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Abstract

Students’ academic performance is influenced
by various demographic factors, with socioeco-
nomic class being a prominently researched
and debated factor. Computer Science re-
search traditionally prioritizes computationally
definable problems, yet challenges such as the
scarcity of high-quality labeled data and ethical
concerns surrounding the mining of personal in-
formation can pose barriers to exploring topics
like the impact of socioeconomic status (SES)
on students’ education. Overcoming these bar-
riers may involve automating the collection and
annotation of high-quality language data from
diverse social groups through human collabo-
ration. Therefore, our focus is on gathering
unstructured narratives from Internet forums
written by students with low-SES using ma-
chine learning models and human insights. We
developed a hybrid data collection model that
semi-automatically retrieved narratives from
the Reddit website and created a dataset five
times larger than the seed dataset. Additionally,
we compared the performance of traditional
ML models with recent large language mod-
els (LLMs) in classifying narratives written by
low-SES students, and analyzed the collected
data to extract valuable insights into the socioe-
conomic challenges these students encounter
and the solutions they pursue.

1 Introduction
Low socioeconomic status (SES) refers to a dis-
advantaged position in society determined by fac-
tors such as income, education, and occupation.
Individuals with low SES typically have limited
financial resources (Scott-Clayton, 2015), lower
educational attainment (Titus, 2006), and reduced
access to quality healthcare and academic oppor-
tunities (Adler and Newman, 2017). These dis-
parities profoundly impact students’ educational
experiences, shaping their academic performance,
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career prospects, and long-term well-being. Stu-
dents from low socioeconomic backgrounds often
struggle with financial barriers, making it difficult
to afford tuition and educational resources (Brown
and Carr, 2013). They also have limited access to
academic support and technology, which can im-
pede their academic success. Additionally, these
students may experience social isolation and psy-
chological stress due to the pressure of competing
with peers from more privileged backgrounds (Lee
et al., 2008).
Research on students from low socioeconomic
backgrounds is crucial for identifying and address-
ing the unique challenges they face in education.
Understanding these struggles can inform policies
and interventions that promote equity, ensuring that
students receive the necessary support to succeed.
Despite this importance, NLP research has largely
overlooked socioeconomic status. A survey by
(Cercas Curry et al., 2024) found only 20 papers
in the ACL Anthology explicitly mentioning SES,
highlighting a substantial gap in computational re-
search. This lack of attention limits our understand-
ing of how SES affects student life and contributes
to the development of educational technologies that
may not adequately address the needs of low-SES
students, potentially widening the digital divide
(Kelbessa et al., 2024).
A major challenge in computational research on
low-SES students is the scarcity of high-quality
labeled data. Most existing datasets rely on struc-
tured survey responses, which fail to fully capture
the complexity of students’ experiences. To address
this, we analyze a dataset published by (Kelbessa
et al., 2024), containing 74 narratives written by
low-SES students on Reddit. These narratives of-
fer valuable firsthand insights into the struggles
and coping mechanisms of low-SES students, mak-
ing them an important resource for NLP research.
However, as the dataset was annotated by only two
individuals and lacks gold-standard validation, it
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presents both an opportunity and a challenge for
refinement and further analysis.
The remainder of this paper is structured as fol-
lows: In §2, we review previous research on
SES and NLP. In §3, we describe our dataset, in-
cluding its source and key attributes. In §4, we
present our data evaluation and analysis methodol-
ogy, which involves assessing data quality, filter-
ing high-quality narratives, and applying linguistic
metrics, sentiment analysis, and topic modeling.
Finally, we summarize our findings (§5), discuss
our key contributions (§6), explore the ethical and
societal implications of our research (§7).

2 Related Work
Socioeconomic status (SES) influences various as-
pects of life, including education, health, and social
mobility. Understanding SES disparities requires
high-quality datasets that capture linguistic, behav-
ioral, and demographic patterns. However, acquir-
ing such datasets poses significant challenges, in-
cluding ethical concerns, accessibility restrictions,
and issues of representativeness.
Several datasets have been developed for SES re-
search, particularly leveraging online sources and
social media platforms. Twitter has been widely
used due to its accessibility and large user base. For
instance, (Lampos et al., 2014) used UK Twitter
data to analyze how user-generated content predicts
SES. Similarly, (Mentink, 2016) collected a dataset
of 2.5 million Dutch Twitter users to infer their
socioeconomic backgrounds. While Twitter data
provides valuable large-scale insights, its brevity
and informal nature limit its usefulness for in-depth
socioeconomic analysis.
Beyond social media, narrative-based data pro-
vides rich contextual insights into SES struggles.
(Kelbessa et al., 2024) compiled a dataset of 74
SES-related narratives as a foundation for further
research. Unlike social media posts, these narra-
tives offer longer, structured reflections on lived
experiences, making them more informative for un-
derstanding the personal and systemic challenges
faced by individuals from low-SES backgrounds.
Despite advancements in SES-related data collec-
tion, several challenges persist. Ethical concerns
arise when gathering data from social media, as it
raises privacy and consent issues (Stieglitz et al.,
2018). Data accessibility is another major barrier,
as many relevant datasets are either proprietary
or require restrictive permissions. Additionally,

existing SES datasets often overrepresent specific
demographics, reducing their generalizability and
limiting their applicability across diverse popula-
tions.
In this work, we aim to address these challenges
by expanding SES-related narrative datasets with a
focus on depth—the inclusion of rich, first-person
accounts that describe the lived experiences, strug-
gles, and coping strategies of low-SES individu-
als—and representativeness, meaning coverage of
diverse challenges within the SES spectrum, such
as financial hardship, social marginalization, and
academic barriers. Unlike short-form social me-
dia posts, our dataset consists of longer, structured
narratives that offer greater contextual detail. This
work contributes to the growing body of research
on SES in computational linguistics and provides
a valuable resource for future studies examining
socioeconomic barriers in education.

