
Proceedings of the 29th Conference on Computational Natural Language Learning, pages 437–451
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Is Incremental Structure Prediction Process Universal across Languages?:
Revisiting Parsing Strategy through Speculation

Taiga Ishii and Yusuke Miyao
The University of Tokyo

{taigarana,yusuke}@is.s.u-tokyo.ac.jp

Abstract

While natural language is processed incremen-
tally, it is unclear whether the syntactic struc-
ture prediction process is universal across lan-
guages or language-specific. This study investi-
gates this question by revisiting parsing strate-
gies of syntactic language models that incre-
mentally predict both the next token and the
associated syntactic structure. Unlike previous
studies that have focused on a few strategies,
we examine a wide range of strategies by intro-
ducing different parameterizations of “specu-
lation”, which quantifies the degree to which
a model predicts syntactic structure before en-
countering the corresponding tokens. The ex-
periments with 10 typologically diverse lan-
guages reveal that the optimal strategy differs
depending on the language and the beam size.

1 Introduction

Understanding how syntactic structure is incremen-
tally processed during language comprehension is a
fundamental challenge in computational linguistics
and cognitive science. Syntactic language model-
ing (SLM), also known as syntax-aware language
modeling, provides a direct approach to addressing
this question (Choe and Charniak, 2016; Dyer et al.,
2016; Qian et al., 2021; Sartran et al., 2022). SLM
is a task that jointly performs parsing and next-
token prediction, thereby explicitly modeling the
interplay between syntactic structure and incremen-
tal sequence processing. This approach has proven
valuable for offering insights into the cognitive
mechanisms of human language processing (Hale
et al., 2018; Yoshida et al., 2021; Sugimoto et al.,
2024).

While SLM provides a framework for modeling
syntactic processing, there exist multiple ways to
incrementally process the same sequence of tokens
and syntactic structures depending on the timing of
structure prediction (Figure 1). These differences
in processing are captured by the concept of “pars-

Figure 1: Example of incremental structure prediction
process.

ing strategy,” (Abney and Johnson, 1991). For ex-
ample, Figure 1 illustrates the two most commonly
used strategies in parsing: top-down and bottom-
up. Top-down is a strategy that predicts structure
before tokens, while bottom-up is a strategy that
predicts structure after tokens. Previous studies in
SLM, however, have primarily focused on a lim-
ited set of strategies, such as top-down, bottom-up,
and left-corner, and, moreover, lack cross-linguistic
comparisons (Kuncoro et al., 2018; Yoshida et al.,
2021), leaving it unclear whether optimal strategies
are universal or language-specific.

This paper aims to address this gap in the liter-
ature by conducting a comprehensive analysis of
parsing strategies for SLM across a diverse set of
languages. To this end, we explore a wide range of
parsing strategies from the perspective of “specula-
tion”, which quantifies the degree to which a model
predicts syntactic structure before encountering the
corresponding tokens. For example, the top-down
strategy is highly speculative because it cannot use
token information for structure prediction, and the
predicted structure may be incorrect depending on
subsequent tokens. In this work, we consider strate-
gies based on 4 different parameterizations of spec-
ulation and evaluate a total of 15 distinct strategies
on SLM tasks in 10 typologically diverse languages.
While less speculative strategies might intuitively
seem more advantageous, our experiment demon-

437

strates that it is not always the case: the optimal
strategy can vary across languages and depends on
the beam size. Furthermore, we also analyze the
fundamental question: does syntactic structure con-
tribute to token prediction? By comparing strate-
gies with different degrees of speculation, we show
that syntactic structure indeed captures information
about tokens, while also suggesting that exact pars-
ing might not be necessary for token prediction.
The implementation code is available at https:
//github.com/mynlp/optimal-strategy.git.

2 Background

Early studies argued that the left-corner strategy is
more efficient and cognitively plausible than top-
down or bottom-up strategies (Abney and John-
son, 1991; Resnik, 1992).1 These arguments relied
primarily on analyzing the maximum stack size
required by shift-reduce parsers (Abney and John-
son, 1991; Resnik, 1992; Noji and Miyao, 2014).
However, as Resnik (1992) points out, the differ-
ence in stack efficiency between strategies depends
on the specific implementation of the parser. For
instance, implementations of Recurrent Neural Net-
work Grammar (RNNG) (Dyer et al., 2016; Noji
and Oseki, 2021) require O(n) stack size for right-
branching structures even with the top-down strat-
egy unlike claimed to be O(1) in (Abney and John-
son, 1991). Therefore, it is unclear to what extent
stack efficiency influences the choice of incremen-
tal processing strategies.

In the context of SLM, recent studies have ex-
plored the impact of different parsing strategies
on downstream tasks such as language modeling
and parsing. For example, Kuncoro et al. (2018)
compared top-down, bottom-up, and left-corner
strategies for English number agreement, finding
that top-down parsing yielded better performance.
Yoshida et al. (2021) compared top-down and left-
corner strategies for Japanese language modeling,
demonstrating the effectiveness of the left-corner
strategy. Kuribayashi et al. (2024) compared top-
down and left-corner strategies using an artificial
language dataset with varying word order. How-
ever, these studies are limited in several aspects.
First, they focus on a limited set of parsing strate-
gies, e.g., top-down, bottom-up, and left-corner,
due to the ease of implementation. Second, there
is a lack of comprehensive cross-linguistic com-

1The left-corner strategy predicts a phrase structure imme-
diately after reading the leftmost token of that phrase.

top-down left-n-corner

uniform-speculation local-first

global-first bottom-up

Table 1: Examples of parsing strategies. The numbers
inside the circles indicate the order of node enumeration,
and the numbers to the right of each nonterminal node
represent its iv .

parisons using real-world natural language data,
leaving it unclear whether optimal parsing strate-
gies are universal or language-specific.

