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Abstract

Recent developments in aligning Large Lan-
guage Models (LLMs) with human prefer-
ences have significantly enhanced their utility
in human-AlI collaborative scenarios. However,
such approaches often neglect the critical role
of "epistemic friction," or the inherent resis-
tance encountered when updating beliefs in re-
sponse to new, conflicting, or ambiguous in-
formation. In this paper, we define dynamic
epistemic friction as the resistance to epistemic
integration, characterized by the misalignment
between an agent’s current belief state and
new propositions supported by external evi-
dence. We position this within the framework
of Dynamic Epistemic Logic (Van Benthem
and Pacuit, 2011), where friction emerges as
nontrivial belief-revision during the interaction.
We then present analyses from a situated collab-
orative task that demonstrate how this model
of epistemic friction can effectively predict be-
lief updates in dialogues, and we subsequently
discuss how the model of belief alignment as
a measure of epistemic resistance or friction
can naturally be made more sophisticated to
accommodate the complexities of real-world
dialogue scenarios.

1 Introduction

In cooperative, well-grounded conversations, the
exchange of information often appears straightfor-
ward. Participants typically assume that updates
to one another’s beliefs will be smooth and con-
sistent with mutual common ground. A listener
hears a speaker’s assertion and, assuming trust
and shared context, incorporates it into their be-
liefs with minimal hesitation. However, in many
situations—including disputes and strategic decep-
tion, but also innocent misalignment in good-faith
collaborations—new information generates resis-
tance to belief revision. In these cases, not all
updates fit so neatly. Sometimes, new information
conflicts with the listener’s prior understanding,

challenges their assumptions, or signals a hidden
agenda. Here, the process of updating belief states
18 not "frictionless." Instead, the listener encoun-
ters a kind of "resistance" to easy assimilation, a
phenomenon we call epistemic friction.

Friction in conversational updates reflects an un-
derlying complexity in how we process and accom-
modate new information, while pointing to deeper
inferential processes within the participants’ epis-
temic state. Understanding friction can help us
identify when a speaker might be deceptive, when
a conversation is strategically misaligned, or when
a seemingly simple statement actually encodes a
more complex epistemic move. In short, friction of-
fers insight into the subtle interplay between logical
inference, pragmatic reasoning, and the architec-
ture of cognitive representations.

In physical systems, friction is a force that re-
sists motion. By analogy, epistemic friction is a
resistance to the smooth "motion" of belief revi-
sion. This resistance might be epistemically ben-
eficial—encouraging the listener to scrutinize the
new information more carefully, or to consider al-
ternative explanations. It might also expose un-
derlying strategic interests, deceptive behavior, or
complexities in the conceptual structure of what
is being communicated. Here, we explore frictive
interactions in terms of evidence-based dynamic
epistemic logic (DEL; Van Benthem and Pacuit
(2011)), a well-established logical framework for
modeling belief updates, as recently explored in
(Khebour et al., 2024b).

We introduce a vector-based modeling approach,
drawing on Holographic Reduced Representations
(HRR) (Plate, 1995; Luo et al., 2018) and related
vector symbolic architectures (Kanerva, 1988).
This approach treats agents’ belief states and propo-
sitions as high-dimensional vectors, allowing ge-
ometric notions like orthogonality and angle to
characterize the friction that arises when assimilat-
ing new information. By bridging the gap between
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symbolic logic and geometric intuition, this model
provides a novel perspective on the cognitive and
communicative processes underlying conversation.

Finally, we provide case studies from a situated
collaborative task that demonstrate how this model
of epistemic friction can be used to create a straight-
forward vectorization of task-relevant proposition-
alized beliefs and their subsequent updates in the
face of new interlocutor assertions. Our analyses
demonstrate the utility of epistemic friction in both
modeling dialogues and in human-Al interactions,
and we subsequently discuss how the model of
belief alignment as a measure of epistemic resis-
tance or friction can naturally be made more so-
phisticated to accommodate the complexities of
real-world dialogue scenarios.

