
Proceedings of the 29th Conference on Computational Natural Language Learning, pages 312–322
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Polarity inversion operators in PLM

Kletz David1,2, Amsili Pascal1, Candito Marie2

1Université Sorbonne Nouvelle & Lattice (CNRS/ENS-PSL/USN),
2Université Paris Cité & LLF (CNRS/UPC),

david.kletz@sorbonne-nouvelle.fr, marie.candito@u-paris.fr, pascal.amsili@ens.fr

Abstract

From a linguistic perspective, negation is a
unique and inherently compositional opera-
tor. In this study, we investigate whether
the bert-large-cased Pretrained Language
Model (PLM) properly encodes this composi-
tional aspect of negation when embedding a
token that falls within the scope of negation.
To explore this, we train two external Multi-
Layer Perceptrons to modify contextual embed-
dings in a controlled manner. The goal is to
reverse the polarity information encoded in the
embedding while preserving all other token-
related information. The first MLP, called the
Negator, transforms a negative polarity into a
positive one, while the second, the Affirmator,
performs the reverse transformation. We then
conduct a series of evaluations to assess the
effectiveness of these operators. Our results
indicate that while the Negator/Affirmator is
functional, it only partially simulates the nega-
tion operator. Specifically, applying it recur-
sively does not allow us to recover the original
polarity, suggesting an incomplete representa-
tion of negation within the PLM’s embeddings.
In addition, a downstream evaluation on the
Negated LAMA dataset reveals that the modi-
fications introduced by the Negator/Affirmator
lead to a slight improvement in the model’s
ability to account for negation in its predictions.
However, applying the Negator/Affirmator re-
cursively results in degraded representations,
further reinforcing the idea that negation is not
fully compositional within PLM embeddings.

1 Introduction

In this work, we aim to investigate how well Pre-
trained Language Models (PLMs) handle composi-
tionality, by focusing on the possibility of defining
a “negation operator.”

From a logical and linguistic perspective, nega-
tion provides a typical example of semantic compo-
sitionalism: its effect is systematic and independent
of the specific meaning of the clause to which it

applies: negation simply reverses the truth value of
a statement.

To put it differently, the meaning of a negation
word (such as not) in a sentence does not depend
on the particular verb used in the sentence, nor on
the original polarity (i.e., whether the sentence was
initially affirmative or negative). Instead, it follows
a general rule: it systematically flips the sentence’s
polarity.

PLMs, however, do not construct the meaning
of a sentence by recursively decomposing it into
meaningful constituents. Instead, they generate
contextual embeddings, so that the representation
of a word depends on the surrounding words in
the sentence. Given this, our goal is to identify
a transformation (a function) that acts as a "nega-
tion operator" on embeddings. In other words, we
want to find a way to manipulate the numerical
representation of a word such that, after applying
this transformation, we obtain an embedding that
closely resembles what the model would have pro-
duced if the same word had occurred in a sentence
with the opposite polarity.

For example, given an affirmative sentence
like (1-a), we want to define an operation such
that, when applied to the embedding that a PLM
associates with the main verb buy in an affirmative
context (noted Vp), it yields an embedding (noted
Vp−) that is as close as possible to the embedding
that the same PLM would assign to the token buy
in a negative context (1-b) (noted Vn).

(1) a. Sam will buy a new car.
b. Sam will not buy a new car.

In the remainder of this paper, we will refer to
a pair of sentences such as (1) as a minimal pair
(keeping implicit the fact that the difference be-
tween the two sentences necessarily involves nega-
tion).

Our reasoning is as follows: if a PLM contains

312



a compositional negation operator, then the differ-
ence between the embeddings Vp and Vn should
be learnable, regardless of the lexical properties of
the verb and the polarity of its context.

We therefore try in this work to learn a polarity
inversion function that can operate on verb em-
beddings and that is sufficiently general to work
on verbs whose lemmas were not seen at training,
and on verbs occurring in affirmative or negative
contexts.

We show that it is indeed possible to learn an
operator (a Negator) that produces from Vp embed-
dings new embeddings Vp− close enough to their
corresponding Vn, and such that it generalizes cor-
rectly to lemmas not seen during training. This sug-
gests that it is possible to locate in the embeddings
distinct encodings for lexical representation and
polarity. It is also possible to learn an Affirmator
that produces an appropriate embedding Vn+ even
for lemmas not seen at training (section 3). How-
ever, it turns out that these two operators cannot be
used one for another: a Negator (trained only with
embeddings occurring in affirmative contexts) does
not succeed at “inverting” the embedding of a verb
occurring in a positive context (similarly for the Af-
firmator). This indicates that they do not generalize
to a true polarity inversion operation independent
of the direction of the inversion, which is contrary
to the classical logical and linguistic interpreta-
tion of negation (they are not involutions, i.e., they
are not their own inverse: Negator(Negator(x)) ̸=
x and Affirmator(Affirmator(x)) ̸= x). On
the contrary, we show (in section 4) that they
are indeed reciprocal functions of each other:
Affirmator(Negator(x)) ≈ x.