To this end, this study conducts a more com-
prehensive analysis of parsing strategies for SLM,
both in terms of strategies and languages.

3 Formulating Various Strategies

Following the general formulation of Abney and
Johnson (1991), we formalize various parsing
strategies. The difference between parsing strate-
gies is defined by the timing at which each nonter-
minal node is opened. This allows us to express
each strategy as a specific enumeration order of
the nodes in a syntactic tree. Abney and Johnson
(1991) demonstrated that different parsing strate-
gies can be represented by strategy parameters iv
for each node v.2 Let u1, . . . , un be the children of
v; iv = i indicates that the parent node v is opened
immediately after its i-th child ui is completed.
The case of iv = 0 indicates that v is opened be-
fore any of its children are created. By assigning
iv to every node v in a given syntactic tree, we

2While Abney and Johnson (1991) originally defined the
parameters for grammar rules, we generalize it to the nodes in
syntactic trees.

438

https://github.com/mynlp/optimal-strategy.git
https://github.com/mynlp/optimal-strategy.git

can uniquely determine an incremental process of
predicting the syntactic tree. Strategies represented
by this parameterization are called syntax-directed
strategies (Abney and Johnson, 1991).

In this study, we formulate a variety of distinct
strategies within the class of syntax-directed strate-
gies to investigate whether the optimal strategy is
language-universal or language-specific. Our for-
mulation is based on the concept of “speculation”,
which refers to the degree to which a model pre-
dicts syntactic structure before encountering the
corresponding tokens. We consider 4 different pa-
rameterizations of speculation, each capturing a
different aspect of this concept. By exploring mul-
tiple parameter settings within each parameteriza-
tion, we analyze a total of 15 strategies. Table 1
shows some examples of the strategies used in this
study. Note that both top-down and bottom-up
strategies can be expressed by specific parameter
settings within any of the four parameterizations.

3.1 Left-n-corner strategy

Besides top-down and bottom-up strategies, the
left-corner strategy is another major strategy used
in parsing research. In this study, we also ex-
periment with a generalization of the left-corner
strategy formulated by Abney and Johnson (1991),
which we refer to as the “left-n-corner strategy”.3

In a left-n-corner strategy, the parent node v is pre-
dicted after at most n of its children have been
completed. Formally, left-n-corner strategies are
defined by a speculation parameter n as iv =
min(n, nv). When n = 0, the left-n-corner strat-
egy is equivalent to the top-down strategy. When
n =∞, it is equivalent to the bottom-up strategy.

3.2 Uniform-speculation Strategy

In the left-n-corner strategies, the number of chil-
dren completed before predicting the parent n is
constant for all nodes. However, with this parame-
terization, whether the timing of opening the parent
node v is closer to top-down or bottom-up can vary
across nodes, depending on the number of children
nv. Therefore, in this study, we introduce strategies
in which the timing of opening the parent node v
is less dependent on nv and is consistent across all
nodes.

Intuitively, this strategy, which we call the

3This formulation is called “uniform syntax-directed strat-
egy” in (Abney and Johnson, 1991). However, we use the
name left-n-corner instead to emphasize that it is a generaliza-
tion of the left-corner strategy.

“uniform-speculation strategy”, is defined by a real-
valued speculation parameter θ ∈ [0, 1], represent-
ing the proportion of children created before the
parent. For a node v with nv children, iv is cal-
culated as iv = ⌊θ · (nv + 1)⌋. Here, θ → 0
corresponds to strategies closer to top-down, while
θ → 1 corresponds to strategies closer to bottom-
up.

3.3 Local/global-first Strategy
The two strategies discussed above, left-n-corner
and uniform-speculation, determine the timing of
opening a node v independently of its position
within the syntactic tree. In this study, we also
analyze strategies where the timing of opening v –
that is, the degree of speculation – varies depending
on whether v belongs to a local or global structure.

Defining whether a structure is local or global
is not trivial. Here, we use the height and depth
of each node to define local and global structures,
and use these as parameters to control the degree
of speculation of the strategies. Intuitively, nodes
closer to leaf nodes, i.e., nodes with smaller height,
are considered local, while nodes closer to the root
node, i.e., nodes with smaller depth, are considered
global.

First, we consider a “local-first strategy”, which
predicts local structures in a top-down manner and
global structures in a bottom-up manner. Specifi-
cally, the speculation parameter of this strategy is a
height threshold h:

iv =

{
0, if hv ≤ h

nv, otherwise

where hv is the height of node v.4

Similarly, we can also consider a “global-first
strategy”, which predicts global structures in a top-
down manner and local structures in a bottom-up
manner. This strategy is parameterized by a depth
threshold d as follows:

iv =

{
0, if dv ≤ d

nv, otherwise

where dv is the depth of node v.5

When h → ∞, the local-first strategy is closer
to top-down, and when h = 0, it is equivalent to
bottom-up. Similarly, when d → ∞, the global-
first strategy is closer to top-down, and when d < 0,
it becomes bottom-up.