2 Related Work

Epistemic friction is clearly related to the clas-
sic notions of miscommunication and misalign-
ment of common ground in conversation (Grice,
1975; Asher and Gillies, 2003; Stalnaker, 2002;
Traum and Larsson, 2003). The concept of com-
mon ground refers to the set of shared beliefs
among participants in a Human-Human interac-
tion (HHI) (Markowska et al.; Traum, 1994;
Hadley et al., 2022), as well as HCI (Krishnaswamy
and Pustejovsky, 2020; Pustejovsky and Krish-
naswamy, 2021; Ohmer et al., 2022) and HRI inter-
actions (Kruijff et al., 2010; Fischer, 2011; Scheutz
etal., 2011). When common ground is lacking or
divergent, interlocutors experience misunderstand-
ings or must exert an effort to clarify and realign
their beliefs (Clark and Wilkes-Gibbs, 1986). Such
effortful moments are essentially points of fric-
tion. Although friction is typically seen as some-
thing to overcome or mitigate in dialogue (Brown
et al., 2003; Hunter et al., 2018), friction can also
play a beneficial role in the interaction (Chen and
Schmidt, 2024).

In Dynamic Epistemic Logic (DEL), degrees of
evidence (or strength of belief) towards a proposi-
tion, can be seen as correlated to the friction that
an agent has towards a public proposition (Van Dit-
marsch et al., 2007; van Benthem and Smets, 2015;
Van Benthem and Pacuit, 2011). Similarly, in argu-
mentation theory, friction can be seen as analogous
to the degree of acceptance or rejection of beliefs in
an argument (Baumann and Brewka, 2015; Hunter
et al., 2020). From this perspective, friction is not
only about the endpoint of belief revision but about

the trajectory: how beliefs resist, adapt, or trans-
form as agents encounter a continuous stream of
arguments and evidence.

Beyond logical and probabilistic formalisms, re-
searchers have explored vector-space representa-
tions of propositions within distributional models
(Baroni, 2013; Boleda, 2020; Lenci and Sahlgren,
2023), as well as hyperdimensional models (Plate,
1995; Kanerva, 1988; Ginzburg et al., 2024; Obiso,
2024). Within the areas of dialogue and multiparty
interactions, vector models of propositional con-
tent have been employed in the service of tracking
common ground (Khebour et al., 2024b; Zhu et al.,
2024; Palmer et al., 2024).

3 Epistemic Friction in Communication

A core assumption in many theories of discourse,
ranging from Grice’s cooperative principle (Grice,
1975) to Stalnaker’s common ground framework
(Stalnaker, 2002), is that participants in a con-
versation share a basis of mutual knowledge and
strive for coherence. However, in many situations
new information generates resistance to belief re-
vision. These situations may include adversarial
or cooperative-competitive situations such as dis-
putes or strategic deception (Niculae et al., 2015),
but also ordinary good-faith collaboration. In these
cases, a listener hears a speaker’s assertion and,
assuming trust and shared context, incorporates it
into their beliefs with minimal hesitation. Neverthe-
less, not all updates fit so neatly. Sometimes, new
information conflicts with the listener’s prior un-
derstanding, challenges their assumptions, signals
a hidden agenda, or this misunderstanding or mis-
remembering mutates the information the listener
believes they are incorporating . In these cases,
the process of updating belief states is not "fric-
tionless." Instead, the listener encounters a kind of
"resistance” to easy assimilation, a phenomenon
we call epistemic friction. In the context of a con-
stantly updating dialgoue, we call this phenomenon
dynamic epistemic friction.

In DEL, we use a standard modal model, M =
(VV, {Ra}aeﬂa V), where:

(1) a. W is a set of possible worlds;
b. R, is the accessibility relation for agent a,
c. V is a valuation function assigning truth
conditions to atomic propositions.

Knowledge or belief operators (B,¢) are evaluated
by requiring ¢ to hold in all R,-accessible worlds.
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DEL captures belief change by product updates
with event models (Bolander, 2014). Formally, an
event model & = (E, {Rf }, pre) is combined with
M as in (2), where ® denotes the product update:

(2) a. M®E=(WXE, {R%}, V®)
b. where (w,e)REW, ') iff wR,w', eREe’,
and M,w E pre(e) and M,w’ | pre(e’).