It is worth studying further the properties of
these two operators, even though they don’t behave
exactly as is expected from a logical perspective.
Since they are not involutions, we study in section 5
the effect of their multiple application, and in par-
ticular a possible (non-linguistic) effect of "polarity
reinforcement", usable to improve the processing
of negation by a PLM.

Finally, in the last section of this paper (§ 6), we
study the impact of the integration of our Negator
into the processing pipeline of the negated LAMA
task.

Our experiments show that the integration of
the Negator leads to a slight improvement in the
model’s predictions. This suggests that modifying
embeddings with the Negator allows the language
modeling head to differentiate a little bit better be-

tween positive and negative embeddings, enabling
it to adjust its predictions more accurately. How-
ever, the operator is applied several times (“recur-
sively”), the predictions of the model become very
unnatural, which is another way to show that our
operators do not restrain their action to the strict
encoding of polarity in the embeddings.

2 Related works

Negation in PLMs The presence of contextual
polarity information in contextual embeddings gen-
erated by PLMs has been investigated by Ce-
likkanat et al. (2020), who specifically looked for
“traces” of negation. By analyzing contextual em-
beddings produced by a PLM, they showed that it is
possible to predict whether the main verb of a sen-
tence is negated or not. Building on this, Kletz et al.
(2023b) showed that the encoding of such informa-
tion is itself dependent on the syntactic position
of the token used as input, in particular whether it
falls or not within the scope of a negation.

Beyond encoding, the ability of models to con-
sider negation in their predictions within a Masked
Language Model (MLM) setup has also been ex-
plored. Kassner and Schütze (2020) and Ettinger
(2020) examined how negating the main verb of a
clause affects its truth value. Specifically, they in-
vestigated the capability of masked language mod-
els to adjust their predictions for a masked position
when confronted with factual world knowledge (Li
et al., 2016).

Kassner and Schütze (2020) constructed the
negated LAMA dataset by negating sentences from
the original LAMA dataset (Petroni et al., 2019).
They then analyzed the behavior of masked PLMs
when processing negated cloze-style sentences.
Their findings revealed a similarity between model
predictions in affirmative and negative contexts,
leading them to conclude that “PLMs do not distin-
guish positive and negative sentences.”

Similarly, Ettinger (2020) used sentences origi-
nally designed by Fischler et al. (1983) to observe
how human expectations about sentence continu-
ation shift when negation is introduced. The lack
of corresponding adjustments in PLM predictions
led her to a similar conclusion that PLMs exhibit
insensitivity to negation.

However, other approaches (Gubelmann and
Handschuh (2022) and Kletz et al. (2023a)), de-
cided to avoid factual statements. They constructed
examples with two sentences, where a particular
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word was either highly plausible (in positive cases)
or semantically ruled out (in negative cases) at a
masked position in the second sentence, given the
context provided by the first. The fact that larger
PLMs adjusted their predictions based on sentence
polarity led these authors to a different conclusion
that certain PLMs are indeed capable of consider-
ing negation.

Hosseini et al. (2021) proposed improving the
predictions of bert-base-cased in negative con-
texts by fine-tuning it into a new model called
BERTNOT. They created a dataset of 40,000 concate-
nated sentence pairs, each consisting of a premise
(sourced from Wikipedia) and a hypothesis where a
noun dependent on the main verb was selected and
masked. Half of these pairs retained the hypoth-
esis unchanged, while the other half contained a
negated version of the premise, created by negating
the main verb. The fine-tuning process involved
two key objectives: one function aimed to prevent
the model from predicting the selected token in
sequences where the second sentence was negated,
while another function ensured that the masked to-
ken distribution remained unchanged for the other
20,000 sequences. BERTNOT was subsequently eval-
uated using NLI datasets and Negated LAMA. The
evaluation results indicated that BERTNOT made far
fewer factually incorrect predictions than bert
-base-cased.

