
Proceedings of the 29th Conference on Computational Natural Language Learning, pages 268–290
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn,
Focus, and Review

Neha Prakriya, Jui-Nan Yen, Cho-Jui Hsieh, Jason Cong
University of California, Los Angeles

{nehaprakriya, juinanyen, chohsieh, cong}@cs.ucla.edu

Abstract

We introduce an effective and scalable data
selection technique to accelerate the pretrain-
ing of large language models (LLMs). Given
the variation in quality and informativeness of
web-scale corpora, we present the Learn-Focus-
Review (LFR) paradigm-a dynamic training
approach that adapts to the model’s learn-
ing progress. Inspired by human learning
techniques like spaced repetition, LFR tracks
the model’s learning performance across data
instances and prioritizes revisiting challeng-
ing and diverse regions of the dataset that
are more prone to being forgotten, enabling
better retention and more efficient learning.
Through experiments spanning over 2200 GPU
hours, we show that LFR significantly enhances
data efficiency in pretraining while improv-
ing downstream performance across common-
sense reasoning, question answering, problem-
solving, language modeling, and translation
tasks. LFR consistently achieves lower perplex-
ity and higher accuracy using just 5%–19% of
the training tokens as models trained on the
full dataset. Notably, LFR matches the per-
formance of industry-standard Pythia models
with up to 2× the parameter count while requir-
ing only 3.2% of the training tokens. Unlike
prior work on data selection, LFR models are
Chinchilla-optimal demonstrating the effective-
ness of our training methodology.

1 Introduction

LLMs have achieved remarkable success in under-
standing and generating human language. This suc-
cess is driven by the ever-increasing model param-
eter sizes which require web-scale training datasets
like SlimPajama (Soboleva et al., 2023), Common-
Crawl (Penedo et al., 2023; Raffel et al., 2023),
Pile (Gao et al., 2020), and OpenWebText (Rad-
ford et al., 2019; ope), leading to unsustainable
training costs. Between 2016 and 2023, model
training costs have skyrocketed by a factor of 750×

A
vg

 A
cc

ur
ac

y
(O

ve
ra

ll
S

co
re

)
0

20

40

60

30
0M
-R
S

Py
thi
a-4
10
M

30
0M
-LF
R

50
0M
-R
S

Py
thi
a-1
.0B

50
0M
-LF
R

1.1
B-
RS

Py
thi
a-1
.4B

1.3
B-
DS
IR

1.3
B-
PP
L

1.3
B-
Qu
ad

1.1
B-
LF
R

Figure 1: Average accuracy norm across common-
sense reasoning, problem-solving, world knowledge,
and reading comprehension tasks. Across model sizes
(300M–1.1B), LFR (stars) outperforms full-dataset
training (RS in black circles) by 6%, Pythia (yellow
circles) by 1.5%, and Quad (Zhang et al., 2024) (red
circle) by 9%, using only 3–6% and 65% of the training
tokens of Pythia and Quad, respectively. Notably, Pythia
and Quad have larger parameter counts. See Section 5
for details.

every two years (Gholami et al., 2024), while GPU
memory has scaled at a much slower pace of 2×
every two years. For example, pretraining the GPT-
4 model (OpenAI et al., 2024) was estimated to
have cost around $100M USD over a period of 3-4
months using 25k NVIDIA A100 GPUs (gpt).

As such, a key challenge for unlocking the next
generation of language models is to significantly
reduce training costs while retaining or improving
downstream task performance.

Data quality and selection play a key role
in the development of cost-effective and high-
performance models (Hoffmann et al., 2022;
Brown et al., 2020; Tirumala et al., 2023; Abbas
et al., 2023; lla, 2024). In fact, DeepSeek-V3
technical report (DeepSeek-AI et al., 2025) and
the Llama 3.1 Technical Report (lla, 2024) high-
light the importance of data quality through curated
data mixes and sophisticated data preprocessing
pipelines to minimize redundancy and maximize

268

corpus diversity.
Recent work on data selection for pretraining

has achieved great strides in reducing the overall
training time. Methods like D4 (Tirumala et al.,
2023), SemDeDup (Abbas et al., 2023), MiniP-
ile (Kaddour, 2023; min), DSIR (Xie et al., 2023),
and perplexity-based filtering (Marion et al., 2023;
Chen et al., 2024; Muennighoff et al., 2023) rely on
similarity metrics, clustering, or perplexity to filter
data. However, data importance evolves through-
out training and depends on model architecture,
making static filtering inherently limited in effec-
tiveness. While (Zhang et al., 2024) employ a
dynamic data selection approach using the multi-
armed bandit technique, they select 30B tokens
from the SlimPajama dataset to train a 1.3B pa-
rameter model. However, according to the Chin-
chilla scaling laws (Hoffmann et al., 2022), this
token count exceeds the optimal range for models
of this size, suggesting that their selected subsets
may contain redundant or lower-quality data. Other
studies propose leveraging state-of-the-art (SOTA)
pretrained LLMs like GPT-4 (Wettig et al., 2024) or
proxy models, as seen in MATES (Yu et al., 2024)
and RHO-1 (Lin et al., 2024), to assess data quality
for a target model. However, these approaches rely
on existing separately trained models, which may
introduce a mismatch between the data needed for
optimal convergence and the data selected.

We address the high training cost of LLMs and
the shortcomings of existing data selection meth-
ods by drawing inspiration from spaced repeti-
tion (Smolen et al., 2016a; spa). This scientifically
proven technique enhances retention by strategi-
cally presenting information at optimal intervals,
ensuring that the most relevant data is introduced
at the right time for efficient learning. Building
on this foundation, we propose the Learn-Focus-
Review (LFR) training paradigm. Figure 1 displays
the overall efficacy of LFR. Our work offers the
following contributions:

1. Profile LLM pretraining to observe multiple
descent behavior in 25-78% of the training
tokens from web-scale corpuses, which are
forgotten multiple times during training.