If an event is public, each agent’s belief set typi-
cally refines (or filters) to those worlds consistent
with the event’s precondition. Usually, we assume
that all agents smoothly integrate the new proposi-
tion. But if the proposition conflicts strongly with
the agent’s prior beliefs, friction ensues.

We say friction occurs when an agent’s newly up-
dated beliefs cannot be derived by a simple mono-
tonic restriction of the old ones. Formally, consider
an agent a with old beliefs B, updated by ¢ to
B". Alignment is quantified by checking how
trivially i is entailed by B,. Friction occurs when
updates require epistemic revision, formally:

(3) Bew ¢_ Bold U {l// | Bold - w}

Conversely, a lack of friction corresponds to min-
imal cognitive effort in integrating new proposi-
tions.

Khebour et al. (2024b) introduce the framework
of evidence-based DEL, in which common ground
is structured into:

(4) a. QBank (Questions Under Discussion):
Propositions requiring evaluation.

b. EBank (Evidence Bank): Propositions
with supporting evidence.

c. FBank (Fact Bank):
cepted as true.

Propositions ac-

In this framework, one tracks how propositions
move from the Question Bank (QBank) to the
Evidence Bank (EBank) and eventually to Fact
Bank (FBank) when evidence is deemed sufficient
(Ginzburg et al., 1996). When new evidence [E]y
enters, high friction signals that ¢ is misaligned
with the agent’s prior or insufficiently supported.
As more supporting evidence accumulates, friction
reduces.

How can we infer the beliefs B, of an agent a?
Following Bolander (2014) and Zhu et al. (2024),
we can obtain evidence for what an agent believes
from what they do, say, or perceive, formalized in
the following axioms:

(5) a. Acting is Believing: DO,¢ — B,¢ (you
believe your own actions)
As an agent participant in an event, you
believe it has happened.

b. Saying is Believing: SAY,p — B,y (you
believe what you say)
As actor of a declarative speech act, you
believe the proposition you express.

c. Seeing is Believing: S EE, ¢ — B,y (you
believe what you see)
As witness to a situation or event, you
believe it to have occurred.

4 Epistemic Alignment

Suppose an agent a has a belief state B, € W,
where W is the set of possible worlds that the agent
considers viable. Let {w € B, | w E ¢} be the
subset of worlds in which ¢ holds, and let E be
some set of "evidence worlds". In the context of
modal logic, B, functions as a modal operator; in
the context of alignment and misalignment, B, is
interpreted as a predefined set. A straightforward
way to define epistemic alignment is to define what
fraction of @’s currently possible worlds also satisfy
¢ (and are consistent with the evidence E). That is:

liw e Ba | wE ¢} NE|
|Bal

alignment(ep, B, E) =

If almost all of B, already support ¢, then align-
ment ~ 1, so friction is low. If few or none of
the worlds in B, satisfy ¢, alignment =~ 0, so fric-
tion is high. One can define "consistent with E"
in many ways (e.g., requiring each w € B, to also
satisfy whatever constraints the evidence imposes).
The key idea is that alignment measures how large
the overlap is between ¢ and the agent’s current
doxastic possibilities, modulated by the evidence.

If we consider the propositional content as dense
vector encodings, then we can define vp, to be
the vector encoding agent a’s overall belief state,
v, to be a vector encoding the proposition ¢, and
v to be a vector encoding relevant evidence E.
A natural strategy is to use cosine similarity due
to its prevalence in HRR (Plate, 1995). However,
the choice of similarity function may depend on
the algebras or symbolic logic used to represent
propositions in a given system (Kleyko et al., 2022,
2023). This function should also be chosen based
on the way propositional content is vectorized in
the propositionalized vector.
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In our case, a simple encoding treats "¢ + E"
as the combined proposition-plus-evidence vector,
measuring its similarity to the agent’s belief vector:

alignment(p, By, E) = CosSim(vp,, vy + VE)

A large positive dot product indicates high align-
ment, while a near-zero or negative dot product
indicates strong orthogonality or conflict, meaning
the agent’s existing beliefs are quite distant from ¢,
so friction is higher.

To weight the evidence differently in order to
model uncertainty, one could add coefficients (e.g.
A1V, + A2VE) or use other similarity measures. The
core idea is that "alignment" = "similarity" between
the combined proposition/evidence vector and the
agent’s belief vector.