Compositionality in PLMs In general, the eval-
uation of compositionality in language models fo-
cuses on compositional behaviors (McCurdy et al.,
2024) and the ability of PLMs to generalize. Re-
search in this area typically tests models through
external tasks, where successful resolution implies
the ability to generalize compositionally—either
lexically (as in COGS (Kim and Linzen, 2020) and
SCAN (Lake and Baroni, 2018)) or structurally (as
in SLOG (Li et al., 2023)).

Kim and Linzen (2020) reported disappointing
performance from tested models on generalization
sets, concluding that these models struggle with
both lexical and structural compositional general-
ization. However, more recent studies have shown
that using models with pretraining strategies fo-
cused on meta-learning (Conklin et al., 2021) or
employing newer transformer-based architectures
(Sun et al., 2023; Tay et al., 2021; Raffel et al.,
2020) significantly improves compositional gen-
eralization, surpassing the capabilities of smaller
transformer models.

3 Inverting polarity : training a Negator
and Affirmator

In this section, we learn mathematical functions
(MLPs) to modify contextualized embeddings so
as to mimic the difference between embeddings
originating from the two clauses of a minimal pair.
We will talk of the "polarity of an embedding"
for short. Hence for instance, in I wish war didn’t
exist, the polarity of the embedding of exist or war
is negative, whereas the polarity of the embedding
of I or wish is positive.

More precisely, we consider embeddings of tar-
get verbs. The basic principle for our Negator func-
tion (resp. Affirmator) is to take as input the contex-
tualized embedding of an affirmative verb, noted
Vp (Vn for a negative verb) and output the corre-
sponding embedding as if the verb was in a negative
(resp. affirmative) context (Vp−, resp. Vn+)1.

The Negator (resp. Affirmator) consists in a MLP
trained on (Vp,Vn) pairs (resp. (Vn,Vp) pairs). The
evaluation consists in comparing Vp− to the orig-
inal Vn, and Vn+ to the original Vp. For short
we will talk of the original embeddings (Vp or
Vn) and their corresponding reversed embeddings
(Vn+ and Vp−).

Data We took as a starting point a set of 20,000
minimal pairs provided by Hosseini et al. (2021),
formed with 20,000 sentences from Wikipedia,
where the direct object of a target verb has been
masked, along with a version where the target verb
is negated.

We have deduplicated the 20,000 pairs, and re-
moved pairs containing either zero or more than
one masked position (resulting from errors in the
masking process), and those where the target verb
is tokenized into several subwords when encoded
by the PLM we test (namely bert-large-cased).
This brought the dataset down to ∼15,000 pairs.
For our purposes, we restored the masked object,
and identified the target verb2, left unmasked.

We then split this data into 11,708 training pairs
and 2,927 test pairs, each set corresponding to dis-
joint sets of target verb lemmas.

1We did try to obtain the Affirmator by defining the recip-
rocal function of the Negator. However, the learned parameter
square matrices turned out to be non-invertible (details in
Appendix A).

2To this end, we parsed the sentences using stanza (Qi
et al., 2020), and took the closest verbal ancestor node of the
direct object, in the dependency tree.
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Architecture and training The MLPs for Nega-
tor and Affirmator have the same architecture: 4
hidden layers of same size as input contextualized
embeddings, namely 1024, with LeakyRELU acti-
vation (with a negative slope of 10−2) for the first
3 layers and ELU for the last layer (α = 1).

We train the Negator on the training (Vp,Vn)
pairs using the MSE loss, and simply switched to
(Vn,Vp) pairs to train the Affirmator3.

Evaluation metrics We measure the quality of
the Negator (resp. Affirmator) using two direct
metrics and two indirect metrics, each comparing
the original embeddings to their corresponding re-
versed embeddings (hence comparing Vp− to Vn,
and Vn+ to the original Vp). The two direct met-
rics are simply cosine similarity and mean square
error (MSE). The two indirect metrics compare
the probability distributions output by the language
modeling head of the PLM, when fed with an origi-
nal embedding vs. when fed with the corresponding
reversed one. More precisely, if we note Pn the
distribution obtained with the original Vn embed-
ding, and Pp− that obtained from Vp−, we use the
KL-divergence DKL(Pp− ||Pn) averaged over
each evaluated pair, and the proportion of evaluated
pairs for which the top-1 prediction is the same in
Pn and Pp− (and accordingly for the Affirmator
case), hereafter same-top-1. Among these four
metrics, higher cosines and same-top-1 will mean
better quality, while it is the opposite for MSE and
KL divergences.