4We define the height of leaf nodes to be 0.
5We define the depth of the root node to be 0.

439

4 Shift-reduce Syntactic Language
Modeling

This section formalizes the syntactic language mod-
eling task (SLM). In SLM, structure prediction is
typically performed by a shift-reduce parser with
a stack (Dyer et al., 2016; Noji and Oseki, 2021;
Choe and Charniak, 2016; Qian et al., 2021; Sar-
tran et al., 2022; Kuncoro et al., 2018). Stack-based
parsing is performed by predicting a sequence of
actions defined as stack operations. However, pre-
vious work designed a separate action set for each
parsing strategy, making it difficult to handle vari-
ous strategies within a unified framework (Kuncoro
et al., 2018). To address this limitation, we gener-
alize the action set used by a shift-reduce parser to
represent a wide range of strategies with a single,
unified set of actions.

4.1 Generalizing Shift-reduce Actions

A simple approach to represent various strategies
with a single action set is to extend the stack op-
erations beyond push and pop to include an “in-
sert” operation. This allows us to open nonterminal
nodes at different positions within the stack, effec-
tively controlling the timing of structure prediction.
Specifically, we define the following action set:

• NT(X; n): Inserts an open nonterminal node
“(X” at the n-th position from the top of the
stack, opening a phrase with category X. Note
that a new phrase cannot be opened deeper
than any already open phrase.6

• SHIFT: Pushes the next token onto the stack.

• REDUCE: Completes the topmost open
phrase on the stack, popping and combining
its elements into a single constituent.

While strategies other than top-down typically re-
quire a special FINISH action to terminate the pars-
ing process (Kuncoro et al., 2018), we do not explic-
itly introduce a FINISH action. Instead, we termi-
nate the parsing process when the end-of-sentence
(EOS) token is shifted. This simplifies the formula-
tion of syntactic language modeling and the beam
search procedure, which will be described later.

This generalized action set can represent various
parsing strategies by restricting how actions are
selected. For example, if the position to open a
phrase is always n = 0, i.e., the top of the stack,

6This restriction is for implementation simplicity.

the strategy becomes equivalent to top-down. If
REDUCE action is always performed immediately
after NT(X; n) action, the strategy becomes equiv-
alent to bottom-up, because the prediction of a
phrase with n children always occurs after all its
children are completed.

4.2 Model Formulation
First, we introduce the notations used to formu-
late SLM. Let A be the set of actions defined
above. We define Ak ⊂ A∗ as the set of action
sequences that contain exactly k SHIFT actions
and end with a SHIFT action. For an action se-
quence a = (a1, . . . , aT), let li denote the index of
the i-th SHIFT action ali in a.

Given a token sequence x and an action sequence
a, the syntactic language model M defines the
following joint probability:

pMjoint(x, a) ≡
|a|∏

t=1

pMaction(at | a<t, x≤s(a<t))

·
|x|∏

i=1

pMtoken(xi | a<li , x<i),

where pMjoint is the joint distribution of the token
sequence and the parsing action sequence, pMaction
is the conditional probability of the next parsing ac-
tion, pMtoken is the conditional probability of the next
token, and s(a<t) denotes the number of SHIFT
actions in the given action sequence. While the
probability of generating a token is not typically
separated into pMaction and pMtoken in the formula-
tion, the probabilities are typically separated in the
implementations (Dyer et al., 2016; Noji and Os-
eki, 2021). Here, we introduce a formulation that
aligns more closely with actual implementations.
During supervised training, the model is trained to
maximize log pMjoint(x, a) on the train dataset.

The probability distribution over token se-
quences of length |x| is computed as follows:

pM(x) =
∑

a∈A|x|

pMjoint(x, a).

To calculate the probability distribution over sen-
tences of arbitrary length, one can simply calculate
pM for token sequences x that end with the EOS
token.

4.3 Modeling Incremental Inference Process
The goal of this study is to evaluate the incremental
structure prediction process in natural language.

440

Previous work on SLM has primarily focused on
evaluating models by approximating pM using a
trained modelM.

Approaches to approximating pM in SLM can
be broadly categorized into two types. The first
approach uses candidate actions Ã obtained from
an external parser (Dyer et al., 2016; Kuncoro et al.,
2018; Sartran et al., 2022). The second approach
uses word-synchronous beam search (Stern et al.,
2017) and approximates pM by the set of inferred
action sequences (Hale et al., 2018; Noji and Oseki,
2021; Yoshida et al., 2021), which we denote by
p̃M. In this study, we focus on the latter approach
since the former does not involve inference with
the SLM model itself.

The process of word-synchronous beam search
aims to model the joint prediction of the next token
and its corresponding syntactic structure. For a
token sequence x, the process can be represented
by a sequence of sets of action sequences ending
with SHIFT: B0, B1, . . . , B|x|. Here, Bi represents
the set of (partial) syntactic structures in the beam
when predicting token xi, corresponding to the i-th
step of word-synchronous beam search, and satis-
fying Bi ⊆ Ai. Note that B0 = ∅, and each Bi is
deterministically computed based on Algorithm 1.
While previous work (Stern et al., 2017) introduces
a word beam bottleneck, we instead limit the max-
imum number of actions between SHIFT actions
to kn to reduce inference time. The score func-
tion for selecting an action sequence b′c is the joint
probability:

{
pMjoint(x<ixi, b

′c), if c == SHIFT,

pMjoint(x<i, b
′c), otherwise.