2. Develop a Learn-Focus-Review (LFR) train-
ing pipeline that dynamically gauges the
LLM’s learning pace, focusing on complex
data blocks while regularly reviewing all data
blocks to prevent forgetting.

3. Conduct over 2200 GPU hours of training
experiments using the AMD MI250, AMD
MI210, and AMD MI100 GPUs. We pretrain
Llama and GPT models of varying sizes from
scratch on the SlimPajama (627B) and Open-
WebText (9B) datasets and evaluate them on
several downstream tasks from the common-
sense reasoning, question-answering, problem
solving, language modeling, and translation
domains.

4. LFR results in significantly lower perplex-
ity and higher accuracy compared to baseline
models trained on the full dataset, achieving
these improvements by training on just 5-19%
of the training tokens used by the baseline.
All our models are Chinchilla-optimal.

5. LFR outperforms the performance on 70% of
tasks of the Pythia models with up to 2× the
parameter count while requiring only 3-6% of
the training tokens.

6. LFR outperforms prior state-of-the-art data
selection work by 9-13% in downstream task
accuracy while using only 65% of the training
tokens.

7. Observe that LLMs first learn conversational
and anecdotal data, before being able to retain
factual, instructional, and coding language in-
formation in long-term memory.

In the following sections, we examine prior
works on efficient LLM pretraining before diving
deeper into our proposed training strategies and
design decisions.

2 Related Work

Prior works on efficient pretraining of LLMs using
data selection have primarily focused on using dis-
tance metrics and clustering techniques. Tirumala
et al. (2023) proposes D4, which deduplicates and
selects cluster centers in the embedding space gen-
erated by pretrained models. SemDeDup (Abbas
et al., 2023) prunes semantic duplicates using pre-
trained models. It can successfully prune 50% of
the training data with minimal performance loss.
MiniPile (Kaddour, 2023; min) uses the pretrained
E5-Large (Wang et al., 2024) model to embed docu-
ments in the Pile dataset and clusters them to select
a smaller pretraining corpus of ∼6GB. DSIR (Xie
et al., 2023) proposes selecting subsets from large

269

unlabeled datasets through importance resampling
to match the distribution of the target dataset. How-
ever, considering the high cost of training, it is
unsustainable to sample a new subset and pretrain
the LLM from scratch for every new downstream
task.

More recently, perplexity-based and influence
function-based filtering techniques have been pro-
posed (Marion et al., 2023; Lin et al., 2024; Muen-
nighoff et al., 2023; Chen et al., 2024; Wettig et al.,
2024; Yu et al., 2024), which use proxy models
to obtain perplexity/influence scores for different
data points and assess sample importance. How-
ever, these methods require an additional pretrained
model, increasing computational overhead. More-
over, if the proxy model has a different architec-
ture from the target model, its assessment of data
importance may not accurately transfer, leading
to suboptimal data selection and inefficiencies in
training.

The Chinchilla scaling laws (Hoffmann et al.,
2022) derive an optimal model size–to–training to-
kens ratio for fixed compute budgets, finding that
parameters and data should scale roughly 1:1. We
observe that several of the prior works discussed
in this Section do not incorporate Chinchilla scal-
ing laws (Hoffmann et al., 2022) into their data
selection strategies, leading to suboptimal filtering
of web-scale corpora and potential overtraining.
For example, Zhang et al. (2024) present Quad, a
data selection method which calculates influence
scores to measure a data point’s impact on model
performance. They select 30B tokens from the
SlimPajama dataset (627B) for their 1.3B model
and continual pretraining of the 7B model. This
indicates that the models have been overtrained or
trained on redundant tokens.

3 Problem Formulation and Profiling

3.1 LLM Pretraining Objective

Given an LLM model parameterized by weights
θ and a web-scale dataset D, we first tokenize all
documents in the dataset and obtain context-length-
sized sequences of tokens, called data blocks,
si such that the training corpus becomes D =
{s1, s2, s3, ...sn}. For the SlimPajama and Open-
WebText datasets used in this paper, the context
length is 1024 tokens, with a total of 627B and
9B tokens, respectively. Given one such sequence
of tokens or data block, si = {x1, x2, ...xn}, the
training objective is to autoregressively predict the

Figure 2: PPL trajectories of data samples from the
SlimPajama dataset as processed by the Llama-300M
model, focusing on a subset of 50 samples for clarity.
Notably, 78.5% of the samples exhibit this behavior,
characterized by multiple descent patterns rather than a
steady decline. This indicates that the model frequently
forgets and relearns data during training, highlighting
inefficiencies in traditional training dynamics

Figure 3: PPLs of data samples being forgotton by the
GPT2-345M model on the OpenWebText dataset. This
multi-descent behavior is exhibited by 20% of the data.

next M tokens:

pθ(y | x) =
M∏

i=1

pθ(yi | y1:i−1, x). (1)

3.2 Observations from Training on Randomly
Sampled Data

In order to better understand the drawbacks of this
traditional training technique, we profile the pre-
training process for the Llama and GPT models.
The training hyperparameters and model configu-
rations are provided in the Appendix A. Similarly
to Marion et al. (2023), we use perplexity as a met-
ric to monitor the training progress. Given a token
sequence si = {x1, x2, ..., xn} from the dataset D,
perplexity is computed as:

PPL(si) = exp

 1

|si|
∑

xj∈si
NLL(xj)

 , (2)

270

where NLL(xj) is the negative log likelihood of
token xj computed as follows:

NLL(xj) = − logP (xj | x<j ; θ). (3)

Using this metric, models exhibiting lower perplex-
ities are considered better since this indicates a
high probability of selecting text closest to the raw
dataset.

The observed PPL values associated with each
data block are classified as one of the following:

1. Learned: recorded perplexities monotonically
decrease.

2. Unlearned: recorded perplexities monotoni-
cally increase.

3. Forgotten: recorded perplexities first increase
and then decrease. Such an upward and down-
ward trend may repeat any number of times
during training.