Moreover, while same-top-1 can be interpreted
in isolation, for the other three metrics, we need
reference values for comparison. To this effect,
we compute cosine, MSE and KL-divergence for
sets of various pairs of embeddings, obtained by
encoding sentence pairs from our dataset, with
bert-large-cased. These pairs of embeddings
either concern the same token from a pair of sen-
tences varying in polarity (V p, V n), or different to-
kens from the same sentence, or two tokens in two
different sentences but corresponding to the same
word form, and finally two embeddings from two
random tokens taken from two random sentences
from the affirmative sentences of our dataset.

The reference values are provided in Table 1.
The first row concerns Vp and Vn pairs, and pro-
vide the reference values for embeddings differing

3We use the Adam optimizer. We tuned the learning rate
(103) and the number of epochs (4) using cross-validation on
the training set.

sent. pol. token MSE Cosine KL-div
= ̸= = 0.02 0.96 0.05
= = ̸= 0.30 0.50 8.17
̸= ? = 0.46 0.23 9.21
̸= + ? 0.57 0.14 20.74

Table 1: Calibration of metrics: reference values for
MSE, cosine and KL-divergence metrics, when using
various kinds of pairs of embeddings. The pairs are
either embeddings from the same sentence (when ignor-
ing polarity) (first column), from sentences with equal,
different, irrelevant (?) or positive polarity (pol. col-
umn), and from the same word or not (token column).
The first row compares (V p, V n).

only in polarity, and we will refer to these values
to evaluate our Negator and Affirmator. As all the
metrics show, all other tested pairs of embeddings
show a much higher divergence. Note that two
distinct tokens of the same sentence (second row)
have much closer embeddings than the embeddings
of the same word in two different sentences (third
row).

3.1 Results

MSE cosine KL-div same-top-1
Vp vs. Vn+ 0.12 0.80 0.66 83.9
Vn vs. Vp− 0.13 0.79 0.80 81.5

Table 2: Evaluation of the Affirmator (first row) and
Negator (second row) on the test set: comparison met-
rics for pairs of original vs reversed embeddings.

We provide the evaluation results of the Negator
and Affirmator, computed on the test set, in Table 2.
The same-top-1 results are above 80%. Interpreting
the three other metrics requires to compare them to
the reference values in Table 1. The same trend is
observed for MSE, cosine and KL-divergence: al-
though the results comparing original and reversed
embeddings are less good than when comparing the
original (V p, V n) pair (first row of Table 1), they
are a lot better than when comparing other kinds of
pairs of embeddings (last 3 rows of Table 1). These
observations tend to show that our trained polarity
inversion operations lead to embeddings that are
(i) close to the corresponding original embedding
(Vn+ close to Vp, Vp− close to Vn); and (ii) close
enough to appropriately feed the original language
modeling head, resulting in a probability distribu-
tion over the vocabulary that is close to the original
one.
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Generalization across verbs Since the training
and test set contain disjoint sets of verb lemmas, the
previous observations tend to show a good general-
ization to verbs unseen during training. To further
check this generalization, we would also like to ver-
ify that the averaging applied in the metrics does
not hide a disparity in performance, and in partic-
ular that errors are not concentrated on a specific
set of verbs. To this end we calculate the same-
top-1 proportion per lemma, and count the number
of verbal lemmas for which the proportion is very
low (top-1 accuracy below 20%), indicating a total
failure of inverting the polarity of embeddings for
these verbs. We restrict ourselves to lemmas with
at least 5 occurrences in the test set.

The results are provided in table 3. We observe
only 3 lemmas with a same-top-1 proportion of less
than 20% for Affirmator, and none for Negator. We
can thus conclude that there are practically no lem-
mas for which polarity re-encoding systematically
fails.

This further confirms that it is indeed possible to
learn a polarity transformation of a verbal embed-
ding, independently of the corresponding verb, a
first step towards a compositional polarity inversion
operator (cf. section 1).

Model # tested lemmas Cases w/ rate <20%
Affirmator 277 3
Negator 271 0

Table 3: Total number of unique lemmas tested, and
number with same-top-1 proportion below 20%.

Generalization across polarities The second
necessary condition was that the learnt polarity
inversion operations should generalize across polar-
ity. In our case, it means firstly that the Negator and
Affirmator should actually correspond to the same
(or a close) mathematical function, performing a
polarity inversion independently of the polarity of
its input. Secondly, given the logical interpreta-
tion of negation, both the Negator and Affirmator
should be an involution, namely their own recipro-
cal function, hence Negator(Negator(V )) should
be close to V . We report on this investigation in
section 5.