5 Experiments

Evaluation. Here, we describe the overall flow
of the experiments. For each treebank and strat-
egy, we convert the gold trees to action sequences
and train a base modelM in a supervised manner.
We then perform inference using word synchronous
beam search with the trained model to obtain the set
of action sequences B|x|. We evaluate performance
across a range of beam sizes, k ∈ {50, 200, 800}.
To reduce inference time, we utilize fast-track selec-
tion with ks = k/50 and limit the maximum num-
ber of actions between SHIFT actions to kn = 20.
For each setting, we train models with 3 different
random seeds and report the average performance.

Algorithm 1 Word synchronous beam search with
fast-track selection and a step limit.

Input: x≤i ▷ Token sequence
Input: k ▷ Beam size
Input: ks ▷ Number of fast-tracked samples
Input: kn ▷ Maximum number of actions

between SHIFT actions
Input: Bi−1 ▷ Last beam
B′

i ← Bi−1

for j = 1, . . . do
Cfast ← topks({b′ · SHIFT | b′ ∈ B′

i})
Bi ← Bi ∪ Cfast ▷ Fast-track selection
C ← ⋃

b′∈B′
i
{b′c | c ∈ A}

B′
i ← topk(C \ Cfast) ▷ Select candidates

for b′c ∈ B′
i do

if c == SHIFT then
Bi ← Bi ∪ {b′c} ▷ Update beam
B′

i ← B′
i \ {b′c}

if |Bi| = k ∨ j ≥ kn then
Break ▷ Quit search when the beam is

full or the step limit is reached
return Bi

Dataset. We use treebanks from 10 languages:
English (Penn Treebank (Marcus et al., 1993)),
Chinese (Chinese Treebank (Palmer et al., 2005)),
French, German, Korean, Basque, Hebrew, Hungar-
ian, Polish, and Swedish (SPMRL (Seddah et al.,
2013)). Following Noji and Oseki (2021), we re-
move POS tags and split words into subwords. All
evaluations in this paper are performed on the val-
idation datasets. To reduce the size of the action
set and simplify model training, we limit the n in
NT(X;n) actions to a maximum of 10. To ensure
consistent parsability across strategies, we restrict
the train and validation data to instances where
the gold trees are parsable by all strategies with
n ≤ 10. Furthermore, we only use sentences that
are parsable with n ≤ 10 and kn = 20 for evalua-
tion. Further details are provided in Appendix A.

Strategy. In our experiments, we analyze a to-
tal of 15 strategies: top-down, bottom-up, left-
n-corner with n ∈ {1, 2, 3}, uniform-speculation
with θ ∈ {0.26, 0.35, 0.65, 0.74}, local-first with
h ∈ {1, 2, 3}, and global-first with d ∈ {1, 2, 3}.7
For simplicity, we consider the insertion position
of NT actions at the subword level rather than the
word level.

7The values of θ are chosen such that iv changes for a node
v with nv = 2, 3, 4 depending on θ.

441

Beam English Chinese French German Korean
50 BU (88.7±0.3) LC-1 (86.1±0.2) TD (81.8±0.2) LC-1 (86.4±0.1) BU (84.5±0.1)

LF-2 (87.3±0.1) BU (86.1±0.1) BU (79.6±0.1) LC-2 (85.8±0.1) LC-2 (84.1±0.1)

200 LF-2 (89.4±0.1) LC-1 (87.0±0.2) TD (83.3±0.2) LC-1 (87.3±0.1) BU (84.5±0.1)

LF-3 (89.4±0.0) BU (86.6±0.3) US-0.26 (81.1±0.1) LC-2 (86.5±0.0) LF-1 (84.2±0.1)

800 TD (90.9±0.1) LC-1 (87.0±0.2) TD (83.7±0.2) TD (87.7±0.1) BU (84.4±0.1)

LF-3 (90.2±0.0) BU (86.7±0.2) US-0.26 (81.8±0.1) LC-1 (87.4±0.1) LF-1 (84.2±0.1)

Beam Basque Hebrew Hungarian Polish Swedish
50 BU (83.0±0.1) LF-1 (80.8±0.3) LC-1 (87.2±0.1) GF-1 (78.9±0.3) LC-1 (72.8±0.2)

LF-1 (82.8±0.1) LC-1 (80.5±0.3) LC-2 (86.6±0.1) BU (77.1±0.1) US-0.26 (69.8±0.1)

200 BU (83.1±0.1) TD (82.2±0.3) LC-1 (88.1±0.1) GF-1 (79.5±0.1) LC-1 (73.5±0.1)

LC-1 (83.1±0.2) LF-1 (81.6±0.3) LC-2 (87.1±0.0) BU (77.2±0.2) TD (73.0±0.3)

800 LF-1 (83.3±0.2) TD (83.7±0.2) LC-1 (88.1±0.1) GF-1 (79.5±0.1) TD (74.9±0.3)

LC-1 (83.1±0.2) LF-3 (82.3±0.2) TD (87.9±0.1) BU (77.0±0.3) LC-1 (73.6±0.2)

Table 2: Top-2 strategies for the labeld parsing f1 scores for each dataset and beam size. TD and BU denote
top-down and bottom-up strategies, and LC, US, LF, and GF denote left-n-corner, uniform-speculation, local-first,
and global-first strategies with their corresponding parameters. Mean f1 scores and standard errors are shown in the
parentheses.