Based on this classification, we observe that
78.5% of the data blocks are forgotten at least once
in the Llama model (Figure 2), compared to 25%
in the GPT model (Figure 3). We hypothesize that
more data blocks are frequently forgotten in the
Llama model due to the higher complexity and
challenge posed by the SlimPajama dataset, as op-
posed to the OpenWebText dataset. It is important
to note that the SlimPajama dataset is an aggrega-
tion of seven datasets, including sources such as
GitHub, Wikipedia, and CommonCrawl. In fact, of
the data blocks that are forgotten, 82% are forgot-
ten multiple times during training, i.e., they display
multiple descent behavior (Figure 3). Xia et al.
(2022) reported a double-descent behavior for the
OPT models (Zhang et al., 2022), and our above ex-
periment further demonstrates that the “forgetting”
can happen multiple times in LLM pretraining.

4 LFR Training Methodology

Based on our profiling observations in Section 3.2
we propose to replace traditional autoregressive
language modeling methods with Spaced Repeti-
tion (Tabibian et al., 2019). Spaced Repetition is an
evidence-based learning method proven to improve
information retention and learning pace in humans
(Smolen et al., 2016b). In this technique, challeng-
ing pieces of information are reviewed more often,
at regular intervals, and easier pieces of informa-
tion are presented to the learner less often. Our

algorithm is detailed in Algorithm 1. We pretrain
our models with a combination of the following
three steps:

1. Learn: Initially, we present the model with
the entire dataset and train on randomly se-
lected data blocks for p1 steps, as normally
seen in the traditional approach (line 1 in
Alg. 1). p1 can be configured by the user based
on the available compute budget, model, and
dataset. In single-epoch training (lines 3-7 in
Alg. 1), we measure the perplexities (PPLs) of
all data samples in the training set and cluster
the data embeddings (inputs to the model’s
last layer). For multi-epoch training (lines 8-
11 in Alg 1), we record the perplexities for all
data blocks during the p1 steps. Depending
on the training style (single or multi-epoch),
we either pass the clustered embeddings and
PPL values or the PPL values observed dur-
ing training to the next step. The following
two phases can be repeated up to reps times,
depending on the available compute budget.

2. Focus: We provide two variations of the Fo-
cus stage based on the number of training
epochs.

(a) Single-epoch training: We discard s1%
of the clusters (line 6 in Alg 1).
Within the retained clusters, we perform
weighted sampling from sub-clusters, pri-
oritizing regions of the retained clusters
which the model finds most challeng-
ing (line 7 in Alg. 1). Sub-clusters with
higher PPL are assigned greater sam-
pling weights, enabling a hierarchical fo-
cus on the most critical regions. For in-
stance, during Llama training, GitHub
code emerged as the most challenging
cluster. Within this cluster, the Focus
stage further emphasizes sampling from
C++ code, which proved more difficult
for the model, over Python code. In
this phase of training, we restrict the
weighted sampling of data points to this
reduced subset for p2 steps. s1 and p2
are user-controlled hyperparameters.

(b) Multi-epoch training: We discard s1%
of the data blocks (line 10 in Alg. 1)
with the lowest PPL values. In doing
so, we provide a mechanism for shift-
ing the model’s focus towards learning

271

data blocks that were determined to be
difficult.

3. Review: Next, we reintroduce all of the re-
moved data blocks and train the model by
randomly sampling from the entire corpus for
p3 steps (line 13 in Alg. 1). This ensures that
we allow the model to review and revisit data
blocks which it may have forgotten.

Algorithm 1 LFR Training Methodology

Require: Training dataset D, model M with ini-
tial parameters θ0, hyperparameters p1, s1, p2,
p3, reps, and epochs.

Ensure: Minimization of Equation 3.
1: PPLs, θp1 ← Learn(θ0, D, p1)
2: for r = 1, 2, . . . , reps do
3: if epochs == 1 then
4: Dk ← Cluster(D)
5: Sort(PPLs,Dk)
6: Ssub ← (1− s1)×Dk

7: S1 ← sample(Ssub, PPLs)
8: else
9: Sort(PPLs,D)

10: S1 ← (1− s1)×D
11: end if
12: θp2 ← Focus(θp1 , S1, p2)
13: PPLs, θp3 ← Review(θp2 , D, p3)
14: end for

Return θ

Our training strategy is simple, intuitive and
human-like. It gives the model an opportunity to
learn from all of the data, prioritize and relearn
forgotten data points, and review data samples
from harder regions of the dataset more frequently
than they would have been using random sampling.
While the static clustering-based techniques (Tiru-
mala et al., 2023; Abbas et al., 2023; Kaddour,
2023) presented in Section 2 allow for accelerated
training, they are not designed to suit the multi-
descent training dynamics observed in Section 4
and require pretrained model embeddings to calcu-
late distance metrics. Furthermore, prior methods
including perplexity-based pruning methods (Mar-
ion et al., 2023) are static. Sections 5.4 and the
Appendix characterize the data blocks found easy
and hard by the LLM, and demonstrate why static,
clustering-based data selection methods achieve
poor downstream task performance. Lastly, our
approach does not require any pretrained models to
obtain embeddings. Our focused training strategy

allows the model to absorb harder information (data
blocks with higher perplexity) faster, by presenting
them more number of times.

5 Evaluation

In this section, we present a comprehensive eval-
uation of LFR. We pretrain the Llama models of
sizes 300M, 500M, and 1.1B and the GPT mod-
els (Radford et al., 2019) of various sizes between
124M and 1.5B parameters. We use the SlimPa-
jama (Soboleva et al., 2023) (627B) and OpenWeb-
Text dataset (ope) (9B) and train from scratch using
4 AMD MI100, 4 AMD MI210 GPUs, and 8 AMD
MI250 GPUs. Our pretraining experiments utilize
a fully sharded data parallel (FSDP) approach. All
model configurations and training hyperparameters
of our experiments are detailed in the Appendix A.