In the previous section, we have characterized
friction F(y, B, E) as proportional to "misalign-
ment." That is,

(6) F(¢p,B,E) « 1 - alignment(y, B, E).

So when alignment is high, friction is low, and vice
versa. We use the term "orthogonal” to indicate
that the new proposition is "hard to assimilate."
Orthogonality in vector spaces (cosine near zero)
naturally corresponds to low alignment.

In both the set-theoretic and vector-based ver-
sions, one can incorporate E to reflect how evi-
dence changes the "effective proposition.” More
(or stronger) evidence typically boosts alignment
with B, reducing friction.

Friction in epistemic updates occurs when new
evidence [E]p conflicts with or is near-orthogonal
to the agent’s current belief state [B]—¢. Given
the evidence-based DEL framework from the pre-
vious section, we can assume that friction modifies
how propositions transition between the different
banks. The transition rules from bank to bank can
be viewed as follows:

E sufficient, F low
_—_—

(7) a. QBank EBank;
b. EBank [ nearzero FBank.

4.1 Friction Equilibrium in Discourse

Dynamic Epistemic Friction (DEF) quantifies the
resistance encountered during belief updates. Our
goal is to iteratively reduce friction in discourse
in order to guide participants toward a better epis-
temic equilibrium. To this end, we assume:

®) a. D = [¢1,¢2,...,0,]: The set of proposi-
tions in the discourse;

b. S =[B1,Bs,...
of participants;

c. E=[E,E,...E,]: Evidence associated
with each proposition ;.

, B;,]: The epistemic states

We then proceed as follows:

(9) Initialize the belief set:
Start with ©° = D and S° = S.
Set iteration k = 0. This defines the basic
elements required to measure friction and
move toward equilibrium: the propositions
discussed, the belief states of the participants,
and the evidence supporting each proposition.

(10) Measure Friction: For each proposition
¢; € DF: Fia) = 1 - alignment(¢;, B, E;),
where Fi(a) is the friction for participant a.
Start the iterative equilibrium process from an
initial state (no friction measured yet). Here,
friction is measured by how misaligned each
participant’s belief state is with each proposi-
tion, given the available evidence: high align-
ment means that the participant’s beliefs eas-
ily incorporate the proposition, resulting in
low friction; low alignment means substan-
tial disagreement or conflict, indicating high
friction and a need for epistemic revision.

(11) Identify High-Friction Propositions: For
any a, extract propositions ¢; where F(a) >
T, the threshold for high friction. Let H de-
note these high-friction propositions. Such
propositions are difficult for at least one par-
ticipant to integrate into their beliefs, signal-
ing a need for further discussion or clarifica-
tion.

(12) Rank Propositions by Friction: Rank H by
their average friction:

1 m
Rank(¢;) = o § Fi(a).
a=1

Propositions are prioritized by how difficult
(on average) they are to assimilate across all
m participants. Propositions with the high-
est average friction are candidates for clari-
fication or refinement first, representing the
greatest obstacle to achieving shared under-
standing.

(13) Refine High-Friction Propositions: For the
top-ranked ¢; € H, propose a refinement ¢’;:
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Figure 1: A group of 3 performing the Weights Task.

(i) add evidence E;., making the proposition
easier to accept or (ii) modify ¢; for better
alignment with the current belief state.

(14) Update Belief States: For each participant
a:
B! = BX 4 AB,,

where AB, = —-VF(¢*, B,, E’). Beliefs are

SV [
updated by applying a gradient step, effec-
tively moving the belief states in a direction
that reduces friction. The gradient descent
step systematically adjusts participants’ be-
liefs closer to propositions supported by evi-
dence.

(15) Check Equilibrium: Measure net friction:

7:/(_

1 n m
B nmeZFi(a)'

i=1 a=1

If % < T, return equilibrium DF, Sk. This
computes the net friction averaged across all
propositions and participants, and quantifies
how well the group is aligned as a whole. If
the net friction is less than or equal to some
threshold 7', equilibrium is achieved. The par-
ticipants’ beliefs are now sufficiently aligned
and no more substantial cognitive effort is
required to maintain common ground.