Model. For the model, we extend the commonly
used syntactic language model the Recurrent Neu-
ral Network Grammar (RNNG) (Dyer et al., 2016)
to handle the proposed generalized shift-reduce
action set. The implementation is based on the
batched version of RNNG (Noji and Oseki, 2021).
For the action set implementation, we simply rep-
resent SHIFT, REDUCE, and each NT(X;n) ac-
tion by one-hot vectors. For each setting, we
train a model for either 80 epochs or 8000 steps,
whichever is larger, and evaluate the model with
the lowest validation loss. Details of the training
settings are provided in Appendix B.

5.1 Results on Parsing

First, we analyze parsing performance. We calcu-
late the labeled F1 score using the highest-scoring
action sequence in B|x|. Table 2 shows the top
two performing strategies for each language, and
Figure 2 presents the parsing performance for all
strategies. Note that in Figure 2, strategies are
sorted from left to right in descending order of
speculation degree, i.e., from top-down to bottom-
up, for each speculation parameterization. The re-
sults reveal that the strategy that maximizes parsing
performance depends on the language and beam
size. For example, for English, bottom-up per-
forms best when k = 50, local-first (h = 2, 3)
performs best when k = 200, and top-down when
k = 800. Similarly, top-down shows higher F1

scores than other strategies for French, German,
Hebrew, and Swedish when k = 800. In con-
trast, for Chinese, Korean, and Basque, bottom-up,
left-n-corner (n = 1), or local-first (h = 1) ob-
tain higher F1 scores for all beam sizes. For these
languages, the performance of top-down is lower
compared to other strategies, especially when the
beam size is small (Figure 2). The sentence prob-
ability marginalized over the beam, p̃M, showed
a similar overall trend to the parsing performance.
We show the results for p̃M in Appendix C.

5.2 Results on Structure-conditioned Token
Probability

Figure 3 shows the perplexity based on the pMtoken
for the best action sequence obtained by beam
search for English, Chinese, German, and Ko-
rean.89 Generally, higher speculation leads to lower
perplexity, i.e., higher pMtoken, regardless of the spec-
ulation parameterization. However, for Chinese
and Korean, perplexity tends to be higher when the
degree of speculation is too high when the beam
size is smaller.10

5.3 Additional Experiments for Polish
The experimental results for Polish in this section
are based on the standard preprocessing, where

8This is different from the sentence probability pM.
9The results for other languages are shown in Appendix C.

10Basque and Hungarian also show similar trend (Ap-
pendix C).

442

Figure 2: Labeled parsing F1 scores for all datasets.
Error bars show the standard error of the mean.

Figure 3: Perplexity based on pMtoken. Error bars show
the standard error of the mean.

preterminal nodes are removed. As observed in
Table 2 and Figure 2, the results for Polish exhibit
a distinct pattern from that of English. We found
that this is due to an idiosyncratic structure in the
Polish treebank; specifically, the lowest layer of
nonterminals, i.e., nonterminals immediately above
preterminals, functions similarly to standard preter-
minals. We conducted additional experiments and
found that when both the lowest layer nonterminals
and preterminals are removed, Polish exhibits a pat-
tern similar to English. Further details are provided
in Appendix D.

6 Discussion

6.1 Is the Optimal Strategy Universal across
Languages?

The results of the experiments suggest that the opti-
mal strategy for incremental structure prediction in
syntactic language models is not universal across
languages, but rather language-specific. Previous
research has suggested that left-corner is a better
strategy due to its stack size efficiency, but our find-
ings indicate that it is not necessarily the best in
practical tasks.

What factors contribute to these differences
between languages? If we simply consider the
amount of information available during inference,
less speculative strategies should be advantageous

443

Figure 4: Validation loss, i.e., − log pMjoint. Error bars
show the standard error of the mean.

even with larger beam sizes. However, contrary to
this expectation, top-down outperforms less spec-
ulative strategies in some languages. We hypothe-
size that this is due to a combination of two factors:
the ease of learning of each strategy and the re-
quired parallel inference capacity.

First, Figure 4 shows the validation loss, i.e.,
negative joint log-likelihood − log pMjoint, for En-
glish, Chinese, German, and Korean for the same
data points as in Figure 2.11 Generally across all
languages except Korean, top-down has the lowest
loss, followed by left-n-corner (n = 1), indicat-
ing that these strategies, especially top-down, are
easier to learn.12

Second, top-down requires larger beam size, i.e.,
parallel inference capacity, than other less specu-
lative strategies because top-down cannot use to-
ken information to predict structures. Furthermore,
top-down requires even larger beam size for left-
branching languages as discussed in the previous
work (Abney and Johnson, 1991; Yoshida et al.,
2021).