3 Data
Unlabeled Reddit Posts: This data is publicly
available and was collected on 2019 for the
ThinkPlayHack event hosted in July 2019 in Taos
for Dr. Jo Guldi (Southern Methodist University
(SMU), 2019). It contains over 1 terabyte of Red-
dit posts published from 2005 to 2013. To manage
the extensive data, measured in terabytes, we ini-
tially selected posts exclusively from subreddits
associated with low-SES, such as ‘college’, ‘Apply-
ingToCollege’, ‘depression’, ‘askReddit’, ‘broke’,
‘financialaid’, and ‘fafsa’. After filtering for rel-
evant subreddits and eliminating duplicates, the
resulting dataset comprised 799,032 Reddit posts
(total 106859972 words) with 7 average sentences
and 134 average words per post.
Labeled Reddit Posts: (Kelbessa et al., 2024) gath-
ered 74 low-SES narratives from Reddit. To ensure
the validity of these narratives as data points, the
following criteria were applied: 1) The narratives
needed to shed light on the experience of being a
low-SES student and attending higher education,
focusing on financial, psychological, physical, or
social struggles. 2) The narratives should describe
the challenges faced by individuals with low-SES
backgrounds, their efforts to improve their situa-
tion, and the outcomes of those efforts. 3) Narra-
tives that primarily offered general commentary,
described a condition, or provided advice were ex-
cluded, as they did not qualify as valid data points.
Each narrative had to meet at least one of the first
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two criteria and also satisfy the third qualification
to be included in the dataset. The narratives were
doubly annotated by two annotators to ensure the
consistency and quality of the data. To ensure the
quality of this publicly available data (Kelbessa
et al., 2024), we thoroughly applied the above cri-
teria on the 74 narratives and identified 64 of them
met the criteria (background of low-SES).
We note that this dataset is framed around college
accessibility and affordability—an issue particu-
larly salient within the context of the U.S. educa-
tional system. While such focus is not inherently
limiting, we acknowledge that the effects and ex-
pressions of low socioeconomic status (SES) can
vary significantly across different countries and ed-
ucational models. As such, our framing may not
fully capture the global diversity of SES-related
challenges. We aim to address this limitation in
future work by broadening the scope beyond U.S.-
centric educational themes and exploring SES nar-
ratives in other domains such as employment, hous-
ing, or healthcare access. Additionally, the criteria
used for selecting valid narratives could be adapted
to include financial hardship contexts not strictly
tied to higher education.
To process 64 non-low-SES data points, we applied
semantic textual similarity to determine which
posts in the unlabeled Reddit Posts (mentioned
above) had the weakest correlation with the ground
truth 64 low-SES narratives. We explored sev-
eral similarity measures, such as the Negative Eu-
clidean Distance, Negative Manhattan Distance,
and Cosine Similarity, using the top-ranked Sen-
tence Transformer model from the Massive Text
Embedding Benchmark (Muennighoff et al., 2022)
leaderboard on Hugging Face. We identified the
64 posts and manually evaluated them that had the
lowest similarity to the ground truth data points,
treating these as the non-low-SES ground truth. An
example for illustration is provided in the appendix
A.1. The final dataset comprised 64 non-low-SES
Reddit posts with 15 average sentences and 299
average words per post.

4 Empirical Study
We started with the labeled dataset of 128 Reddit
posts, consisting of 64 narratives from low-SES
students and 64 from non-low-SES students. Over
the course of three iterations, we curated and ex-
panded this dataset, ultimately building a larger
collection of narratives. Our primary goal is to col-

lect enough data for future training and automation
of the model. In each iteration, we added narra-
tives in the training data that are newly labeled in
the previous iteration as low-SES and then try to
label the remaining unlabeled narratives. Every
iteration followed a three-step process: first, we
applied traditional binary ML classifiers and LLMs
to categorize the unlabeled Reddit posts as either
low-SES or non-low-SES; second, we used clus-
tering techniques to identify and remove outliers
from the dataset. Third, we manually annotated
the narratives to perform the final evaluation. The
numbers of the resulted labeled narratives at each
step are shown at Table 2.

4.1 Step 1: Classification
We evaluated the performance of 22 traditional ML
models and LLMs to distinguish between low-SES
and non-low-SES texts. All the models we used
are from scikit-learn (Pedregosa et al., 2011) and
Hugging Face Transformers (Wolf et al., 2020).
The evaluation followed a 5-fold cross-validation
approach, with 70% of the dataset allocated for
training, 15% for validation, and 15% for reporting
the results. We conducted our experiments over
three iterations, each with increasing complexity.
In the first iteration, the dataset consisted of 64
low-SES narratives and 64 non-low-SES narratives,
which were easily separable. This was due to our
careful selection of the non-low-SES narratives, en-
suring they were clearly distinguishable from the
low-SES narratives. By the second iteration, the
dataset had nearly doubled in size, and the classi-
fication task became more challenging. This time,
the non-low-SES narratives were selected from the
false positives of the first iteration, resulting in less
clear separation between the classes. In the third
iteration, the challenge intensified further as the
dataset again doubled, with non-low-SES narra-
tives chosen from the false positives of the second
iteration. Consequently, the classes were signifi-
cantly harder to separate, reflecting the increasing
difficulty of the classification task. To address these
increasingly complex classification tasks, we uti-
lized a variety of fine-tuned pre-trained language
models, models with few-shot capabilities, and tra-
ditional ML models. The overall results in three
different iterations are shown at Table 1 and de-
tailed parameters for all models are provided in
Table 3 in Section A.2.
The Traditional models included Random Forest
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Model 1st iteration 2nd iteration 3rd iteration Model 1st iteration 2nd iteration 3rd iteration

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

RF 0.55 0.55 0.54 0.74 0.74 0.74 0.61 0.61 0.61 BERT 0.71 0.70 0.70 0.71 0.69 0.68 0.56 0.56 0.56
MNB 0.81 0.70 0.67 0.79 0.76 0.75 0.65 0.63 0.62 OPT-13B few 0.50 0.50 0.40 0.52 0.52 0.52 0.51 0.50 0.49
SVM 0.60 0.60 0.60 0.87 0.87 0.87 0.60 0.60 0.60 Claudia few 0.60 0.55 0.49 0.49 0.50 0.47 0.50 0.50 0.46
LR 0.60 0.60 0.60 0.87 0.87 0.87 0.64 0.64 0.64 LLamA-7B few 0.34 0.35 0.34 0.69 0.64 0.66 0.47 0.48 0.46
XGBoost 0.66 0.65 0.64 0.74 0.74 0.74 0.55 0.54 0.54 LLaMA-1.3B few 0.50 0.50 0.45 0.38 0.41 0.38 0.55 0.54 0.53
RoBERTa 0.75 0.75 0.75 0.76 0.76 0.76 0.73 0.67 0.65 LoRA DistillGPT 0.25 0.50 0.33 0.27 0.52 0.35 0.25 0.50 0.33
RoBERTa-large 0.75 0.75 0.75 0.74 0.74 0.74 0.72 0.72 0.72 LoRA LLaMA-1.3B 0.25 0.50 0.33 0.30 0.41 0.32 0.25 0.50 0.33
DeBERTa 0.77 0.75 0.74 0.74 0.74 0.74 0.56 0.55 0.55 LoRA GPT-2 0.25 0.50 0.33 0.27 0.52 0.35 0.25 0.50 0.33
ELECTRA 0.77 0.75 0.74 0.83 0.80 0.79 0.59 0.56 0.53 bart-large-mnli Zero 0.80 0.80 0.80 0.22 0.43 0.29 0.46 0.46 0.46
ALBERT 0.66 0.65 0.64 0.65 0.65 0.65 0.55 0.55 0.55 DistilBert 0.75 0.75 0.75 0.77 0.74 0.74 0.63 0.62 0.62
XLNet 0.60 0.55 0.49 0.63 0.61 0.60 0.66 0.65 0.65 T5 0.50 0.50 0.48 0.75 0.72 0.72 0.55 0.55 0.55

Table 1: Comparison of average Precision (P), Recall (R), and F1 scores for both classes across three iterations for various classification models.