(16) Iterate or Halt: If £ < u, the maximum
number of iterations, set k = k + 1 and repeat.
Otherwise, report no equilibrium.

5 Empirical Demonstration

In this section we illustrate how the formal model
detailed above can be operationalized to show
how DEF can predict updates in the implied be-
liefs of real dialogue participants in a situated col-
laborative task. We experiment on the Weights

Task Dataset (WTD; (Khebour et al., 2024a)), in
which triads collaborate to deduce the weights of
differently-colored blocks using a balance scale
(Fig. 1). The correct block weight assignments are
[red = 10g,blue = 10g, green = 20g, purple =
30g, yellow = 50g]. The Weights Task is a col-
laborative task with one ideal convergent outcome.
Use of this fixed condition allows the use of the
aforementioned formal model in an analysis that
can rigorously quantify the trajectory of conver-
gence relative to a consistent ground truth and fit
this model to the dynamics of any group, by con-
trolling for the expected outcome while varying the
individual participants.

We perform an experimental evaluation over 4
of of the 10 groups in the WTD, which are fully an-
notated with dialogue transcripts and the beliefs as-
serted by the three participants in each group (Van-
derHoeven et al., 2025), as indicated by speech,
gesture, gaze, and action.

For these analyses we adopt a simplified model
of propositionalized belief states that can be used to
construct multidimensional sparse vectors accord-
ing to the assumptions given in (5), with a specific
emphasis on Saying is Believing. Belief states are
vectorized such that logical operators can be real-
ized as arithmetic and algebraic operations, which
gives intuitive properties like "alignment" and "ir-
relevance” analogies in measures like similarity
and orthgonality (Sec. 4).

Given the 5 blocks in the task, be-
lief states are vectorized in R’, ordered
component-wise as in Khebour et al. (2024a,b)
([red, blue, green, purple, yellow]). Thus, an
assertion of red = 10 A blue = 10 is represented
as [10, 10,0, 0, 0] indicating affirmative assertions
regarding the weights of the red and blue blocks.
The O components for the other blocks represent
that no information regarding them is being as-
serted. Similarly, green # 20 would be represented
as [0,0,-20,0,0] (negative positioning toward
green = 20, no other information asserted). Where
blocks are related to other blocks by inequalities,
the belief vector encodes a lower or upper bound
regarding that block, such that yellow < 40
becomes [0, 0,0, 0,40 — U(0, 1)], thus anchoring
the assertion relative to that weight value, in the
appropriate direction.

Worked Example Consider the novel dialogue
in Table 1, generated using GPT-4 given a descrip-
tion of the task setup and goals. P1’s assertion that
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pl: Alright team, let’s start weighing
the blocks! Since we know the
red block is 10 grams, should we
weigh the blue block against it?

p2: Great idea, I feel like the blue
block will also be 10 grams. Let’s
do it!

Pl: [Weighs red and blue blocks] They
balance! So, the blue block is also
10 grams.

p2: Confirmed! That’s awesome.
Now, what should we weigh
next?

Table 1: Example generated dialogue.

the red and blue blocks both weigh 10 grams would
be vectorized as [10, 10,0, 0, 0]. Now consider a
"frictive" utterance that pushes back on some of this
assertion, which may inserted by an Al agent or
another participant: "Hey, let’s not jump to conclu-
sions about the blue block’s weight just yet. What
if it’s not 10 grams?" This assertion, expressing
(conditionally) that blue # 10, would be vectorized
as [0,-10,0,0,0].

Now, letting @, be the focus participant’s current
belief vector, @, be the vector expressing the inter-
locutor’s utterance, and s = sgn(@, - @), consider
an update operation akin to (14):

(17) @, = @, +min(B, ax s) X CosSim(@,, Gp) OFp.

Here, we introduce some friction coefficients that
allow us to tune how much empirical effect friction
has on the belief update: a expresses how much
"force" to apply the friction with (e.g., a scalar
multiple of the gradient step), and § establishes
a "ceiling" on how much an assertion @ that is
roughly aligned with @, can reinforce or "acceler-
ate" it toward the status of an established belief,
when compared to how much a contradictory or
frictive assertion @, would suppress @,,.