Overall, the top-down strategy exhibits a trade-
off between ease of learning, which contributes to

11The results for other languages are shown in Appendix C.
12For other strategies, except for global-first parameteri-

zation, we generally observe that lower speculation leads to
better learning, i.e., lower validation loss. However, bottom-
up sometimes shows lower loss than strategies other than
top-down.

strong performance, and the difficulty of inference
due to the required large beam size. The differences
in the optimal strategy across languages might be
attributed to differences in the balance of this trade-
off. For example, in English, German, Hebrew, and
Swedish, the parsing performance of top-down is
low when the beam size is small, but it significantly
improves as the beam size increases, becoming the
best strategy at k = 800 (Figure 2). In Chinese and
Korean, which are more left-branching and thus
expected to require larger beam size than English,
the performance of top-down tends to be lower than
that of less speculative strategies like bottom-up,
even with beam size k = 800. However, given
the lower validation loss of the top-down strategy
(Figure 4), it may be possible that top-down could
become competitive with or even outperform less
speculative strategies, even for these languages,
with a sufficiently large beam size.

6.2 Does syntactic structure contribute to
token prediction?

In speculative strategies, token prediction is condi-
tioned on the already-predicted syntactic structures.
Thus, if pMtoken increases with the degree of specula-
tion, i.e., the amount of structures usable for token
prediction, syntactic structure is likely to be infor-
mative for token prediction. As shown in Figure 3,
pMtoken tends to increase with the degree of specu-
lation, suggesting that syntactic structure indeed
captures information about tokens. For some lan-
guages, e.g., Korean, Chinese, and Basque, pMtoken
decreases for more speculative strategies, likely
due to inference failure. Nevertheless, with gold
actions, pMtoken increases with the degree of specu-
lation across all languages, which also supports the
informativeness of syntactic structures.

Meanwhile, the token probability conditioned on
the gold tree is lower than that conditioned on the
structures inferred by the model for most languages
and strategies with the exception of highly specu-
lative strategies with small beam sizes. This result
suggests that, from the perspective of token predic-
tion, a certain level of parsing accuracy is sufficient,
and exact parsing may not be necessary. In fact,
it is also argued that human language processing
only utilizes partial shallow structures (Sanford and
Sturt, 2002; Ferreira et al., 2002; Ferreira and Pat-
son, 2007), and Noji and Oseki (2023) showed that
syntactic ablation, i.e., removing some syntactic
categories, improves the syntactic generalization
ability of top-down models in English. Therefore,

444

to further investigate the extent to which syntax is
necessary for token prediction, it would be neces-
sary to perform syntactic ablation across various
strategies.

6.3 Future Directions

The experiments revealed that the optimal strategy
depends on both language and beam size. This
finding leads to a hypothesis: if humans and (large)
language models possess different internal “beam
sizes”, i.e., parallel inference capacities, they might
also employ distinct parsing strategies. Moreover,
investigating whether the cross-lingual differences
in incremental processing affect second or multi
language acquisition is an interesting future direc-
tion.

Furthermore, the analysis showed that structures
inferred by the models yield higher pMtoken than gold
trees. This raises a hypothesis: the gold tree struc-
tures in natural language treebanks are not optimal
with respect to token prediction. This potential dis-
crepancy might also explain the low performance
of unsupervised parsing models trained with a se-
quence reconstruction objective (Li et al., 2020).
Analyzing this relationship to unsupervised pars-
ing presents another promising direction for future
research.

7 Conclusion

This study analyzed whether the incremental struc-
ture prediction process in natural language is uni-
versal across languages or language-specific. We
considered a total of 15 strategies based on 4 differ-
ent parameterizations of speculation. Experiments
on 10 typologically diverse languages suggest that
the optimal strategy can vary across languages and
is influenced by two factors: the ease of learning
and the required parallel inference capacity.

Furthermore, a comparison between strategies
with different degrees of speculation reveals that
the syntactic structure of natural language is indeed
informative for token prediction, while also sug-
gesting that exact parsing might not be necessary.

Finally, this study focused on phrase structure;
however, natural language also encompasses other
structures such as dependency and semantic struc-
tures. Future work examining strategies for such
structures is expected to further reveal universals
and differences across languages.

Limitations

Dataset. While this study showed that the opti-
mal strategy can vary across languages, a signif-
icant limitation is our inability to pinpoint which
specific linguistic properties or dataset character-
istics are responsible for these differences. As we
discussed in section 6, one possible factor is the
branching direction. For example, the top-down
strategy, which requires a larger beam size for left-
branching languages such as Chinese and Korean,
showed lower performance for these languages in
the experiments. Nevertheless, a quantitative analy-
sis is necessary to evaluate the impact of branching
direction. Other factors, such as differences in an-
notation schemes or tokenization, could also con-
tribute to the observed differences in the optimal
strategies.

Moreover, this study was exclusively limited to
constituency treebanks. Experiments using tree-
banks based on other grammar formalisms, such as
dependency grammar, Head-driven Phrase Struc-
ture Grammar, and Combinatory Categorial Gram-
mar, etc., might reveal different findings.

Strategy. Another limitation stems from the use
of subword tokenization. As described in section 5,
the insertion position of NT actions is at the sub-
word level. Thus, the strategies used in this study
are based on subword-level speculation and do not
explicitly consider word boundaries. Strategies
based on word-level speculation, which allow NTs
to be opened only around word boundaries, await
further investigation.

Furthermore, it is possible to define symmetric
counterparts to the strategies used in this study. For
example, given a strategy parameter iv, we can
define more bottom-up oriented strategies with a
parameter jv = nv − iv. Analysis of such comple-
mentary strategies has yet to be explored.