Our models and all baselines are evaluated
across a diverse set of downstream tasks span-
ning multiple domains: (1) Commonsense rea-
soning (HellaSwag, Winogrande, PIQA), (2)
General knowledge (ARC_C, ARC_E, MMLU,
Natural Questions), (3) Reading comprehension
(OpenbookQA, BoolQ), (4) Language modeling
(WikiText-2, WikiText-103, LAMBADA, 1BW),
and (5) Translation (WMT-14). Performance re-
sults and comparisons to prior state-of-the-art meth-
ods are detailed in Sections 5.3.

Section 5.4 analyzes the impact of the Focus
and Review stages and the data LFR prioritizes
in SlimPajama. The Appendix provides examples,
details on retained/dropped data across models, ev-
idence that LLMs learn instructions and code after
facts and anecdotes, and a sensitivity study on LFR
hyperparameters.

5.1 LFR Configuration

We pretrain the Llama models for 100k steps, us-
ing 9.8B tokens for the 300M and 500M models
and 19.6B tokens for the 1.1B model, following
the Chinchilla scaling law (Hoffmann et al., 2022)
to ensure optimal data utilization. First, we Learn
for 20k steps (p1 = 20k). Next, we cluster the data
and discard 57.2% of the clusters, retaining only
the 3 most challenging clusters out of 7 based on
their PPL values (s1 = 50). We chose this con-
figuration based on our limited pretraining budget
and profiling in Section 3.2, which showed that
78.5% and 25% of data samples are forgotten at
least once during training for the Llama and GPT
models, respectively. We then apply the Focus

272

Model Tokens Arc_C Arc_E Boolq HS OBQA Piqa WG Avg
300M-RS 50B 17.29 39.06 33.17 32.3 28.83 58.36 48.54 36.79

Pythia-410M 300B 20.1 44 40 35.82 29.59 61.8 49.7 40.14
300M-LFR 9.8B 23.61 39.52 54.86 35.44 30.56 63.21 53.88 43.01
500M-RS 50B 25.1 43.7 53.7 36.5 32.6 65.1 52.2 44.47

Pythia-1.0B 300B 27.05 48.99 60.83 47.16 31.4 69.21 53.43 48.29
500M-LFR 9.8B 28.11 52.89 58.72 50.65 31.1 68.66 55.72 49.4

1.1B-RS 50B 27.31 50.27 60.58 38.11 31.11 66.67 54.99 47
Pythia-1.4B 300B 30.1 61.7 62.11 55.18 30.2 72 63.1 53.48

DSIR 30B 20.14 49.28 61.41 30.89 16.2 61.17 47.99 41.01
PPL 30B 20.82 45.41 58.35 35.92 18.8 66.89 54.62 42.97

1.3B-Quad 30B 20.99 52.27 62.14 34.41 20.00 70.04 52.09 44.56
1.1B-LFR 19.6B 29.18 63.47 62.23 54.27 34.89 73.29 61.12 54.06

Table 1: Zero-shot performance (acc_norm for all except Winogrande and Boolq which use acc) on downstream
tasks evaluated using LLM Evaluation Harness (Gao et al., 2024). RS refers to the random sampling baseline,
HS refers to HellaSwag, and WG refers to Winogrande. The model with the highest performance (measured by
acc_norm) is highlighted in bold. Notably, LFR models are trained using only 3.2-6% of the tokens required to train
Pythia models of comparable size, yet they achieve higher accuracy in 70% of cases. Additionally, LFR models
consistently outperform the random sampling baseline by a large margin, despite being trained on 19.6% of the
pretraining tokens.

stage for 60k steps (p2 = 60k), prioritizing the re-
tained high-PPL clusters. It takes <10min to cluster
which can be hidden by the high training latency.
We provide a detailed analysis on the hierarchical
clustering and the data points found easy and dif-
ficult in Section 5. Lastly, we Review the entire
dataset for the last 20k steps (p3 = 20k). In the
case of the GPT models, we Learn for 1 epoch
(p1 = 1), Focus on 50% of the data for 1 epoch
(s1 = 50, p2 = 1), Review the entire dataset for
another epoch (p3 = 1), and Focus on 30% of the
data for 5 epochs (reps = 2, s2 = 70, p4 = 1).
This configuration is chosen based on the findings
in Section 3.2. Figure 3 reveals that forgotten sam-
ples are typically forgotten multiple times, requir-
ing an average of 4 presentations to be learned.
For GPT, we use the first three phases to identify
these samples and allocate 5 epochs focusing on
30% of them in the final phase to ensure long-term
retention.

These configurations are tunable based on the
available pretraining budget and the optimal tokens
estimated through the Chinchilla scaling laws. Fur-
thermore, we test LFR’s sensitivity to hyperparam-
eters p1, s1, p2, p3, and reps in the Appendix A.

5.2 Baselines

We evaluate the models pretrained using LFR with
a comprehensive set of prior works and industry-
standard checkpoints. They include:

1. Industry-standard models: We compare the
Llama models trained through LFR with
Pythia models (Biderman et al., 2023) of up to
2× the size obtained from EleutherAI’s Hug-
gingface1. These models have been trained
on 300B tokens while the LFR models were
trained on 9.8B-19.6B tokens (3.2-6% of the
tokens). We compare the GPT models pre-
trained through LFR for 40k iterations with
the same GPT architectures pretrained by Ope-
nAI 2 for 800k iterations. We use the same
batch size as these models (Refer to the Ap-
pendix for details) by adjusting the gradient
accumulation steps and the per-device batch
size.

2. Random Sampling: while the previous base-
lines ensures that we compare with industry-
standard models, we also train and compare
LFR against the same models pretrained using
random sampling with 5.10× and 20× more
tokens than LFR for the Llama and GPT mod-
els respectively. This baseline allows us to test
LFR against the same models trained through
traditional autoregressive techniques.

3. Prior works: We compare our training method-
ology with the models trained through the

1https://huggingface.co/models?other=pythia
2https://huggingface.co/openai-community

273

current state-of-the-art data selection meth-
ods such as Quad (Zhang et al., 2024), static-
PPL based filtering (Marion et al., 2023),
DSIR (Xie et al., 2023), and MiniPile (Kad-
dour, 2023) in Section 5.3.