4 Evaluation via a polarity probe

In order to further assess the effectiveness of
the Negator/Affirmator, we employ a MLP probe
trained to predict the polarity of verbal embeddings.

Importantly, the probe is trained exclusively on Vp
and Vn, without exposure to reversed embeddings
(V p− and V n+).

Training of the probe The trained probe is an
MLP consisting of a hidden layer of the same size
as the input (1024), with sigmoid activation. It is
trained for 5 epochs with a learning rate of 0.3.

As training data we reuse the dataset used to
train our Affirmators/Negators: we keep at random
one sentence from each pair, which yields ≃14,000
sentences balanced with respect of their polarity.
We split them into 11708/2927 for training and
testing, keeping a balanced polarity in each set.

Evaluation on original embeddings The accu-
racy of the probe on the test set is provided in the
“Original” columns of Table 4.

Embedding
Original Reversed Reinforced

inp. exp. acc. inp. exp. acc. inp. exp. acc.
Vn n 95.9 Vn+ p 99.9 Vn− n 99.9
Vp p 96.6 Vp− n 99.9 Vp+ p 99.8

Table 4: Accuracies of the polarity-predicting probe,
on the verbal embeddings of the test set, using either
the Original embeddings (Vn or Vp), the Reversed
ones (V n+ or V p−), and the Reinforced ones (V p+
or V n−). Columns inp.: type of input embedding;
Columns exp.: expected polarity label; Columns acc.:
probe accuracy

We observe that the probe has a very high accu-
racy to predict the polarity of original embeddings
(first three columns, above 95%), although not per-
fect.

Evaluation on reversed embeddings We now
check how the probe behave when fed with re-
versed embeddings. Results of applying the probe
on these are provided in the "Reversed" columns
of Table 4. We observe almost perfect accuracy
for both the Negator and the Affirmator. This con-
stitutes a further evaluation of the quality of the
Negator/Affirmator, since they allow to better pre-
dict the polarity of an embedding.

5 Polarity inversion or reinforcement?

In this section, we examine the effects of apply-
ing the Negator to a verbal embedding originating
from a negated verb (which, following our nota-
tion, results in V n−). Similarly, we analyze V p+
cases, where the Affirmator is applied to a verbal
embedding originally not negated.
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In this case, if the Negator/Affirmator is the same
transformation, applying a real inversion of polarity
independently of the polarity of their argument,
then V n− should be close to Vp and have positive
polarity. V p+ should be close to Vn and have
negative polarity.

If on the contrary the Negator/Affirmator are dis-
tinct, each "moving" the polarity of their argument
on a "polarity scale" in opposite directions, then we
anticipate a reinforcement of the encoding of the
polarity (and we will use the term reinforced em-
bedding for V n− and V p+ types of embeddings).

The results are provided in the "Reinforced"
columns of Table 4, the accuracy being calculated
when expecting a reinforcement rather than an in-
version. We can see that the accuracies are almost
perfect for both the Negator and Affirmator. So as
the name "reinforced" hinted, we observe a rein-
forcement of the polarity instead of an inversion
independent of input polarity.

Note though that the accuracy on the Reinforced
cases is similar to that of the Reversed cases. So
while it shows that the Negator/Affirmator does
strengthen the polarity encoding, it is surprising it
cannot surpass the reversed cases.

Error analysis We further study the counts of
well-classified/misclassified cases, and whether
the polarity inversion or reinforcement introduces
new errors. Table 4 provides the exact counts of
correct/incorrect polarity prediction by the probe,
when fed by original, reversed and reinforced em-
beddings. After polarity inversion, we count 179
corrected errors and only 3 introduced errors (resp.
177 and 3 after reinforcement).

The very low number of new errors introduced
by the Negator/Affirmator further assesses their
ability to inverse/reinforce polarity encoding in em-
beddings, without altering it.

Orig. Count After modif. Rev. Reinf.
✓ re

↪→✓ 4589 4589
↪→ x 3 3

x 180
↪→✓ 179 177
↪→ x 1 3

Table 5: Counts of correct/incorrect labels after applying
the polarity probe on original, reversed and reinforced
embeddings.

6 Using the Negator to enhance bert
-large-cased’s predictions

We now propose to use the Negator for a dif-
ferent objective: rather than studying the possi-
bility of learning a compositional negation op-
erator, we investigate whether the negator can
help to improve the negation "understanding" of a
bert-large-cased model, in a downstream task.
We choose the negatedLAMA task, which Kassner
and Schütze (2020) designed to assess the ability
of bert to adapt its language modeling predictions
to the presence of negation (cf. section 2).