Given the above @, = [10,10,0,0,0] and g, =
[0,-10,0,0,0], with @« = 1 and 8 = 1, the up-
dated belief state ¢, after applying (17) becomes
[10,2.929,0,0,0]. The assertion contradictory to
blue = 10 renders it a "frictive" proposition and
has lessened P1’s epistemic commitment toward it.
The precise component-wise values in the vector
should not be taken to indicate what the participant
believes the weight of the relevant block to be, but

rather as an indicator of the degree of belief they
have in the block’s weight being the value assigned
to it by the ground truth value assignment.

An interesting effect of these operations is that in
certain circumstances when an assertion expresses
information contrary to certain elements of the be-
lief state but aligned with others, the effect may
be greater on the component of the belief state
against which friction is exercised. l.e., given
&q = [10,10,20,0,0], g, = [10,-10, 20,0, 0], (&,
and @, have the same red and green components
but opposite blue components), « = 1 and 8 = 1,
the updated ¢, = [10,3.333,20,0,0], but given
@q = [10,10,20,0,01, g, = [0,-10, 20,0, 0] (only
the same green components, but opposite blue com-
ponents), g, = [10,4.523,20,0,0]. That is, ac-
cordance on certain propositions gives differences
more "weight" in the update.

5.1 Experimental Procedure

We adopt this procedure to evaluate the operational-
ization of our formal model of dynamic epistemic
friction on the task of predicting what the final
belief state (final state of FBank) of a target partici-
pant should be, given the utterances in the dialogue
in order. This allows us to iteratively evaluate how
the belief state evolves according to the DEF model.
Since all groups in the Weights Task successfully
deduced the weights of all blocks, the ground truth
final state is a fixed [10, 10, 20, 30, 50].

For tractability reasons we focus on modeling the
only the belief state of the participant who speaks
the least in each group.! This provides the greatest
number of interlocutor utterances that affect the
focus participant’s belief state without updating it
directly due to Saying is Believing (5).

As a consequence of Saying is Believing, if the
focus participant makes a statement asserting a
block weight or explicitly accepts another partici-
pant’s positive and specific assertion about a block
weight (e.g., green = 20, but not green # 20 or
green > blue), then that value gets directly as-
signed to the relevant component in the focus par-
ticipant’s belief vector before the update function
is run over subsequent utterances in the dialogue.

Under these conditions, we conduct the follow-
ing procedure:

1. Initialize the focus participant’s "belief vec-
tor" from a uniform distribution Z/(0, 10) and

'Which specific participant this is may vary across groups
and is not further explicated here.
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set the first ("red") element of the belief vec-
tor to 10. This reflects the initial state of the
Weights Task where participants are told that
the red block weighs 10g. The U(0, 10) ini-
tialization ensures that belief vectors are not
strictly O in most components, allowing for up-
dates to actually shift the vector and reflecting
participants’ assumption (apparent in the orig-
inal data) that weight values are somewhere
in intervals of 10g.

2. Iterate through the statements or acceptances
of propositional content in each group dia-
logue. For each interlocutor utterance, ap-
propriately encoded as described, apply the
update function (17) to the focus participant’s
belief vector.

3. At the end of each dialogue, extract the focus
participant’s final vectorized belief state.

4. Fit a ridge regressor (L, scaling constant of 1)
to map this extracted belief state to the ground
truth final FBank [10, 10, 20, 30, 50]. We use
a rotating leave-one-group-out split, such that
we fit to the extracted final states from 3 of
the annotated WTD dialogues and test on the
remaining.

This procedure allows us to test how well the fi-
nal extracted belief state, as constructed using DEF
interpretation of the naturally occurring friction in
the dialogue, predicts the actual final FBank at the
conclusion of the task. Due to inherent stochastic-
ity in steps 1 and 4, we ran the aforementioned loop
100 times and average over the outcomes. We also
conduct a variant where the belief state features
extracted in step 3 include the concatenated final
k belief states in each dialogue, for k € {1..4}. We
use root mean-squared error for our primary met-
ric, which puts error back in the original units and
establishes how many "grams" the final prediction
is off by in aggregate.

5.2 Results

Table 2 presents average weight prediction RMSE
over each of the 4 test groups using 100 iterations
of leave-one-group-out evaluation.