Iteration
No.

Unlabeled
Texts

Labeled
(Classifier)

Labeled
(Cluster)

Labeled
(Human)

Iteration 1 799,032 13,635 289 110
Iteration 2 798,743 390 381 167
Iteration 3 798,362 5195 444 121

Table 2: Summary of the annotated narratives at three different steps- Classifi-
cation, Clustering, and Human Annotation.

(RF), Multinomial Naive Bayes (MNB), Support
Vector Machine (SVM), Logistic Regression (LR),
and Gradient Boosting (XGBoost). Overall, MNB,
SVM, and LR demonstrated effective performance
across the iterations, while RF and XGBoost strug-
gled, particularly in the more challenging contexts.
The fine-tuned pre-trained language models in-
cluded Robustly Optimized BERT (RoBERTa), Ro-
bustly Optimized BERT-Large (RoBERTa-Large),
Decoding-Enhanced BERT (DeBERTa), Efficiently
Learning an Encoder that Classifies Token Re-
placements Accurately (ELECTRA), A Lite BERT
(ALBERT), eXtreme Language Model (XLNet),
Text-to-Text Transfer Transformer (T5), Distilled
BERT (DistilBERT), and Bidirectional Encoder
Representations from Transformers (BERT). Over-
all, RoBERTa, RoBERTa-Large, and ELECTRA
demonstrated strong and consistent performance
across iterations, while ALBERT and XLNet
had difficulty handling the increasing complex-
ity of the task. The few-shot models included
Open Pre-trained Transformer (OPT-13B), Claudia,
LLM Meta AI (LLaMA-7B), and LLM Meta AI
(LLaMA-1.3B). Few-shot models were not as ef-
fective in distinguishing between increasingly sim-
ilar narratives as the dataset complexity grew. The
LoRA fine-tuning models included Distilled Gener-
ative Pre-trained Transformer (DistillGPT), LLM
Meta AI (LLaMA-7B), and Generative Pre-trained
Transformer (GPT-2). The results suggest that the
LoRA fine-tuning models were not well-suited for
the increasing complexity of the classification task,
possibly due to their limited adaptation to more

challenging data. The zero-shot model used was
bart-large-mnli Zero (Yin et al., 2019). The sharp
decline in performance in the second and third it-
erations suggests that the zero-shot model strug-
gled to handle the increasing similarity between
the low-SES and non-low-SES texts, as it lacked
the fine-tuning capabilities of other models.
In the first iteration, the BART-large-mnli zero-shot
model showed superior performance in terms of
balanced metrics. We applied a confidence thresh-
old of 0.7, meaning a text was classified as low-
SES only if the model predicted it with confidence
greater than 0.7. This threshold was empirically
selected after testing a range of values above and
below it; 0.7 offered the best balance between high-
confidence predictions and getting a manageable
number of samples. As a result, this model fil-
tered the data, yielding 13,635 low-SES texts out
of 799,032 unlabelled texts. In the second iteration,
we employed an ensemble approach using SVM
and LR, the two models that performed best in the
first phase. Both models were trained separately
and combined to improve classification accuracy.
The SVM provided decision scores, and LR pro-
duced class probabilities. We again applied a 0.7
threshold to both models, ensuring that a text was
classified as low-SES only if both classifiers agreed
with high confidence. This approach yielded 390
low-SES texts.
Traditional ML Models Versus LLMs: In it-
eration 1, traditional models, such as SVM and
LR, achieved balanced performance, with macro-
averaged F1 scores of 0.60. These models demon-
strated robust precision and recall across both
classes, although they did not outperform more ad-
vanced models. XGBoost performed slightly better,
with an F1 score of 0.66, particularly excelling in
classifying non-low-SES texts.
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Among LLMs, RoBERTa achieved an F1 score of
0.75, showcasing strong performance with a bal-
anced precision and recall across both SES classes.
Similarly, DeBERTa and ELECTRA performed
well, both achieving F1 scores of 0.74. These
models demonstrated better balance than some tra-
ditional models in classifying both low-SES and
non-low-SES texts. However, other LLMs, such as
ALBERT and XLNet, underperformed compared
to their counterparts, with F1 scores of 0.64 and
0.60, respectively. XLNet particularly struggled
with the low-SES class, achieving an F1 score of
0.31, highlighting its difficulty in accurately identi-
fying low-SES narratives. Interestingly, zero-shot
models like bart-large-mnli demonstrated strong
performance, with an F1 score of 0.80, matching
the best-performing models in this iteration. In con-
trast, few-shot models, such as LoRA Fine-Tuned
LLaMA and DistilGPT, performed poorly, indi-
cating that few-shot learning in this context was
less effective than fine-tuning. Detailed results are
shown in section A.3 at Table 4.
In iteration 2, the comparison between traditional
ML and LLMs highlights the distinct strengths and
weaknesses of each group. Traditional models,
such as SVM and LR, outperformed most LLMs,
achieving the highest F1 scores of 0.87 across both
low-SES and non-low-SES categories. These mod-
els demonstrated strong precision and recall, partic-
ularly in the non-low-SES class, underscoring their
robustness in effectively balancing both classes.
For example, SVM achieved a precision of 0.88
and recall of 0.85 for low-SES, while LR displayed
a precision of 0.91 for low-SES and a recall of 0.93
for non-low-SES, making them reliable in these
classification tasks.
In contrast, fine-tuned LLMs, such as RoBERTa
and ELECTRA, also performed well but fell
slightly behind the top traditional models.
RoBERTa achieved a weighted F1 score of 0.76,
showing a strong balance between precision (0.74)
and recall (0.82) for the non-low-SES class. How-
ever, its recall for low-SES (0.69) was lower com-
pared to traditional models, meaning it missed
more low-SES texts. ELECTRA achieved a higher
F1 score of 0.79 and performed exceptionally well
in identifying non-low-SES texts, with a precision
of 0.73 and recall of 0.96. Nevertheless, ELECTRA
struggled with low-SES classification, showing a
precision of 0.94 but a much lower recall of 0.62,
indicating it missed more low-SES examples. De-