5.3 Performance on Downstream Tasks

We evaluate Llama models trained with LFR on
commonsense reasoning, general knowledge QA,
and reading comprehension, comparing accuracy
norms with baselines in Table 1. LFR outper-
forms random sampling (RS) by 6% while using
2.4×–5× fewer training tokens and improves ac-
curacy over Pythia by 1.5% despite using only
3.2–6% of the tokens. Compared to prior SOTA
data selection, LFR achieves greater dataset prun-
ing while improving downstream performance. No-
tably, their models are over-trained per Chinchilla
laws, highlighting suboptimal data selection.

We test the GPT models on language model-
ing tasks and compare with the OpenAI baseline
in Table 2 by measuring the PPL. Note that our
models are trained on 5% of the training tokens
as compared with the OpenAI models, further val-
idating that data quality is more important than
quantity. We find that the PPL reduction obtained
by LFR increase as the dataset size increases (from
WikiText-2 to 1BW). Also, smaller models show
a larger PPL reduction by using LFR than larger
models. On average, using our approach, perplex-
ity was reduced by 4.92, 3.26, 2.17, and 1.40 for
the GPT 124M, 345M, 774M, and 1.5B models,
respectively.

We also test the LFR-trained models on stan-
dard benchmarks from the translation, question-
answering, world knowledge, and problem solv-
ing domains in Table 3. LFR models trained with
20× fewer training iterations achieves better perfor-
mance than models trained using random sampling.
Details of each of the datasets is provided in the
Appendix A.

5.4 Ablation Study

In this section, our goal is to understand the im-
pacts of the Focus and Review stages of LFR and
exploring more aggressive data selection strategies
by varying the hyperparameters p1, s1, p2, p3, and
reps.

5.4.1 Impact of Focus
Consider training the Llama 300M parameter
model on the SlimPajama dataset, which comprises

Learn Focus Review

Figure 4: PPL values are tracked at different training
iterations for the clusters identified as challenging and
prioritized during the Focus stage of LFR. The dotted
line represents the PPL values for the same clusters
when trained with random sampling (RS). Notably, LFR
facilitates accelerated learning of these challenging data
points between 20k and 60k iterations (the Focus stage),
whereas random sampling consistently results in higher
PPL values throughout.

of seven sub-datasets sourced from CommonCrawl,
Github, C4, Books, Wikipedia, StackExchange,
and ArXiv. During the Focus stage, LFR employs
weighted sampling from the three most challenging
clusters while discarding clusters with the lowest
perplexity (PPL). Additionally, within the retained
clusters, LFR performs hierarchical sampling by
prioritizing regions with higher PPL, further re-
fining the data selection process. LFR classifies
the Github, StackExchange, and ArXiv clusters as
more challenging at 20k iterations, than the other
four data sources.

Figure 4 illustrates the training dynamics of chal-
lenging data points. LFR (solid line) accelerates
learning of these harder examples compared to ran-
dom sampling (dotted line), ensuring complex in-
formation is learned earlier, which drives the per-
formance gains in Table 1. In the Review stage,
discarded clusters (CommonCrawl, C4, Books,
Wikipedia) are reintroduced, bringing LFR and ran-
dom sampling closer together. However, LFR re-
tains the benefits of the Focus stage by performing
marginally better on the challenging sections.

5.4.2 Impact of Review
Next, we analyze the impact of the Review phase
on data points deemed simple and discarded during
Focus. Unlike prior data selection methods, LFR
reintroduces these samples, preventing catastrophic
forgetting. Figure 5 highlights the importance of
Review by plotting PPL values for easy data points
under LFR (solid line) and random sampling (dot-

274

Model WikiText-2 WikiText-103 LAMBADA 1BW
124M-OpenAI (800k iters) 22.1 31.58 18 39.18

124M-RS (40k iters) 23.32 23.42 17.71 39.49
124M-LFR (40k iters) 19.81 22.49 16.61 32.27

345M-OpenAI (800k iters) 19.82 22.05 14.26 29.95
345M-RS (40k iters) 21.11 21.8 14.84 30.66

345M-LFR (40k iters) 16.31 17.48 13.7 25.52
774M-OpenAI (800k iters) 15.93 18.53 13.74 26.52

774M-RS (40k iters) 16.71 18.89 14.10 28.56
774M-LFR (40k iters) 15.11 14.58 12.51 23.83

1.5B-OpenAI (800k iters) 13.80 16.59 12.15 23.87
1.5B-LFR (40k iters) 13.10 14.37 11.23 22.09

Table 2: PPL results for language modeling datasets across model sizes. Here, N -OpenAI refers to the OpenAI
baseline (trained for 800k iterations), N -RS refers to the random sampling baseline (trained for 40k iterations),
and N -LFR refers to our proposed training pedagogy (trained for 40k iterations), where N is the number of model
parameters.

Model Iters
WMT NQ MMLU
(BLEU) (Acc) STEM

(Acc)
HM
(Acc)

SS
(Acc)

Other
(Acc)

Avg.
(Acc)

1.5B OpenAI 800k 11.5 4.1 24.5 24.8 24.0 27.8 25.3
1.5B LFR 40k 11.8 4.61 26.1 27.2 23.8 25.1 25.5

Table 3: LFR-trained GPT models evaluated on translation (WMT-14 (wmt)), question-answering (Natural Ques-
tions (Kwiatkowski et al., 2019)), and world knowledge and problem solving (MMLU (Hendrycks et al., 2021)
domains using the BLEU scores and accuracy metrics. Note that NQ refers to Natural Questions, HM refers to
Humanities, SS refers to Social Sciences, Other refers to business, health, and other miscellaneous topics, and Avg.
refers to the average accuracy across all 57 subjects in MMLU. We compare our 1.5B parameter model with those
trained by OpenAI for 20× more training iterations. The model with the superior performance is highlighted in
bold.