Using the FBank constructed with DEF, we are
able to get very close to the true weight values, with
an average RMSE of 2-3g for most test groups at
low k, showing the efficacy of DEF in belief state

k  Group1 Group 2 Group 4 Group 5
1 261340401 294640505  7.678.0083  2.229.0233
2 1.889.0217 25730305 10.731.0930  1.953.0204
3 444917940 2.873s0631 1329211050  2.368.0453
4 5187011 236640505 17.50140100 3.11241012

Table 2: Average RMSE on weight prediction from
DEF-constructed FBank over the 4 test groups, using
update function (17) with friction coefficients & = 5 and
B = 2 and dialogue history length k.

tracking and prediction.” This figure represents

error across all blocks in all groups. In most cases
the block weight introducing the most error into
prediction was that of the yellow block. This is
likely because the participants deduce the weight
of the yellow (largest) block at the very end of the
task, and while many utterances in the dialogue re-
iterate and deliberate upon the weights of the other
blocks, fewer utterances discuss the yellow block,
meaning there are fewer instances that shift the yel-
low component of the belief state vector toward the
correct value. Thus, propositions pertaining to the
yellow block, and yellow = 50 particularly, appear
to be "high friction" propositions as in (11) above.

Fig. 2 shows how the different values of fric-
tion coeflicients @ and § as used in the vector up-
date function (17) affect DEF’s performance on
belief state prediction. We performed a grid search
through different values € {0.01..100} with a dia-
logue history window size k of up to 4, using leave-
one-group-out cross-validation. From this search,
a = 5 and B = 2 emerged as the best-performing
combination.? Fig. 2a presents RMSE as a function
of a with 8 fixed at 2, and Fig. 2b presents RMSE
as a function of 8 with « fixed at 5.

These figures show the importance of friction
coefficients. o and 8 are complementary and have
similar effects, particularly as strong regularizers.
When k = 4, meaning longer dialogue history is
used, prediction at lower « and S values is noisy,
with high RMSE and standard error. The lowest
values of @ and B are effectively equivalent to a
"minimal friction" or "no friction" setting in which
interlocutor assertions are naively adopted by the
listener. However, as the friction coefficients grow
larger, meaning more friction is effected by each

2Group 4 is a shorter, sparser dialogue with fewer updates,
and is therefore noisier.

3These values were used to compute the groupwise results
in Table 2.
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(b) DEF peformance as a function of 8 with @ = 5 (dashed
lines @ = 1 as a default baseline).

Figure 2: Effects of different @ and S values in the vector update function (17) on DEF peformance in FBank
prediction. Values shown are averaged over leave-one-group-out cross-validation. Error bars represent standard

error over 100 iterations, after cross-validation.

update , error drops dramatically. In other words,
without enough friction, beliefs shift too rapidly
toward ultimately incorrect positions. With too
much, they become unchangeable and a slow trend
of increasing error may emerge, particularly with
longer dialogue histories and higher 5. However,
the right modulation of epistemic friction in the
dialogue facilitates arriving at equilibrium as in
(15), where beliefs are guided toward agreed-upon
propositions and remain there, achieving common
ground.

Without consideration of epistemic friction,
these propositions would naively be immediately
adopted by every participant (cf. Inan et al. (2025))
A frictionless setting would not reflect the group
dynamics of acceptance or refusal of propositions
and would involve a greater error than all models
involving friction.

6 Conclusion

In this paper, we presented a formal model of Dy-
namic Epistemic Friction (DEF) in dialogue, op-
erationalized within the framework of Dynamic
Epistemic Logic (DEL) and vector-based belief
representations. We draw on the metaphor of fric-
tion as a physical force that changes the trajectory
of a moving object as it encounters resistance and
show that through the lens of DEL, analogous oper-
ations describe resistance to or accommodation of
belief updates. Through empirical analyses using
data from a situated collaborative task (the Weights
Task Dataset), our results demonstrate that DEF

effectively predicts participant belief updates by
quantifying resistance encountered during belief
revisions. Specifically, by operationalizing epis-
temic states and propositional assertions within an
evidence-based dynamic logic with vector-based
propositional encoding, we show that epistemic
friction reliably indicates how smoothly partici-
pants integrate new evidence into their existing
beliefs.