BERTa displayed performance similar to traditional
models like RF and XGBoost, with an F1 score of
0.74. Its precision and recall were balanced across
both classes but did not achieve the standout per-
formance of models like RoBERTa or ELECTRA.
Other LLMs, including ALBERT and XLNet, sig-
nificantly underperformed compared to both tra-
ditional models and other LLMs, with F1 scores
of 0.65 and 0.60, respectively. XLNet particularly
struggled with the non-low-SES class, achieving
a recall of only 0.46, indicating significant diffi-
culty in identifying non-low-SES texts accurately.
ALBERT exhibited more balanced but lower per-
formance across both classes.
These results for iteration 2 indicate that while
LLMs have shown potential—particularly models
like RoBERTa and ELECTRA—traditional models
such as SVM and LR remain more reliable for tasks
involving both low-SES and non-low-SES classifi-
cation. Their superior balance between precision
and recall across both categories demonstrates their
robustness, whereas LLMs, though effective in cer-
tain areas such as precision for non-low-SES, may
require further fine-tuning to achieve the same com-
prehensive balance seen in traditional models. De-
tailed results are shown in section A.3 at Table 5.
A further evaluation of traditional ML models and
LLMs reveals interesting trends in model perfor-
mance as the dataset complexity increases. While
traditional models like SVM and LR continued to
show stability, their dominance observed in ear-
lier iterations has now been matched or exceeded
by fine-tuned LLMs in certain aspects. Among
the traditional models, LR demonstrated consis-
tency, achieving an average 0.64 F1 across both
SES classes. While it excelled in the non-low-SES
class, with a precision of 0.84 and recall of 0.93, it
showed less robustness in the low-SES class, with
precision and recall hovering around 0.64. Simi-
larly, RF maintained stable performance, with an
F1 score of 0.61, although it underperformed com-
pared to LR, particularly in the non-low-SES class
(precision: 0.63, recall: 0.53).
Fine-tuned LLMs displayed notable improvements.
RoBERTa-large emerged as one of the top perform-
ers, achieving the highest average F1 score of 0.72
across both classes, surpassing traditional models
like SVM and LR. This model exhibited a well-
balanced performance with precision, recall, and
F1 scores closely aligned (precision: 0.70, recall:
0.76 for non-low-SES; precision: 0.74, recall: 0.67
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for low-SES), indicating its capability to handle
both classes. DeBERTa also showcased a solid per-
formance, with an average F1 of 0.55, though it
struggled with the low-SES class (F1: 0.49) com-
pared to RoBERTa-large. Similarly, ELECTRA
achieved an average F1 of 0.53 but encountered
challenges in classifying low-SES examples, where
recall dropped to 0.31. These results suggest that
while LLMs like RoBERTa-large are emerging as
strong contenders, certain models such as ELEC-
TRA and DeBERTa still require fine-tuning to han-
dle the low-SES class. Few-shot models, such as
Claudia and LLaMA-1.3B, presented mixed results.
Claudia, in its few-shot configuration, achieved an
average F1 of 0.46, highlighting difficulties in iden-
tifying low-SES narratives (F1: 0.32). On the other
hand, LLaMA-1.3B fared slightly better, with an
average F1 score of 0.53, performing consistently
across both SES classes. However, neither of these
models surpassed fine-tuned LLMs or traditional
models in overall performance. Fine-tuned models
with LoRA (Low-Rank Adaptation), such as LoRA
GPT-2 and LoRA LLaMA-1.3B, delivered uneven
outcomes. Both models demonstrated high preci-
sion for the non-low-SES class (0.50) but struggled
significantly with the low-SES class, where they
failed to capture any true positive examples (recall:
0.00, F1: 0.00).
Iteration 3 reveals a growing strength of fine-tuned
LLMs, particularly RoBERTa-large, which outper-
forms traditional models. This model’s balanced
precision and recall across SES classes emphasize
its versatility. Models like DeBERTa and ELEC-
TRA show that while LLMs are improving, they
can still struggle with the low-SES class. Few-
shot models and LoRA fine-tuned models exhibited
less consistent results, often failing to achieve the
comprehensive balance required for SES classifica-
tion. This highlights the continued importance of
fully fine-tuning LLMs for this task, as parameter-
efficient models and few-shot learning may not yet
match the robustness of more thoroughly fine-tuned
counterparts like RoBERTa-large. Detailed results
are shown in section A.3 at Table 6.

4.2 Step 2: Clustering
Once the classification step was completed, we
used clustering to group similar texts and remove
outliers. In the first iteration, we analyzed 13,635
posts identified as low-SES by the classifier. To
compare the similarity between the ground truth

samples and the collected posts, we applied PCA
(Jolliffe, 2002) for dimensionality reduction using a
tf-idf vectorizer (Salton and Buckley, 1988) with a
maximum of 1,000 features, visualizing the clusters
in 2D space. Some outliers were detected in the
ground truth data. These outliers were removed
by applying the interquartile range (IQR) method,
reducing the dataset to 55 points (Fig. 1a).
Next, we computed cosine similarity between the
normalized vectors of the collected data and the
outlier-free ground truth data. A threshold of 0.9
was set to classify data points as similar or dis-
similar. This process revealed that 289 from the
collected data points met or exceeded the total sim-
ilarity score(where the summation of the classified
data is similar to ground truth data points) of 35,
940 data points had a similarity score of at least 34,
and 10,821 data points had a score of 33 or less.
In the second iteration, after applying PCA to the
collected data and the ground truth data, visualizing
the results in a 2D space (see Fig. 1b). The col-
lected data points and ground truth data were plot-
ted to observe clustering patterns, allowing us to
assess the similarity between the two datasets. Out-
liers were removed using the Interquartile Range
(IQR) method, where values outside 1.5 times the
IQR from the first (Q1) and third quartiles (Q3)
were identified and excluded from both datasets.
This process reduced the total number of collected
data points from 390 to 381.
In the Third iteration, we analyzed 5195 posts iden-
tified as low-SES. To compare the similarity be-
tween the ground truth samples and the collected
posts, we applied PCA for dimensionality reduc-
tion using a tf-idf Vectorizer with a maximum of
1,000 features, visualizing the clusters in 2D space.
Some outliers were detected in the ground truth
data. These outliers were removed by applying
the interquartile range (IQR) method, reducing the
dataset to 331 points (Figure 1c). Next, we com-
puted cosine similarity between the normalized
vectors of the collected data and the outlier-free
ground truth data. We used the same threshold of
0.9 to classify data points as similar or dissimilar.
This process revealed that 121 from the collected
data points met or exceeded the total similarity
score of 86, 260 data points with similarity score
of at least 85, and 444 data points had a score of 84
or less.
In iteration 1, the collected data predominantly cov-
ers the central portion of the ground truth spectrum,
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(a) Iteration 1 Clustering Without Outliers

(b) Iteration 2 Clustering Without Outliers

(c) Iteration 3 Clustering Without Outliers

Figure 1: Clustering of Ground Truth and Collected Data Using PCA Across
Three Iterations Without Outliers

indicating that the initial classification managed to
capture a concentrated part of the low-SES class but
left much of the outer spectrum of the ground truth
unexplored. Moving to iteration 2, the collected
data begins to diverge, covering less of the ground
truth spectrum compared to Iteration 1. This sug-
gests that the classification in this iteration was
more selective but also less comprehensive in cap-
turing the full range of the low-SES data. Finally,
in iteration 3, we see a significant improvement,
with the collected data covering over 70% of the
ground truth spectrum. This indicates a better align-
ment between the collected and ground truth data,
suggesting that the classification in this iteration
successfully captured a much broader range of the
ground truth low-SES examples, resulting in a more
balanced and comprehensive dataset.