Learn Focus Review

Figure 5: PPL values are tracked at different training
iterations for the clusters identified as easy, discarded
during the Focus stage, and reintroduced during the Re-
view phase. The dotted line represents the PPL values
for the same clusters when trained with random sam-
pling (RS). Notably, we demonstrate that models forget
the data points discarded during training, unless reintro-
duced to the training corpus as in the case of LFR.

ted line). During Focus, when the model prioritizes

challenging clusters like GitHub, StackExchange,
and ArXiv (Figure 4), it forgets discarded data
(solid line rises above dotted). The Review phase
restores these points, ensuring better model perfor-
mance and giving LFR a distinct edge over other
methods (Section 5.3). See the Appendix for raw
examples of easy and difficult samples identified
by LFR.

5.5 Overall Learning Schedule

LFR reveals that models follow a structured learn-
ing trajectory: first mastering conversational and
anecdotal data (CommonCrawl, C4, books), then
retaining factual knowledge (Wikipedia), and fi-
nally learning code, QA, and scientific content
(ArXiv). By recognizing this progression auto-
matically as shown in Sections 5.4.1 and 5.4.2,
LFR optimizes training by dynamically guiding the
model at its own learning pace, ensuring efficient
and targeted learning.

275

6 Conclusion

We introduced LFR (Learn-Focus-Review), a novel
data selection paradigm that accelerates LLM pre-
training while significantly reducing training costs.
Through 2200 GPU hours of experiments, LFR
achieved lower perplexity and higher accuracy
while using up to 20× fewer training iterations than
traditional methods. Our findings show that LLMs
follow a natural learning progression—first acquir-
ing conversational data, then factual knowledge,
and finally mastering code and scientific concepts.
By dynamically guiding learning, LFR provides a
scalable, cost-effective alternative to existing pre-
training strategies. We hope this work inspires
further research into more adaptive and efficient
training paradigms.

7 Acknowledgments

This work is partially supported by the PRISM Cen-
ter under the JUMP 2.0 Program, CDSC Industry
Partners (https://cdsc.ucla.edu/partners/),
AMD HACC Program, and NSF 2048280,
2331966, 2325121, 2244760. The authors would
like to thank AMD for their generous support pro-
vided through the AMD AI & HPC Fund Research
Award.

8 Limitations and Ethical Considerations

LFR presents the following directions for future
work:

1. LFR is evaluated on models up to 1.5B pa-
rameters using open-source corpus like the
SlimPajama dataset, constrained by our com-
pute resources. With the clear success on
models of such scale, we hope to inspire re-
searchers to validate such focused learning
approaches for different model families, and
domains.

2. The sensitivity study in Section 5.4 and the
Appendix reveals that the hyperparameters se-
lected in Section 4 have a large impact on
the performance of the trained model. Due to
our limited compute budget, we are unable to
present more comprehensive hyperparameter
tuning experiments than those presented in
Section 5.4.

References
a. Arc Challenge Dataset. https://huggingface.co/

datasets/allenai/ai2_arc.

b. Arc Easy Dataset. https://huggingface.co/
datasets/allenai/ai2_arc.

a. BookCorpus Dataset. https://huggingface.co/
datasets/bookcorpus/bookcorpus.

b. BoolQ Dataset. https://huggingface.co/
datasets/google/boolq.

GPT-4 Cost Estimation. https://en.wikipedia.
org/wiki/GPT-4#:~:text=Sam%20Altman%
20stated%20that%20the,was%20more%20than%
20%24100%20million.

HellaSwag Dataset. https://huggingface.co/
datasets/DatologyAI/hellaswag.

MiniPile Dataset. https://huggingface.co/
datasets/JeanKaddour/minipile.

OpenBookQA Dataset. https://huggingface.co/
datasets/allenai/openbookqa.

OpenWebText Dataset. https://huggingface.co/
datasets/Skylion007/openwebtext.

PIQA Dataset. https://huggingface.co/
datasets/ybisk/piqa.

Spaced Repetition: Wikipedia. https://en.
wikipedia.org/wiki/Spaced_repetition.

WikiText Dataset. https://huggingface.co/
datasets/Salesforce/.

WinoGrande Dataset. https://huggingface.co/
datasets/allenai/winogrande.

WMT-14 Hugging Face Dataset. https://
huggingface.co/datasets/wmt/wmt14.

2024. Meta Llama 3. https://ai.meta.com/blog/
meta-llama-3/.

Amro Abbas, Kushal Tirumala, Dániel Simig, Surya
Ganguli, and Ari S. Morcos. 2023. Semdedup: Data-
efficient learning at web-scale through semantic dedu-
plication. Preprint, arXiv:2303.09540.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018. Unsupervised neural ma-
chine translation. In International Conference on
Learning Representations.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar Van Der Wal. 2023. Pythia:
a suite for analyzing large language models across
training and scaling. In Proceedings of the 40th Inter-
national Conference on Machine Learning, ICML’23.
JMLR.org.

276

https://cdsc.ucla.edu/partners/
https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/bookcorpus/bookcorpus
https://huggingface.co/datasets/bookcorpus/bookcorpus
https://huggingface.co/datasets/google/boolq
https://huggingface.co/datasets/google/boolq
https://en.wikipedia.org/wiki/GPT-4#:~:text=Sam%20Altman%20stated%20that%20the,was%20more%20than%20%24100%20million.
https://en.wikipedia.org/wiki/GPT-4#:~:text=Sam%20Altman%20stated%20that%20the,was%20more%20than%20%24100%20million.
https://en.wikipedia.org/wiki/GPT-4#:~:text=Sam%20Altman%20stated%20that%20the,was%20more%20than%20%24100%20million.
https://en.wikipedia.org/wiki/GPT-4#:~:text=Sam%20Altman%20stated%20that%20the,was%20more%20than%20%24100%20million.
https://huggingface.co/datasets/DatologyAI/hellaswag
https://huggingface.co/datasets/DatologyAI/hellaswag
https://huggingface.co/datasets/JeanKaddour/minipile
https://huggingface.co/datasets/JeanKaddour/minipile
https://huggingface.co/datasets/allenai/openbookqa
https://huggingface.co/datasets/allenai/openbookqa
https://huggingface.co/datasets/Skylion007/openwebtext
https://huggingface.co/datasets/Skylion007/openwebtext
https://huggingface.co/datasets/ybisk/piqa
https://huggingface.co/datasets/ybisk/piqa
https://en.wikipedia.org/wiki/Spaced_repetition
https://en.wikipedia.org/wiki/Spaced_repetition
https://huggingface.co/datasets/Salesforce/
https://huggingface.co/datasets/Salesforce/
https://huggingface.co/datasets/allenai/winogrande
https://huggingface.co/datasets/allenai/winogrande
https://huggingface.co/datasets/wmt/wmt14
https://huggingface.co/datasets/wmt/wmt14
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2303.09540
https://arxiv.org/abs/2303.09540
https://arxiv.org/abs/2303.09540
https://openreview.net/forum?id=Sy2ogebAW
https://openreview.net/forum?id=Sy2ogebAW