We should note that for a propositional vectoriza-
tion as used in Sec. 5 to hold, the vectorized propo-
sitional space needs to be at least roughly isotopic
(Ethayarajh, 2019; Nath et al., 2023). This property
is known to be at best inconsistent in modern LLMs
(Machina and Mercer, 2024), and for realistic data
where the belief state may not be preannotated as
in the WTD, a more sophisticated vectorization
needs to be used such that arithmetic and algebraic
operations have equivalent logical consequents. In
order to retrieve high-quality vectorizations for re-
alistic data, a vector-symbolic method (Goldowsky
and Sarathy, 2024) could operate over a library of
propositions. The extraction of these propositions
from natural language or multimodal data is crucial
for implementing dynamic epistemic friction in an
end-to-end system (Venkatesha et al., 2024).

While the direct application of LLMs on this task
is underexplored, off-the-shelf LLMs are unlikely
to be able to operationalize the quantitative formal-
ism to belief revision outlined in this paper. inan
et al. (2025) show that friction improves qualitative
mental modeling, and OTS systems may be able
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to provide qualitative judgments about belief at a
given point in the task. LLMs specifically aligned
with a formal and functional definition of friction
may be more adept at quantitative dialogue tasks.
For instance, Nath et al. (2025) show that LLMs
optimized to be "friction agents" provide more ef-
fective interventions and guidance when optimized
to be directly sensitive to "frictive states" (dialogue
occurrences similar to how we define epistemic fric-
ton here). Pustejovsky and Krishnaswamy (2025)
propose three types of optimization strategies that
exploit representations of group beliefs at various
levels of depth. Following such lines as the above,
combining DEF with qualitative judgments may
allow for an even more accurate representation of
human belief revision. Our theoretical formalism
and empirical data are an important stepping-stone
that shows the validity of this work in isolation, lay-
ing the foundation for further experimentation and
implementation in end-to-end systems, especially
those involving extraction from natural language.

Future work should investigate a vectorized ap-
proach to belief revision in adversarial or compet-
itive tasks. These tasks may explicitly involve
deception and other actions unobserved in the
Weights Task; they may commonly use forms of
communication prohibitive to collaborative settings
but conducive to high performance in competitive
environments. For example, the game of Diplo-
macy has been an object of study as a challeng-
ing setting for benchmarking communicative Al
(Wongkamjan et al., 2024), and contains both coop-
erative and adversarial elements. The formalism of
epistemic friction alloes an analysis of when con-
vergent properties as seen in alliances, suddenly
change character, as when former allies become
adversaries, but one of the players may not real-
ize this change has occurred. These state changes
are accommodated by the DEF formalism, our ex-
perimental procedure can be used to detect these
changes (in terms of changes in the convergent
properties over time), and our experimental results
provide a baseline convergent condition to test col-
laborator and adversary behavior against.

One could also use the common ground frame-
work and dynamic epistemic friction updates to
predict agent behavior. The difference between an
agent’s current belief state and the proposed up-
dated state, as well as task history and agent behav-
ior, can inform a classifier of how an agent might
respond (immediate acceptance, counterargument,
asking clarifying questions, etc.) to a given sce-
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nario at any moment. This analysis would show
how deeply our model of dynamic epistemic fric-
tion corresponds to agent behavior and how it may
serve as a necessary link in instructive or monitor-
ing systems.

Our empirical results show DEF’s effectiveness
as a model and the importance of properly modulat-
ing the amount of friction in a dialogue (as shown
as in the tuning of selected friction coefficients),
but we did not compare DEF to other approaches as
this novel model of friction in dialogue and novel
method of evaluating does not have at present any
direct competitors in the literature. It is not clear
that existing methods, such as those used in the Di-
alogue State Tracking Challenge (Williams et al.,
2016) provide a meaningful comparison.

The friction metaphor serves as a bridge between
logical updating operations (e.g., dynamic epis-
temic logic) and cognitively motivated geometric
models (e.g., vector symbolic architectures). Im-
portantly, it highlights the fact that belief change
in dialogue is not always straightforward but can
generate internal or inter-agent tension, where the
appropriate coefficient of friction plays a crucial
role in mitigating misunderstanding.
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