5 Data Annotation
Human Annotation: The first three authors fol-
lowed the criteria described in Section 3 to annotate
the 289 texts from the clustering step at iteration 1
and getting the data points with a similarity score
of at least 35. This process resulted in 110 texts

being annotated as low-SES out of 289. In the sec-
ond iteration, we annotated 381 texts, of which 167
were classified as low-SES and in the third itera-
tion, we annotated 121 texts that has a similarity
score of at least 86, we got 46 low-SES Text.
In iteration 1, most of the texts annotated as not
low-SES contained general advice and lacked the
background indicative of being from a low-SES
perspective. These texts often focused on provid-
ing broad recommendations rather than sharing
personal experiences tied to financial difficulties.
The absence of key indicators, such as struggles
with income, debt, or reliance on social services,
made it clear that these individuals did not face
the same economic constraints typical of low-SES
situations. As a result, their narratives were more
aligned with middle or higher SES backgrounds,
where financial stability was not a central concern.
In iteration 2, as the task became more challeng-
ing, some of the texts annotated as not low-SES
included background information and challenges
but lacked personal experience that would vali-
date them as low-SES. Upon further analysis, clear
patterns emerged from the texts classified as low-
SES. Many highlighted the need for financial aid,
with individuals working multiple jobs or living in
single-parent households with little to no income.
Debt, particularly from educational loans or basic
expenses, was a recurring theme, as was the lack of
family support, indicating broader financial insta-
bility. These socio-economic markers—multiple
jobs, debt, and minimal family support—are cru-
cial for refining the model to better detect low-SES
cases in future iterations. In iteration 3, after ex-
tracting 277 low-SES texts, some of the texts an-
notated as not low-SES described challenges and
solutions but appeared to originate from individuals
of medium SES rather than low-SES. We noticed
that some texts annotated as not low-SES described
challenges like juggling multiple jobs or balancing
full-time work and studies. These individuals of-
ten discussed FAFSA loans or supporting a family
due to a relative’s disability. However, many of
these cases appeared to stem from medium SES
backgrounds, as they had access to basic loans or
even an inheritance. This suggests that while these
individuals faced financial difficulties, their situa-
tions were distinct from those typically associated
with low-SES, highlighting the nuanced differences
between SES classifications.
LLM Annotation: We used a pre-trained LLaMA
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model with 7 billion parameters (Touvron et al.,
2023) to annotate the dataset of low-SES student
narratives. The model was configured with a maxi-
mum of 200 tokens, a temperature of 0.5 for less
randomness, and deterministic sampling. The goal
was to extract information about students’ back-
ground, struggles, and solutions related to finan-
cial, psychological, physical, or social challenges.
Comprehensive descriptions of the prompts are pro-
vided in Section A.4. Although LLM was effective,
the extraction of structured data was a challenge.
The model occasionally produced extraneous text
or improperly formatted outputs, requiring post-
processing.
For visualization, We applied Principal Component
Analysis (PCA) to reduce high-dimensional sen-
tence embeddings on extracted background infor-
mation from ground truth and collected datasets for
visualization. K-means clustering was then used to
group semantically similar sentences, identifying
key thematic clusters. The resulting scatter plot
(Figure 2) shows how the collected data expands
the thematic coverage by displaying cluster distri-
butions for both datasets. Collected data cluster 0
(Work Struggles) shows an expansion of themes
around work experience and internships, academic
support systems, and mental health or emotional
struggles, which are less represented in the original
data. Data cluster 1 (Family Dynamics) has more
diverse and specific family backgrounds, strug-
gles with independence and support, and impact
of wider social and economic systems. Data clus-
ter 2 (Mental Health) introduces more detailed re-
flections on emotional struggles and mental health
challenges. Data cluster 3 (Societal Challenges)
significantly enriches the thematic representation
of challenges faced by low-SES students, particu-
larly by introducing broader societal and personal
insights that were underrepresented in the original
dataset. Data cluster 4 (Systemic Critiques) reflects
more detailed critiques of systemic issues affecting
students, such as the cost of education, the student
debt crisis, and the unrealistic promises of higher
education as a golden ticket to success.
The final dataset began with a seed of 64 data
points and, through the application of the proposed
methodology, expanded to include 323 new data
points. Both the ground truth and collected datasets
were processed using prompt engineering with the
LLaMA model to extract background information,
struggles during higher education, and solutions

Figure 2: Ground Truth and Collected Data Clusters of Background Information

students devised to improve their situations. While
some data points have missing background, strug-
gle, or solution information due to limitations in
LLM extraction, we are actively working on re-
fining the dataset through a rigorous gold-standard
validation process. Additionally, we performed sen-
timent analysis on the entire text of both datasets
using a sentiment fine-tuned model (Camacho-
collados et al.). In the ground truth dataset, the
sentiment distribution consisted of 10 positive, 29
neutral, and 25 negative texts. For the collected
data, the distribution shifted to 37 positive, 138
neutral, and 148 negative texts. This significant
increase in both neutral and negative sentiments in
the collected dataset provides a broader scope for
future exploration of the emotional landscape of
low-SES students.

6 Contributions
First, we developed a dataset of unstructured narra-
tives from low-SES students by semi-automatically
collecting and expanding data from Reddit, pro-
ducing a dataset five times larger than the initial
seed. We will make our code and data publicly
available for the research community. Second, we
designed a hybrid model that combines machine
learning and human insights to classify low-SES
student narratives, comparing the performance of
traditional ML models with recent LLMs. Third,
given the challenges associated with data collec-
tion in this underexplored area, our work paves
the way for fully automating this process, encour-
aging future research to focus on the educational
barriers faced by low-SES students. Finally, by
releasing a large, high-quality corpus of low-SES
student narratives, our work enables a wide range
of downstream applications such as profiling so-
cioeconomic discourse, detecting financial or psy-
chological hardship, and supporting educational
policy research. The dataset can also serve as a
valuable benchmark for future NLP models target-
ing underrepresented demographic dimensions.
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7 Ethical and Societal Impact
First, while we strive for fairness, it is challenging
to ensure equal representation across geographic
regions and genders in our dataset. This could
lead to unintentional biases that affect the results
and interpretations of our work. Second, although
we will release the model under the appropriate
license to ensure compliance with legal and ethical
standards, there remains a risk of misuse. Specifi-
cally, the model could be used to classify low-SES
individuals from publicly available narratives, po-
tentially exposing them to harmful activities such
as discrimination or exploitation. To mitigate this,
we will enforce user agreements that explicitly pro-
hibit harmful uses. Finally, although the data we
collected is anonymous, it was sourced from public
online forums, and we, as authors, cannot edit or
delete this data once retrieved. This raises privacy
concerns, as individuals may not have anticipated
their posts being used for research purposes, even
in an anonymized form. Additionally, although the
narratives are public and anonymous, we still make
sure we have IRB exempt status before publishing
our collected narratives. Despite these concerns,
we believe our work will have a positive societal
impact. By providing a deeper understanding of the
challenges faced by low-SES students, our findings
could inform educational policies and initiatives
aimed at addressing socioeconomic disparities. Ul-
timately, our research could contribute to greater
equity and inclusion for marginalized communities.
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A Appendix

A.1 Data

You need to buy textbooks or find PDFs. Talk to your faculty adviser if you ever have questions, and make
sure you’re talking to the general university adviser too. Welcome, if you’ve ever been to the bank. Some
teachers might inflate grades, but in the end, don’t skip class or slack off on homework. Stop studying for
exams the night before—it’s a terrible habit. Get an internship as quickly as possible, and try to have a job
lined up before graduation. Well, go to the career center and make friends with people who are getting
jobs. Put together a serious resume and cover letter as soon as you can. No one is going to be impressed
with fancy colors or formatting in the professional world. The career center can help you critique them for
free. You’re also going to get wrecked by student loans in a few years, so prepare wisely unless you’re
Richie Rich.