6.1 The negated LAMA data and task

The negated LAMA dataset (Kassner and Schütze,
2020) is a negated version of LAMA (Petroni et al.,
2019), itself developed to assess the factual knowl-
edge stored in PLMs. It consists of factual state-
ments derived from various encyclopedic sources4,
in which a token is masked (e.g. dog (2)), hereafter
the original affirmative token).

The negated LAMA dataset is constructed by
associating each affirmative factual statement (p)
from LAMA with their negated counterpart (n).

(2) Op (Original): A beagle is a type of dog.
Mp A beagle is a type of [MASK].
Mn A beagle is not a type of [MASK].

The original affirmative token should be the top-1
prediction for the affirmative sentences, but this to-
ken becomes factually wrong in the negative coun-
terparts, hence these pairs provide a way to assess
a model’s sensitivity to polarity changes.

Since the negated LAMA data is not explicitly
available, we reconstructed the dataset, and the
details of this process can be found in Appendix B.
Consequently, although we made every effort to
ensure accuracy, the version of the dataset we use
differs from the ones employed by Kassner and
Schütze (2020) and Hosseini et al. (2021).

To measure performances of the model, we use
the stability rate of Kassner and Schütze (2020),
which measures the percentage of identical top-1
predictions for (Mp,Mn) pairs. The lower the sta-
bility rate is, the more the model is sensitive to
negation. Note that this measure does not take into
consideration the cases where the top-1 prediction
for Mp is not identical to the original affirmative

4Google-RE (Google, 2013), T-REX (Elsahar et al., 2018),
ConceptNet (Speer and Havasi, 2012), and SQuAD (Rajpurkar
et al., 2016).
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token: if, for example in (2), a model has mam-
mal as its top-1 prediction, what matters for the
stability rate is whether this token is still the top-1
prediction in the negative case Mn. Hence, we
also introduce a metric to quantify the average rate
of factually incorrect predictions, referred to as the
fipa rate5. The fipa rate measures the proportion
of top-1 predictions for negated sentences that still
match the original affirmative token. A lower fipa
rate suggests that the model is better at generating
factually correct predictions under negation6.

6.2 Setup

We propose to integrate the Negator into the lan-
guage modeling prediction pipeline of a bert
-large-cased model, by applying the Negator to a
token’s representation at last layer, before feeding
the language modeling head (see Figure 1).

Figure 1: Inserting the Negator in the language model-
ing task.

Training We retrain a Negator using the encod-
ings of the original masked tokens of Hosseini et al.
(2021)’s dataset, not being unmasked (using our
notation scheme, we consider Mp, Mp−, Mn,
Mn−, under the same conditions as described in
Section 3).

Application to negated LAMA The use of the
Negator allows us to make two comparisons: be-
tween original, reversed and reinforced embed-
dings (Mn, Mp-, Mn-).

Furthermore, inspired by Ravfogel et al. (2021),
we apply the Negator recursively multiple times,
progressively even more reinforcing the encod-
ing of negation polarity (e.g., Mp → Mp− →
Mp − − → Mp − −− etc.). We will call these
super-reinforced embeddings, and note Mnk−
the result of applying k times the Negator to Mn.

5This metric may correspond to the average top-1 error
rate used by Hosseini et al. (2021). However, since they do
not explicitly define it, we cannot confirm this equivalence.

6Note each above cited work use only one of these two
metrics, which clearly gives an incomplete evaluation.

6.3 Quantitative analysis
The results for the fipa rate and stability rate are
presented in Table 6.

The prediction shifts of the PLM are highly de-
pendent on the dataset subset used, with no subset
enabling the PLM to achieve a stability rate below
30%.

The insertion of the Negator into the process-
ing pipeline under a polarity inversion configura-
tion (line 2) alters the model’s predictions. How-
ever, the stability and fipa rates do not show any
improvement—often remaining similar or even
worse—compared to directly negating the input
sentence. The insertion of the Negator into the
processing pipeline under a polarity reinforcement
configuration (line 3) is the first combination to
yield an improvement, reducing fipa rate by 5% to
20% and increasing the stability rate from 14% to
26%.

The use of super-reinforced embeddings leads
to the most significant improvements in evalua-
tion quality, both in polarity reinforcement and
inversion configurations. The fipa rate decreases,
ranging from 65% to 79%, and the stability rate
improves between 71% and 84%.