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
2014. One billion word benchmark for measuring
progress in statistical language modeling. Preprint,
arXiv:1312.3005.

Jie Chen, Zhipeng Chen, Jiapeng Wang, Kun Zhou, Yu-
tao Zhu, Jinhao Jiang, Yingqian Min, Wayne Xin
Zhao, Zhicheng Dou, Jiaxin Mao, Yankai Lin, Rui-
hua Song, Jun Xu, Xu Chen, Rui Yan, Zhewei Wei,
Di Hu, Wenbing Huang, and Ji-Rong Wen. 2024. To-
wards effective and efficient continual pre-training of
large language models. Preprint, arXiv:2407.18743.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao

Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi
Gao, and Zizheng Pan. 2025. Deepseek-v3 technical
report. Preprint, arXiv:2412.19437.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800GB Dataset of Diverse Text for Language Model-
ing. Preprint, arXiv:2101.00027.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Amir Gholami, Zhewei Yao, Sehoon Kim, Cole-
man Hooper, Michael W. Mahoney, and Kurt
Keutzer. 2024. AI and Memory Wall. Preprint,
arXiv:2403.14123.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models. Preprint, arXiv:2203.15556.

Jean Kaddour. 2023. The MiniPile Challenge
for Data-Efficient Language Models. Preprint,
arXiv:2304.08442.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering

277

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/2407.18743
https://arxiv.org/abs/2407.18743
https://arxiv.org/abs/2407.18743
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://arxiv.org/abs/2403.14123
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2304.08442
https://arxiv.org/abs/2304.08442
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276

research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, ye-
long shen, Ruochen Xu, Chen Lin, Yujiu Yang, Jian
Jiao, Nan Duan, and Weizhu Chen. 2024. Not all
tokens are what you need for pretraining. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex
Wang, Marzieh Fadaee, and Sara Hooker. 2023.
When Less is More: Investigating Data Prun-
ing for Pretraining LLMs at Scale. Preprint,
arXiv:2309.04564.

Niklas Muennighoff, Alexander M. Rush, Boaz Barak,
Teven Le Scao, Aleksandra Piktus, Nouamane Tazi,
Sampo Pyysalo, Thomas Wolf, and Colin Raffel.
2023. Scaling data-constrained language models.
ArXiv, abs/2305.16264.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,

Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu,
Qiming Yuan, Wojciech Zaremba, Rowan Zellers,
Chong Zhang, Marvin Zhang, Shengjia Zhao, Tian-
hao Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. GPT-4 Technical Report. Preprint,
arXiv:2303.08774.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The RefinedWeb Dataset
for Falcon LLM: Outperforming Curated Corpora
with Web Data, and Web Data Only. Preprint,
arXiv:2306.01116.

Alec Radford, Jeff Wu, Rewon Child, David Luan,

278

https://doi.org/10.1162/tacl_a_00276
https://openreview.net/forum?id=0NMzBwqaAJ
https://openreview.net/forum?id=0NMzBwqaAJ
https://arxiv.org/abs/2309.04564
https://arxiv.org/abs/2309.04564
https://api.semanticscholar.org/CorpusID:258888192
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116

Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Paul Smolen, Yili Zhang, and John Byrne. 2016a. The
right time to learn: mechanisms and optimization of
spaced learning. Nature Reviews Neuroscience, 17.

Paul Smolen, Yili Zhang, and John H. Byrne. 2016b.
The right time to learn: mechanisms and optimization
of spaced learning. Nature Reviews Neuroscience,
17(2):77–88.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Behzad Tabibian, Utkarsh Upadhyay, Abir De, Ali
Zarezade, Bernhard Schölkopf, and Manuel Gomez-
Rodriguez. 2019. Enhancing human learning via
spaced repetition optimization. Proceedings of the
National Academy of Sciences, 116(10):3988–3993.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan,
and Ari S. Morcos. 2023. D4: Improving LLM Pre-
training via Document De-Duplication and Diversifi-
cation. Preprint, arXiv:2308.12284.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2024. Text embeddings by
weakly-supervised contrastive pre-training. Preprint,
arXiv:2212.03533.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and
Danqi Chen. 2024. Qurating: selecting high-quality
data for training language models. In Proceedings of
the 41st International Conference on Machine Learn-
ing, ICML’24. JMLR.org.

Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Vic-
toria Lin, Ramakanth Pasunuru, Danqi Chen, Luke
Zettlemoyer, and Ves Stoyanov. 2022. Training tra-
jectories of language models across scales. ArXiv,
abs/2212.09803.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma,
and Percy Liang. 2023. Data selection for lan-
guage models via importance resampling. Preprint,
arXiv:2302.03169.

Zichun Yu, Spandan Das, and Chenyan Xiong. 2024.
Mates: Model-aware data selection for efficient
pretraining with data influence models. ArXiv,
abs/2406.06046.

Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang
Chai, Rui Wang, Xinlin Zhuang, Tianyi Bai, Jiantao
Qiu, Lei Cao, Ye Yuan, Guoren Wang, and Conghui
He. 2024. Harnessing diversity for important data se-
lection in pretraining large language models. ArXiv,
abs/2409.16986.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
Opt: Open pre-trained transformer language mod-
els. ArXiv, abs/2205.01068.