Model. Our study is limited to a specific syntactic
language model, RNNG, with a fixed set of hyper-
parameters (Appendix B). Various other architec-
tures have been proposed, such as PLM (Choe and
Charniak, 2016) and Transformer Grammar (Sar-
tran et al., 2022). How the inductive biases of dif-
ferent architectures and hyperparameters influence
the optimal strategies remains an open question.

Additionally, as mentioned in section 2, RNNG
is considered less sensitive to stack size. How the
optimal strategy changes in models that are more
strongly affected by stack size also remains unclear.

445

Acknowledgments

This work was supported by JST SPRING Grant
Number JPMJSP2108 and JSPS KAKENHI Grant
Number JP24KJ0666 and JP24H00087.

References
Steven P Abney and Mark Johnson. 1991. Memory

requirements and local ambiguities of parsing strate-
gies. J. Psycholinguist. Res., 20(3):233–250.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331–2336, Austin, Texas.
Association for Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Fernanda Ferreira, Karl G D Bailey, and Vittoria Fer-
raro. 2002. Good-enough representations in language
comprehension. Curr Dir Psychol Sci, 11(1):11–15.

Fernanda Ferreira and Nikole D Patson. 2007. The
‘good enough’ approach to language comprehension.
Lang. Linguist. Compass, 1(1-2):71–83.

John Hale, Chris Dyer, Adhiguna Kuncoro, and
Jonathan Brennan. 2018. Finding syntax in human
encephalography with beam search. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2727–2736.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
LSTMs can learn syntax-sensitive dependencies well,
but modeling structure makes them better. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1426–1436, Melbourne, Australia. As-
sociation for Computational Linguistics.

Tatsuki Kuribayashi, Ryo Ueda, Ryo Yoshida, Yohei
Oseki, Ted Briscoe, and Timothy Baldwin. 2024.
Emergent word order universals from cognitively-
motivated language models. In Proceedings of the

62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
14522–14543, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Jun Li, Yifan Cao, Jiong Cai, Yong Jiang, and Kewei
Tu. 2020. An empirical comparison of unsupervised
constituency parsing methods. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3278–3283, Online. Asso-
ciation for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn treebank. Computational
Linguistics.

Hiroshi Noji and Yusuke Miyao. 2014. Left-corner
transitions on dependency parsing. In Proceedings of
COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
2140–2150, Dublin, Ireland. Dublin City University
and Association for Computational Linguistics.

Hiroshi Noji and Yohei Oseki. 2021. Effective batching
for recurrent neural network grammars. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 4340–4352, Online.
Association for Computational Linguistics.

Hiroshi Noji and Yohei Oseki. 2023. How much syntac-
tic supervision is “good enough”? In Findings of the
Association for Computational Linguistics: EACL
2023, pages 2300–2305, Dubrovnik, Croatia. Associ-
ation for Computational Linguistics.

Martha Palmer, Fu-Dong Chiou, Nianwen Xue, and
Tsan-Kuang Lee. 2005. Chinese treebank 5.1
LDC2005T01U01.

Peng Qian, Tahira Naseem, Roger Levy, and Ramón
Fernandez Astudillo. 2021. Structural guidance for
transformer language models. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 3735–3745, Online. As-
sociation for Computational Linguistics.

Philip Resnik. 1992. Left-corner parsing and psycho-
logical plausibility. In COLING 1992 Volume 1: The
14th International Conference on Computational Lin-
guistics.

Anthony Sanford and Patrick Sturt. 2002. Depth of
processing in language comprehension: not noticing
the evidence. Trends Cogn. Sci., 6(9):382.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,
Miloš Stanojević, Phil Blunsom, and Chris Dyer.
2022. Transformer grammars: Augmenting trans-
former language models with syntactic inductive bi-
ases at scale. Transactions of the Association for
Computational Linguistics, 10:1423–1439.

446

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D Choi, Richárd Farkas, Jennifer
Foster, Iakes Goenaga, Koldo Gojenola, Yoav
Goldberg, Spence Green, Nizar Habash, Marco
Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam
Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yan-
nick Versley, Veronika Vincze, Marcin Woliński,
Alina Wróblewska, and Éric Villemonte de la Clerg-
erie. 2013. Overview of the SPMRL 2013 shared
task: A cross-framework evaluation of parsing
morphologically rich languages. In Proceedings
of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146–182.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017. Ef-
fective inference for generative neural parsing. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1695–1700, Copenhagen, Denmark. Association for
Computational Linguistics.

Yushi Sugimoto, Ryo Yoshida, Hyeonjeong Jeong,
Masatoshi Koizumi, Jonathan R Brennan, and Yohei
Oseki. 2024. Localizing syntactic composition with
left-corner recurrent neural network grammars. Neu-
robiology of Language, 5(1):201–224.

Ryo Yoshida, Hiroshi Noji, and Yohei Oseki. 2021.
Modeling human sentence processing with left-
corner recurrent neural network grammars. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2964–
2973, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

447

A Datset Setting

To split the words into subwords, we applied byte
pair encoding (BPE). For datasets with 13K-30K
different words that appear at least twice (English,
Chinese, French, German, Korean, and Hungarian),
we used BPE with a vocabulary size of 5000. For
the remaining datasets (Basque, Hebrew, Polish,
and Swedish), which have 5K-8K words appear-
ing at least twice, we used BPE with a vocabulary
size of 1500. We used SentencePiece for subword
segmentation.13

B Model Setting

For the hyperparameters of RNNG, we used a 2-
layer LSTM (Hochreiter and Schmidhuber, 1997)
for hidden state transitions, a BiLSTM as the com-
position model, 256-dimensional embedding vec-
tors, 256-dimensional hidden state vectors, and a
dropout rate of 0.3. For optimization, we used
Adam (Kingma and Ba, 2015) with a learning rate
of 0.001. Training was performed for either 80
epochs or 8000 steps, whichever was larger for
each dataset. Regarding the batch size, we set
it to 512 for datasets with more than 10K data
points (English, Chinese, French, German, and Ko-
rean), and 128 for datasets with fewer than 10K
data points (Basque, Hebrew, Hungarian, Polish,
and Swedish).