A.2 Classification

Model Parameter values

RF n_estimators = 100, random_state = 46. Random Forest model using 100 trees to ensure a balanced performance.

MNB Default parameters, suitable for text data with TF-IDF representation. The Multinomial Naive Bayes assumes feature independence
and is efficient for large-scale text data.

SVM kernel = linear, probability = True, random_state = 46. A linear kernel is efficient for text classification, with probability estimates
enabled for evaluation purposes.

LR max_iter = 500, random_state = 46. LR with a limit on the number of iterations to ensure convergence.

BERT Model = bert-base-uncased, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARN-
ING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification with early stopping, patience = 8.

DistilBERT Model = distilbert-base-uncased, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40,
LEARNING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification with early stopping, patience = 8.

ALBERT Model = albert-base-v2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARN-
ING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification with early stopping, patience = 8.

BART Model = facebook/bart-large-mnli, MAX_LEN = 512, TRAIN_BATCH_SIZE = 16, VALID_BATCH_SIZE = 16, EPOCHS = 40,
LEARNING_RATE = 1e-05, hidden size = 1024, dropout = 0.3. Fine-tuned BART with a binary classification head and early stopping,
patience = 8.

DeBERTa Model = microsoft/deberta-base, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40,
LEARNING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification using CLS token with early
stopping, patience = 8.

ELECTRA Model = google/electra-base-discriminator, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS =
40, LEARNING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification using CLS token with early
stopping, patience = 8.

XLNet Model = xlnet-base-cased, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARN-
ING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned XLNet model for binary classification with early stopping, patience
= 8.

T5 Model = t5-base, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARNING_RATE
= 1e-05, output = logits for binary classification with early stopping, patience = 8.

LLaMA Model = princeton-nlp/Sheared-LLaMA-1.3B, MAX_LEN = 512, TRAIN_BATCH_SIZE = 8, VALID_BATCH_SIZE = 8, EPOCHS
= 40, LEARNING_RATE = 1e-05, dropout = 0.3, with LoRA fine-tuning for binary classification with early stopping, patience = 8.

GPT-2 Model = gpt, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, early stopping, patience = 5.

DistilGPT-2 Model = distilgpt2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, early stopping, patience = 5.

OPT-13B Model = KoboldAI/OPT-13B-Erebus, MAX_LEN = 64, batch_size = 1, gradient checkpointing enabled, mixed precision used, early
stopping, patience = 5.

LoRA GPT-2 Model = gpt2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, with LoRA fine-tuning, early stopping, patience = 5.

LoRA LLaMA-
1.3B

Model = princeton-nlp/Sheared-LLaMA-1.3B, MAX_LEN = 512, TRAIN_BATCH_SIZE = 8, VALID_BATCH_SIZE = 8, EPOCHS
= 40, LEARNING_RATE = 1e-05, dropout = 0.3, with LoRA fine-tuning, early stopping, patience = 8.

LoRA Distill-
GPT

Model = distilgpt2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, with LoRA fine-tuning, early stopping, patience = 5.

Claudia few-
shot

Model = Claudia few-shot, few-shot prompt-based learning, early stopping patience = 5, uses structured prompting with the dataset of
examples.

LLaMA-7B
few-shot

Model = LLaMA-7B, few-shot learning using a structured prompting with the dataset of examples.

Table 3: Summary of the architecture and parameters for each model used for classification.
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Model SES Precision Recall F1 Model SES Precision Recall F1

Random Forest
not-Low 0.57 0.40 0.47 Multinomial

Naive Bayes
not-Low 1.00 0.40 0.57

Low 0.54 0.70 0.61 Low 0.62 1.00 0.77

Avg. 0.55 0.55 0.54 Avg. 0.81 0.70 0.67

Support Vector
Machine (SVM)

not-Low 0.58 0.70 0.64 Logistic
Regression

not-Low 0.58 0.70 0.64
Low 0.62 0.50 0.56 Low 0.62 0.50 0.56

Avg. 0.60 0.60 0.60 Avg. 0.60 0.60 0.60

Gradient Boosting
not-Low 0.62 0.80 0.70

RoBERTa
not-Low 0.78 0.70 0.74

Low 0.71 0.50 0.59 Low 0.73 0.80 0.76

Avg. 0.66 0.65 0.64 Avg. 0.75 0.75 0.75

DeBERTa
not-Low 0.69 0.90 0.78

ELECTRA
not-Low 0.69 0.90 0.78

Low 0.86 0.60 0.71 Low 0.86 0.60 0.71

Avg. 0.77 0.75 0.74 Avg. 0.77 0.75 0.74

ALBERT
not-Low 0.71 0.50 0.59

XLNet
not-Low 0.53 0.90 0.67

Low 0.62 0.80 0.70 Low 0.67 0.20 0.31

Avg. 0.66 0.65 0.64 Avg. 0.60 0.55 0.49

T5
not-Low 0.50 0.30 0.38

OPT-13B fewshot
not-Low 0.50 0.90 0.64

Low 0.50 0.70 0.58 Low 0.50 0.10 0.17

Avg. 0.50 0.50 0.48 Avg. 0.50 0.50 0.40

Claudia fewshot
not-Low 0.53 0.90 0.67 LLamA-1.3B

fewshot
not-Low 0.50 0.80 0.62

Low 0.67 0.20 0.31 Low 0.50 0.20 0.29

Avg. 0.60 0.55 0.49 Avg. 0.50 0.50 0.45

LoRA Fine-Tune
GPT-2

not-Low 0.50 1.00 0.67
LLaMA-7B fewshot

not-Low 0.38 0.50 0.43
Low 0.00 0.00 0.00 Low 0.29 0.20 0.24

Avg. 0.25 0.50 0.33 Avg. 0.34 0.35 0.34

LoRA Fine-Tune
DistilGPT

not-Low 0.50 1.00 0.67 LoRA Fine-Tune
LLaMA-1.3B

not-Low 0.50 1.00 0.67
Low 0.00 0.00 0.00 Low 0.00 0.00 0.00

Avg. 0.25 0.50 0.33 Avg. 0.25 0.50 0.33

bart-large-mnli
Zero Shot

not-Low 0.80 0.80 0.80
DistilBERT

not-Low 0.78 0.70 0.74
Low 0.80 0.80 0.80 Low 0.73 0.80 0.76

Avg. 0.80 0.80 0.80 Avg. 0.75 0.75 0.75

BERT
not-Low 0.75 0.60 0.67

RoBERTa-large
not-Low 0.78 0.70 0.74

Low 0.67 0.80 0.73 Low 0.73 0.80 0.76

Avg. 0.71 0.70 0.70 Avg. 0.75 0.75 0.75

Table 4: First Iteration Performance of different models for classifying socioeconomic classes. Avg. = Macro average.