Compared to other models, the model incorpo-
rating super-reinforced embeddings surpasses the
performance of bert-large-cased, as tested by Kass-
ner and Schütze (2020). Additionally, it outper-
forms BERTNOT (Hosseini et al., 2021), 7 achiev-
ing lower fipa rates than those reported by Hosseini
et al. (2021). Furthermore, a comparison between
line 1 and line 4 reveals that the reduction in fipa
rate is even more significant than the improvement
achieved by BERTNOT.

6.4 Qualitative analysis
To ensure that the representations are not degraded
by the application of the Negator and that only the
encoding of polarity is affected, we now conduct a
complementary qualitative analysis.

We analyze the top-1 predictions of our architec-
ture. For comparison, we revisit the four examples
highlighted in Hosseini et al. (2021) and the eight
examples from Kassner and Schütze (2020). The
results are presented in Table 7.

Semantic and syntactic constraints are preserved
in the Mn− configuration.8 However, the model’s

7For this comparison, we refer to Table 12 in the Appendix
of their paper, as the results presented in the main text—while
higher—were obtained using a BERT-base-cased model.

8For instance, in the sentence “Charles Nodier did not die
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fipa rate stability rate
subset SQUAD conceptnet Google-re T-rex SQUAD conceptnet Google-re T-rex
Mn 11.2 2.7 22.2 57.7 43.4 31.6 60.3 90.0
Mp- 15.5 3.3 22.5 58.3 59.5 59.0 61.1 84.8
Mn- 8.9 2.4 20.2 54.5 32.6 23.5 44.1 77.4
Mn5- 2.3 0.8 6.4 19.8 9.5 7.3 11.6 25.3
Mp5- 5.3 1.4 11.9 23.1 18.4 14.6 25.3 31.4

Table 6: Percentage of cases where the top-1 prediction when feeding the LM head with embedding in column 1 is
(left) identical to the expected factual answer for the Vp case, and (right) identical to the top-1 prediction for the Vp
case; each broken down for each LAMA subset.

Paper Sentence Representation received by the LM head
Mn Mn- Mn5-

H iOS is not developed by [MASK]. Apple (0.22) Apple (0.19) it (0.05)

H The majority of the amazon forest is not in [MASK]. cultivation (0.43) cultivation (0.13) forest (0.04)

H Charles Nodier did not die in [MASK]. battle (0.29) battle (0.14) prison (0.13)

H Mac OS is not developed by [MASK]. Apple (0.73) Apple (0.64) Apple (0.19)

K&S Marcel Oopa did not die in the city of [MASK]. Paris (0.09) Paris (0.08) residence (0.04)

K&S Anatoly Alexine was not born in the city of [MASK]. Moscow (0.31) Moscow (0.28) town (0.05)

K&S Platonism is not named after [MASK]. Plato (0.78) Plato (0.35) himself (0.48)

K&S Lexus is not owned by [MASK]. Toyota (0.18) Google (0.07) it (0.03)

K&S Birds cannot [MASK]. fly (0.76) fly (0.33) property (0.01)

K&S A beagle is not a type of [MASK]. dog (0.83) dog (0.72) person (0.53)

K&S Quran is not a [MASK] text. religious (0.32) religious (0.23) valid (0.13)

K&S Isaac’s chains are not made out of [MASK]. iron (0.22) iron(0.16) stone (0.08)

Table 7: Qualitative analysis of predictions on embeddings modified by Negator. Column ‘Paper’: ‘H’ refers to
sentences from Hosseini et al. (2021) ‘K&S’ refers to sentences from Kassner and Schütze (2020). Each cell
indicates the prediction. The associated probability is given in parentheses.

predictions frequently remain unchanged from the
original, which are often factually incorrect.

Incorporating super-reinforced embeddings does
lead to modifications in predictions. However, with
the super-reinforced embeddings, the generated
sentences often appear unnatural, ultimately com-
promising the quality of the predictions.

These observations suggest that this method can-
not serve to enhance negation interpretation of
bert-large-cased.

7 Conclusions

In this paper, we explored the compositional-
ity of negation within PLMs by investigating
whether a transformation, which we call the “Nega-
tor/Affirmator,” could reverse the polarity of a
verb’s embedding. Our results show that it is pos-
sible to learn such a function and that it can gener-
alize to unseen lemmas. However, a complemen-
tary study reveals that the simple application of the
Negator is not sufficient to significantly improve

in [MASK].”, the masked position is syntactically constrained
to be filled by a noun, noun phrase, or temporal expression,
while semantically, it must refer to a place or time of death.

the predictions of bert-large-cased in the pres-
ence of negation, while multiple applications of
the Negator improve the treatment of negation at
the expense of a degradation of the embeddings.
Even though a negation operation seems therefore
learnable, its use for improving the predictions of a
PLM still remains problematic.