C Other Results

Figure 5 shows the perplexity based on sentence
probability p̃M, calculated by marginalizing the
joint probability pMjoint within the last beam B|x|
to approximate pM, for each language and strat-
egy. Figure 6 shows the perplexity calculated using
the pMtoken for the best action sequence obtained by
beam search for each language and strategy. Fig-
ure 7 shows the validation loss, i.e., the negative
joint log-likelihood − log pMjoint, calculated for the
same data points as in Figure 2 for each language
and strategy.

D Additional Experiments for Polish

This section presents an additional experiment for
Polish involving a different preprocessing proce-
dure. As described in section 5, our standard pre-
processing removes preterminal nodes from the
constituency trees. The Polish treebank, however,
is an exceptional case. In the Polish treebank, the

13https://github.com/google/sentencepiece

Figure 5: Perplexity based on p̃M for all datasets. Error
bars show the standard error of the mean.

448

https://github.com/google/sentencepiece

Figure 6: Perplexity based on pMtoken for all datasets.
Error bars show the standard error of the mean.

Figure 7: Validation loss, i.e., − log pMjoint for all
datasets. Error bars show the standard error of the mean.

449

Figure 8: Labeled parsing F1 scores for Polish with
lowest layer nonterminals removed. Error bars show the
standard error of the mean.

Figure 9: Perplexity based on p̃M for Polish with low-
est layer nonterminals removed. Error bars show the
standard error of the mean.

lowest layer of nonterminal nodes, i.e., those im-
mediately above the preterminals, functions sim-
ilarly to standard preterminals. Yet, these lowest
layer nonterminals differ from standard pretermi-
nals in that they can be nested. The results for
Polish shown in Figure 2, Figure 5, Figure 6 and
Figure 7 are based on the standard preprocessing
where only preterminals are removed, while pre-
serving the lowest layer nonterminals. To investi-
gate the effect of the lowest layer nonterminals, we
also conduct experiments where models are trained
on data with both the preterminals and the lowest
layer of nonterminals removed.

Preprocess. To remove the lowest layer nonter-
minals including the nested ones, we remove all
preterminal and nonterminal nodes within subtrees
that have a minimum leaf depth of 2. Consequently,
the leaf nodes are directly attached to the parent of
the removed subtrees. Apart from this modification,
all other settings are the same as the standard pre-
processing procedure in section 5. We denote the
dataset created with this preprocessing procedure
as Polish-additional.

Results. Figure 8 shows the parsing performance
for Polish-additional (corresponding results with
standard preprocessing are shown in Figure 2). Fig-
ure 9 shows the perplexity based on sentence prob-
ability p̃M for Polish-additional (corresponding

Figure 10: Perplexity based on pMtoken for Polish with
lowest layer nonterminals removed. Error bars show the
standard error of the mean.

Figure 11: Validation loss, i.e., − log pMjoint for Polish
with lowest layer nonterminals removed. Error bars
show the standard error of the mean.

results with standard preprocessing are shown in
Figure 5). Figure 10 shows the perplexity calcu-
lated using the pMtoken for the best action sequence
obtained by beam search for Polish-additional (cor-
responding results with standard preprocessing are
shown in Figure 6). Figure 11 shows the vali-
dation loss, i.e., the negative joint log-likelihood
− log pMjoint for Polish-additional (corresponding
results with standard preprocessing are shown in
Figure 7).

Interestingly, the experimental results reveal
a significant difference between the Polish and
Polish-additional. For instance, while Figure 2
shows that Polish and English exhibit distinct
trends in parsing performance, the pattern for
Polish-additional in Figure 8 closely resembles
that of English. More specifically, for Polish
(Figure 2), low speculation strategies, such as
bottom-up and global-first (d = 1), tend to achieve
higher scores across all beam sizes. In contrast,
for Polish-additional (Figure 8), top-down yields
the best performance at larger beam sizes, such
as k = 200, 800. Furthermore, regarding the
structure-conditioned token PPL (Figure 6), Polish
is exceptional in that the PPL of the gold tree is
lower than that of the structures inferred by mod-
els. For Polish-additional, on the other hand, the
gold tree PPL is often higher than that of the in-
ferred structures; this trend is consistent with other
languages. Finally, in terms of validation loss, no

450

significant difference is observed between Polish
and Polish-additional.

These findings demonstrate that the optimal pars-
ing strategy is sensitive to the presence or absence
of the lowest layer of nonterminals in the Polish
treebank. Given that Polish and Polish-additional
show a significant difference in the performance
patterns across strategies for parsing and structure-
conditioned token PPL, while showing no such
difference for validation loss, we hypothesize that
the lowest layer nonterminals strongly influence
the difficulty of inference.

451