A.3 Results
This Section has the results tables from the three iterations
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Model SES Precision Recall F1 Model SES Precision Recall F1

Random Forest
not-Low 0.72 0.82 0.77 Multinomial

Naive Bayes
not-Low 0.89 0.61 0.72

Low 0.77 0.65 0.71 Low 0.69 0.92 0.79

Avg. 0.74 0.74 0.74 Avg. 0.79 0.76 0.75

Support Vector
Machine (SVM)

not-Low 0.86 0.89 0.88 Logistic
Regression

not-Low 0.84 0.93 0.88
Low 0.88 0.85 0.86 Low 0.91 0.81 0.86

Avg. 0.87 0.87 0.87 Avg. 0.87 0.87 0.87

Gradient Boosting
not-Low 0.75 0.75 0.75

RoBERTa
not-Low 0.74 0.82 0.78

Low 0.73 0.73 0.73 Low 0.78 0.69 0.73

Avg. 0.74 0.74 0.74 Avg. 0.76 0.76 0.76

DeBERTa
not-Low 0.75 0.75 0.75

ELECTRA
not-Low 0.73 0.96 0.83

Low 0.73 0.73 0.73 Low 0.94 0.62 0.74

Avg. 0.74 0.74 0.74 Avg. 0.83 0.80 0.79

ALBERT
not-Low 0.66 0.68 0.67

XLNet
not-Low 0.68 0.46 0.55

Low 0.64 0.62 0.63 Low 0.57 0.77 0.66

Avg. 0.65 0.65 0.65 Avg. 0.63 0.61 0.60

T5
not-Low 0.84 0.57 0.68

OPT-13B fewshot
not-Low 0.53 0.57 0.55

Low 0.66 0.88 0.75 Low 0.50 0.46 0.48

Avg. 0.75 0.72 0.72 Avg. 0.52 0.52 0.52

Claudia fewshot
not-Low 0.51 0.71 0.60 LLamA-1.3B

fewshot
not-Low 0.45 0.61 0.52

Low 0.47 0.27 0.34 Low 0.31 0.19 0.24

Avg. 0.49 0.50 0.47 Avg. 0.38 0.41 0.38

Lora finetune GPT-2
not-Low 0.52 1.00 0.68

LLamA-7B fewshot
not-Low 0.79 0.33 0.46

Low 0.00 0.00 0.00 Low 0.74 0.78 0.76

Avg. 0.27 0.52 0.35 Avg. 0.69 0.64 0.66

Lora finetune
DistillGPT

not-Low 0.52 1.00 0.68 LoRA Fine-Tuning
LLaMA-1.3B

not-Low 0.46 0.75 0.57
Low 0.00 0.00 0.00 Low 0.12 0.04 0.06

Avg. 0.27 0.52 0.35 Avg. 0.30 0.41 0.32

bart-large-mnli
Zero Shot

not-Low 0.00 0.00 0.00
DistilBert

not-Low 0.85 0.61 0.71
Low 0.45 0.88 0.60 Low 0.68 0.88 0.77

Avg. 0.22 0.43 0.29 Avg. 0.77 0.74 0.74

BERT
not-Low 0.79 0.54 0.64

RoBERTa-large
not-Low 0 0.85 0.61 0.71

Low 0.63 0.85 0.72 Low 0.68 0.88 0.77

Avg. 0.71 0.69 0.68 Avg. 0.74 0.74 0.74

Table 5: Second Iteration Performance of different models for classifying socioeconomic classes on second iteration. Avg. = Weighted average by the number of
narratives.
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Model SES Precision Recall F1 Model SES Precision Recall F1

Random Forest
not-Low 0.63 0.53 0.57 Multinomial

Naive Bayes
not-Low 0.70 0.45 0.55

Low 0.60 0.69 0.64 Low 0.60 0.81 0.69

Avg. 0.61 0.61 0.61 Avg. 0.65 0.63 0.62

Support Vector
Machine (SVM)

not-Low 0.59 0.63 0.61 Logistic
Regression

not-Low 0.84 0.93 0.88
Low 0.61 0.58 0.59 Low 0.64 0.65 0.65

Avg. 0.60 0.60 0.60 Avg. 0.64 0.64 0.64

Gradient Boosting
not-Low 0.53 0.65 0.58

RoBERTa
not-Low 0.61 0.92 0.73

Low 0.56 0.44 0.49 Low 0.85 0.42 0.56

Avg. 0.55 0.54 0.54 Avg. 0.73 0.67 0.65

DeBERTa
not-Low 0.54 0.69 0.60

ELECTRA
not-Low 0.54 0.82 0.65

Low 0.58 0.42 0.49 Low 0.64 0.31 0.42

Avg. 0.56 0.55 0.55 Avg. 0.59 0.56 0.53

ALBERT
not-Low 0.54 0.61 0.57

XLNet
not-Low 0.62 0.75 0.68

Low 0.57 0.50 0.53 Low 0.69 0.56 0.62

Avg. 0.55 0.55 0.55 Avg. 0.66 0.65 0.65

T5
not-Low 0.55 0.55 0.55

OPT-13B fewshot
not-Low 0.50 0.69 0.58

Low 0.56 0.56 0.56 Low 0.52 0.33 0.40

Avg. 0.55 0.55 0.55 Avg. 0.51 0.50 0.49

Claudia fewshot
not-Low 0.49 0.76 0.60 LLamA-1.3B

fewshot
not-Low 0.53 0.71 0.61

Low 0.50 0.23 0.32 Low 0.57 0.38 0.46

Avg. 0.50 0.50 0.46 Avg. 0.55 0.54 0.53

Lora finetune GPT-2
not-Low 0.50 1.00 0.66

LLamA-7B fewshot
not-Low 0.48 0.65 0.55

Low 0.00 0.00 0.00 Low 0.47 0.31 0.37

Avg. 0.25 0.50 0.33 Avg. 0.47 0.48 0.46

Lora finetune
DistillGPT

not-Low 0.50 1.00 0.66 LoRA Fine-Tuning
LLaMA-1.3B

not-Low 0.50 1.00 0.66
Low 0.00 0.00 0.00 Low 0.12 0.04 0.06

Avg. 0.25 0.50 0.33 Avg. 0.25 0.50 0.33

bart-large-mnli
Zero Shot

not-Low 0.45 0.45 0.45
DistilBert

not-Low 0.65 0.51 0.57
Low 0.46 0.46 0.46 Low 0.60 0.73 0.66

Avg. 0.46 0.46 0.46 Avg. 0.63 0.62 0.62

BERT
not-Low 0.56 0.55 0.55

RoBERTa-large
not-Low 0.70 0.76 0.73

Low 0.57 0.58 0.57 Low 0.74 0.67 0.71

Avg. 0.56 0.56 0.56 Avg. 0.72 0.72 0.72

Table 6: Third Iteration Performance of different models for classifying socioeconomic classes on second iteration. Avg. = Weighted average by the number of
narratives.
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A.4 Prompt Engineering for Extracting Background, Solutions, and Struggles Information
This subsection provides a detailed explanation of the prompt engineering techniques used to extract
background information, solutions, and struggles from the narratives of low-SES students. By constructing
specific prompts and using the LLaMA model, we ensured the precise extraction of information in a struc-
tured format, relying only on direct quotes from the texts. These prompts aim to assist in understanding
the challenges and efforts described by low-SES students, ensuring that no additional information is added
or altered during extraction.