Looking ahead, it would be interesting to extend
this work by isolating operations that encode other
compositional operators. This could help deter-
mine whether the handling of negation by PLMs
is specific or if it is part of a broader pattern in the
treatment of compositional operations.
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Limitations

Our study focuses solely on the bert-large-
cased model, meaning our findings cannot be di-
rectly generalized to other Pretrained Language
Models (PLMs). Future work should extend this

analysis to a broader range of architectures to as-
sess whether our observations hold across different
models.

Additionally, both our dataset and model were in
English, limiting our conclusions to this linguistic
context. Since negation varies across languages
in both syntax and semantics, evaluating models
trained on other languages would be necessary
to determine the broader applicability of our ap-
proach.

A Attemps to define the reciprocal of the
Negator

Instead of learning both a Negator and Affirmator,
we also tried to learn a Negator, and then define its
reciprocal, to serve as Affirmator. This supposes to
define the reciprocal of activation functions and of
linear combinations.

To this end, we used bijective activation func-
tions, whose reciprocal functions are:

LeakyRELU−1(x) =

{
x, if x ≥ 0
x
α , otherwise

ELU−1(x) =

{
x, if x ≥ 0

log( x
α+1), otherwise

The reciprocal of the linear combination with
parameters W and b, requires W to be invertible
(which is why we chose square parameter matrices),
and is written as:

x = W−1(y − b) (1)

Unfortunately, we empirically observed across
various runs that the resulting Negator contained
at least one non-invertible matrix (namely with a
rank lower than the shape of the matrix).

We also tried to use Moore-Penrose pseudoin-
verse parameter matrices9. In such a case, the defi-
nition of the reciprocal is as below (with WPI the
pseudoinverse of W):

x = WPI(y − b) (2)

So for a given linear layer, if y = Wx+ b then
we compute a x′ such that x′ = WPI(y − b) ≃ x,
namely there exists a matrix M such that x′ =
x+M .

9Using pytorch, https://pytorch.org/docs/stable/
generated/torch.linalg.pinv.html, Paszke et al. (2019))
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This empirically failed in the sense that when
applying the reciprocal functions in sequence, we
noted the M matrices kept growing exponentially.
The approximation made using pseudoinverses led
to growing errors.

We conclude to the impossibility of inversing the
Negator to obtain an Affirmator.

B Reconstruction and Preprocessing of
Negated LAMA

The original LAMA dataset is available both in the
repository of Petroni et al. (2019) 10 and on the
Hugging Face (Wolf et al., 2020) platform 11. How-
ever, with the exception of the SQUAD subset, the
number of entries differs between these two sources
for every subset. A comparison of the dataset sizes
from these two sources can be found in Table 8,
under the columns "LAMA" (repository from the
original paper) and "LAMA HF" (Hugging Face
platform).

The inputs of negated LAMA are either explic-
itly provided, or through the introduction of a nega-
tion pattern.

Upon examining the data, we found that not all
entries could be used to reconstruct the negated
LAMA dataset. We applied filtering criteria to
exclude entries with the following issues:

• Presence of multiple masked tokens

• Absence of a corresponding negated sentence

• Lack of alignment with a recognizable nega-
tion pattern

These inconsistencies accounted for nearly two-
thirds of the data in the Google-RE and T-REx
subsets, and we were unable to fully resolve all of
them.

The final sizes of the subsets used to evaluate
our models are listed in the "Retained Examples"
column of Table 8.

Consequently, we use a version of negated
LAMA that is different from the one used by Kass-
ner and Schütze (2020) and Hosseini et al. (2021).

10https://dl.fbaipublicfiles.com/LAMA/negated_
data.tar.gz

11https://huggingface.co/datasets/facebook/lama

Dataset LAMA Subsets
LAMA LAMA HF #retained examples

SQUAD 305 305 301
conceptnet 2996 29774 8296
Google-re 5527 6106 2926
T-rex 34039 1304391 16991

Table 8: Subset sizes of LAMA from different sources.
**Col. “LAMA”**: Number of entries in Petroni et al.
(2019) repository. **Col. “LAMA HF”**: Number
of entries in the Hugging Face version. **Col. “Re-
tained Examples”**: Final number of entries used in
our negated LAMA version.
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