
where s should be produced in the output and
create a suitable mapping k ∶ s for some
k ∈ PO to solve the error (the mapping may
need to be contextual or include several char-
acters).

5. Examine the output for cases of phoneme
duplication and other errors that may not con-
tain phonemes in UK or US but could still
be solved with the phoneme map and create
suitable mappings.

The goal is for UK = {} = US or equivalently
PI = PO, i.e the set of phonemes produced by
the tool perfectly aligns with the phoneme inven-
tory in Phoible. This is not always possible, of-
ten there are a few remaining phonemes in UK

and/or US . This can occur when no obvious map-
pings could be found in steps 1–4 above. For
example, the epitran backend for German does
not produce the phoneme Z (it is “unseen”) and
none of the unknown phonemes seem to be a good
match. Another possibility is that the output set
of phonemes PO may not align well with any of
the Phoible phoneme inventories and so the clos-
est match may not include some of the unknown
phonemes k ∈ UK despite being valid phonemes
for that language and listed in other inventories.
For example, the epitran backend for German
produce the phonemes x and 5 which are not listed
in the matching inventory but are listed in other
established inventories for German. In other cases,
the unknown phonemes may come from loan words
(e.g. ts for “pizza” in Portuguese). Finally, there
are some cases where the output considerably dis-
agrees with all of the Phoible inventories but is a
valid phonemic analysis of the language according
to other sources.

See section 3.3 for an example of using G2P+
for French, using the phonemizer backend with a
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folding map to approach Phoible inventory 2269.

G Implementation Details

We conduct our experiments using the PyTorch
framework (Paszke et al., 2019) and the
Transformers library (Wolf et al., 2020).

G.1 Hardware Details
We use a server with one NVIDIA A100 80GB
PCIe GPU, 32 CPUs, and 32 GB of RAM for all
experiments. Below, we report a subset of the out-
put of the lscpu command:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical,

48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R)

Silver 4210R CPU
@ 2.40GHz

CPU family: 6
Model: 85
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 8
Stepping: 7
BogoMIPS: 4800.11

G.2 Model Parameters and Training
Procedure

Parameter Value

Max Example Length 128
Learning Rate 0.001
Optimizer AdamW
Scheduler Type Linear
Max Steps 200k
Warm-up Steps 60k
Per Device Batch Size 32

Table 4: Hyperparameter settings for training the GPT-2
architecture. Where values are not reported, they may
be assumed to be default values.

We describe training parameters in table 4 and
model sizes in table 5. Following the conventions
of the Pythia suite of models (Biderman et al.,
2023), we report the number of non-embedding
parameters. Unlike their suite, where models are
named according to the number of parameters, we
name our models according to the number of non-
embedding parameters. This is because we use the
same architecture for multiple languages, each of
which has a different vocabulary size according

Model Size Layers Heads Embd Inner

400k 2 4 128 512
600k 3 4 128 512
800k 4 4 128 512
1M 6 4 128 512
5M 6 8 256 1024
19M 6 8 512 2048
25M 8 8 512 2048
85M 12 12 768 3072

Table 5: GPT-2 model sizes used in the size requirement
experiment. Where values are not reported, they may
be assumed to be default values.

to the number of phoneme types in that language,
which alters the total number of parameters. Our
1M, 19M and 85M models are equivalent to Pythia-
14M, Pythia-70M and Pythia-160M, respectively.
Our training scripts are available here.

Data is prepared into batches by first tokeniz-
ing the entire dataset, combining all tokens into
one long vector, and then splitting the vector into
chunks of 128 tokens. Only the very last example
is padded, if required. At each step during train-
ing, random chunks are selected and combined into
batches.

Checkpoints are taken every 20,000 steps dur-
ing training. At each checkpoint, the perplexity is
evaluated on the held-back evaluation set, and at
the end of training the checkpoint with the lowest
perplexity is returned as the best model. For the
smallest models, many of the best models were
from the very first checkpoint, since due to the
small training dataset and small model, the model
had already fit the data by this point.

In our size requirement experiment (see sec-
tion 5.1), we train each model in table 5 using
a dropout of 0.1, 0.3 and 0.5 on each subset size of
the EnglishNA portion of IPA CHILDES.

H Best Phoneme LM Parameters Across
Data Scales

Following the size experiment in section 5.1, we
report the model size and dropout values that
achieved the highest BabySLM scores for each
subsample size of the EnglishNA portion of IPA
CHILDES in table 6.

I Average Information Density of
Phonemized Child-Directed Speech
Increases with Age Cross-Lingually

The phonemic representation of the utterances in
our dataset open up new avenues for exploring
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Data Size BabySLM Lexical BabySLM Syntactic
(words) Model Size Dropout Score Model Size Dropout Score

80k 600k 0.3 65.8 400k 0.5 52.6
180k 800k 0.3 69.3 5M 0.5 52.3
500k 5M 0.3 72.9 5M 0.3 54.3
800k 19M 0.5 74.2 19M 0.1 54.9
1.8M 5M 0.3 77.4 19M 0.1 55.6
5M 19M 0.1 80.3 5M 0.3 58.3

Table 6: Best model sizes and dropout values for the BabySLM Lexical and Syntactic scores for each subset size of
the EnglishNA corpus of IPA CHILDES.

Figure 7: Average information of child-directed utter-
ances in CHILDES

the phonotactic properties of languages and the
information-theoretic properties of child-directed
speech.

Here, we demonstrate one information-theoretic
experiment, comparing the average information
content of child-directed utterances to the age of the
child being spoken to (this information is also avail-
able in CHILDES and is preserved in our dataset).
We group child ages in years (0-12 months, 12-24
months, etc.) and calculate the average information
content of a sample of child-directed utterances
using a unigram language model. The information
IU of each utterance consisting of a sequence of
phonemes p1, p2, . . . , pn is given by

IU = −
n

∑
i=0

log2P (pi),
where P (pi) is the probability of phoneme pi

given by its frequency in the data. We plot the
average information of utterances in each age cat-
egory for the largest 10 languages in the dataset
in fig. 7. We find that across all 10 languages the
average information of utterances increases with
the age of the child, indicating that speakers of ‘Par-
entese’ may adjust the complexity of their speech
according to the learner’s age.
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