A.4.1 Model Pipeline Setup
We utilized the transformers library from Hugging Face to create a pipeline for text generation and
extraction. The LLaMA model was fine-tuned for generating outputs that align with our prompt design.
The following configuration was applied to the pipeline for all tasks:

• max_new_tokens=300: Sets the maximum number of tokens to generate during extraction. This
ensures that the output is concise and focused.

• do_sample=False: Sampling is disabled to provide deterministic and consistent outputs from the
model.

• temperature=0.5: A lower temperature value ensures less randomness in the output, resulting in
more controlled and accurate text generation.

• device: The model was configured to run on either GPU (if available) or CPU, ensuring flexibility in
processing.

The prompts were specifically designed to elicit structured information, such as family background,
solutions, and struggles, from the students’ narratives. Below, we describe each function used to extract
these key elements.

A.4.2 Extracting Background Information
The first step was to extract background information, particularly focusing on the family situations
described in the narratives. The goal was to identify direct quotes that describe the family context of the
students, such as financial hardships or living conditions.
The following function was designed to handle this task:

def extract_background(text):
prompt = f’’’
All the texts provided are written by low -SES (SES) students

who are writing about their struggles.
...
Important: Extract the following information exactly from the

text without adding or changing any words:
- background or any texts about family situations (directly

quoted from the text)

Text: {text}

valid JSON Output (only with direct quotes from the text):
’’’

output = llama_pipeline(prompt , max_new_tokens =200, do_sample=
False , temperature =0.5)

generated_text = output [0][’ generated_text ’]
# Process output for background quotes
...

This prompt ensures that only direct quotes describing the students’ family background are extracted and
returned in a valid JSON format.
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A.4.3 Extracting Solutions Information
In addition to background information, we extracted the solutions that students employed to address their
struggles. These solutions may involve actions taken to overcome financial or social barriers, as well as
any efforts to improve their academic or personal circumstances.
The function below is responsible for extracting the solutions from each text:

def extract_solutions(text):
prompt = f’’’
All the texts provided are written by low -SES (SES) students

who are writing about their struggles.
...
Important: Extract the following information exactly from the

text without adding or changing any words:
- Solutions or actions they took to address these struggles (

directly quoted from the text)

Text: {text}

valid JSON Output (only with direct quotes from the text):
’’’

output = llama_pipeline(prompt , max_new_tokens =200, do_sample=
False , temperature =0.5)

generated_text = output [0][’ generated_text ’]
# Process output for solutions quotes
...

This function captures the strategies or actions the students took to manage or overcome their struggles,
returning the data in a structured JSON format for analysis.

A.4.4 Extracting Struggles Information
The third aspect of our extraction was to focus on the specific struggles described by the students. These
struggles include financial, psychological, physical, or social hardships. The function uses a similar
approach, instructing the model to identify and extract direct quotes related to the students’ difficulties.
The function for extracting struggles is as follows:

def extract_struggles(text):
prompt = f’’’
All the texts provided are written by low -SES (SES) students

who are writing about their struggles.
...
Important: Extract the following information exactly from the

text without adding or changing any words:
- Struggles they faced (directly quoted from the text)

Text: {text}

Output valid JSON with only direct quotes related to struggles:
’’’

output = llama_pipeline(prompt , max_new_tokens =300, do_sample=
False , temperature =0.5)

generated_text = output [0][’ generated_text ’]

# Process and return the generated text as JSON
...

This function extracts the struggles faced by the students and returns them as direct quotes in a JSON
structure.

A.4.5 Post-processing and Valid JSON Output
In all cases, after the output is generated by the LLaMA model, the generated text is processed to extract
the relevant information in JSON format. The output is validated to ensure it contains the correct fields
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(e.g., background, solutions, or struggles), and any parsing errors are handled gracefully by returning a
fallback structure if needed.
The extracted data is then consolidated into a structured format for further analysis. This structured data
helps in understanding the key themes and experiences described by the low-SES students.

A.4.6 Conclusion
By employing these prompt engineering techniques, we were able to extract detailed and structured infor-
mation regarding the backgrounds, struggles, and solutions described by the students in their narratives.
The use of precise prompts, alongside the LLaMA model, allowed for accurate extraction of direct quotes,
preserving the authenticity of the students’ experiences. This extracted data provides valuable insights
into the challenges faced by low-SES students and their efforts to overcome them.

A.4.7 Limitations
We acknowledge several limitations in our current research that we plan to address in future work. First,
although our dataset offers valuable insights into the experiences of low-SES students, it is limited to
narratives collected from Reddit, primarily from a small number of subreddits. This platform and genre
bias may affect the generalizability of our findings, as narratives from other forums or formats (e.g., blogs,
surveys, or interviews) could present significantly different linguistic and contextual patterns.
Second, while our data were annotated semi-automatically, it has not yet undergone a rigorous double-
annotation or gold-standard validation process, which we are currently working on to enhance the dataset’s
reliability. Implementing this more precise annotation method will improve the consistency and robustness
of our results.
Third, the thresholding heuristic used in our model—a fixed confidence cutoff of 0.7—was chosen based
on empirical observation but lacks formal justification. This may have led to the exclusion of valid
narratives or inclusion of false positives, affecting the overall quality of the extended dataset. In future
iterations, we plan to explore more adaptive or learned thresholding techniques, possibly incorporating
human-in-the-loop validation.
Fourth, although our semi-automatic data collection model showed promising results, we have not yet
evaluated the utility of the expanded dataset in downstream NLP tasks. For example, it remains to be seen
whether the additional 323 narratives improve the performance of SES classification or sentiment models.
We plan to address this by testing our dataset’s impact on real-world applications.
Fifth, while our analysis reveals meaningful linguistic patterns, the paper would benefit from a deeper
engagement with educational or sociological theories. Connecting our findings more explicitly to existing
research on SES, educational inequality, or psychological well-being could strengthen the interpretability
and societal relevance of our work.
Finally, our dataset is currently constrained to a specific time frame. Expanding it to cover a wider range
of years will allow us to better capture the evolving nature of SES-related challenges in education. We
also plan to further refine our model using active learning to increase its scalability and independence.
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