279

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://www.nature.com/articles/nrn.2015.18
https://www.nature.com/articles/nrn.2015.18
https://www.nature.com/articles/nrn.2015.18
https://doi.org/10.1038/nrn.2015.18
https://doi.org/10.1038/nrn.2015.18
https://doi.org/10.1073/pnas.1815156116
https://doi.org/10.1073/pnas.1815156116
https://arxiv.org/abs/2308.12284
https://arxiv.org/abs/2308.12284
https://arxiv.org/abs/2308.12284
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533
https://api.semanticscholar.org/CorpusID:254877112
https://api.semanticscholar.org/CorpusID:254877112
https://arxiv.org/abs/2302.03169
https://arxiv.org/abs/2302.03169
https://api.semanticscholar.org/CorpusID:270371045
https://api.semanticscholar.org/CorpusID:270371045
https://api.semanticscholar.org/CorpusID:272880910
https://api.semanticscholar.org/CorpusID:272880910
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:248496292

A Appendix

A.1 Experiment Details
Datasets The datasets used for our experiments are
detailed below:

1. ARC-Challenge (arc, a): A subset of the AI2
Reasoning Challenge with 2,590 challenging
multiple-choice science questions designed to
test advanced reasoning and knowledge.

2. ARC-Easy (arc, b): A subset of the AI2 Rea-
soning Challenge with 5,117 relatively easier
multiple-choice science questions focusing on
basic reasoning and recall.

3. BoolQ (boo, b): A dataset of 16,000+ boolean
(yes/no) questions paired with passages, re-
quiring models to infer answers from support-
ing evidence.

4. HellaSwag (hel): A dataset with 70,000+
multiple-choice questions focused on com-
monsense reasoning and contextual under-
standing, particularly in describing scenarios.

5. OpenBookQA (Ope): A multiple-choice
question-answering dataset with 5,957 ques-
tions requiring knowledge retrieval from a sci-
ence "open book" and commonsense reason-
ing.

6. PIQA (Piq): A physical commonsense reason-
ing dataset with 20,000+ binary-choice ques-
tions about everyday situations and physical
interactions.

7. Winogrande (win): A dataset with 44,000+
sentence pairs designed to test commonsense
reasoning through pronoun disambiguation
challenges.

8. WikiText (wik): the WikiText language mod-
eling dataset consists of 100M tokens ex-
tracted from Wikipedia articles with high rat-
ing. It features two different variants, namely,
WikiText-2 and WikiText-103 which differ
in the number of tokens and vocabulary size.
WikiText-2 consists of 2M tokens and a vo-
cabulary size of 33k whereas WikiText-103
is larger with 103M tokens and a vocabulary
size of 267k.

9. LAMBADA (Paperno et al., 2016): the LAM-
BADA dataset is extracted from the BookCor-
pus dataset (boo, a) and contains 10k passages.

This dataset is useful for testing the ability of
an LLM to capture long-range dependencies
in text. The objective of this model is to pre-
dict the final word in a set of sentences, where
humans need at least 50 tokens of context to
accurately anticipate the word.

10. One Billion Word Benchmark (Chelba et al.,
2014) (1BW): this dataset contains one billion
words extracted from the WMT 2011 News
Crawl data and is used to measure progress in
statistical language modeling.

11. WMT-14 French-English Translation (Artetxe
et al., 2018): This dataset contains 36 million
training sentence pairs for english to french
translation. The test set, which is used for eval-
uation purposes, consists of 3,003 sentence
pairs.

12. Natural Questions (Kwiatkowski et al., 2019):
This dataset contains question-answer pairs
from Google Search and Wikipedia-based an-
notations. The training, validation, and test
sets consist of 307,372, 7,830, and 7,842 ex-
amples.

Models: Tables 4 and 5 describes the different
model configurations and pretraining hyperparame-
ters used in LFR for the Llama models.

300M 500M 1.1B
Layers 12 11 22
#Heads 16 32 32
n_embd 1024 2048 2048

Table 4: Number of layers, attention heads, and the
embedding dimensions in the Llama models used for
pretraining.

Tables 6 and 7 describes the different model con-
figurations and pretraining hyperparameters used
in LFR for the GPT-2 models.

Pretraining: Table 7 shows the hyperparameters
for pretraining the GPT-2 124M-1.5B parameter
models.

Note that OpenAI pretrained the GPT-2 models
using a batch size of 512. Due to insufficient GPU
memory, we adjust the number of gradient accumu-
lation steps to achieve the same effective batch size
of 512.

Finetuning: We use all the same hyperparame-
ters as pretraining, except for the following:

1. Learning rate: 3.00E-5

280

Parameter Value
Context Length 1024
Embedding Dimen-
sion

(768, 1024, 2048)

Total Iterations 100,000
Effective Batch Size 768
Block Size 4096
Weight Decay 1.00E-1
Adam β1 0.90
Adam β2 0.95
Warmup Iterations 8000
Minimum Learning
Rate

4.00E-5

Maximum Learning
Rate

4.00E-04

Learning Rate Sched-
ule

Cosine Decay

Learning Rate Decay
Iterations

100,000

GPUs (4x AMD MI210,
4x AMD MI210, 8x
AMD MI250)

Table 5: Pretraining hyperparameters for the Llama
300M-1.1B parameter models. Parameters with mul-
tiple values (e.g. Embedding dimensions, batch size,
gradient accumulation steps, and GPUs) specified in
brackets are for the 300M, 500M, and 1.1B parameter
models respectively.

2. Learning rate schedule: Constant

3. Total iterations: 50

A.2 Limitations and Ethical Considerations
LFR presents the following directions for future
work:

1. LFR is evaluated on models up to 1.5B pa-
rameters using web-scale datasets such as
SlimPajama, constrained by our compute re-
sources. With the clear success on models of
such scale, we hope to inspire researchers to
validate such focused learning approaches for
different model families, and domains.

2. The sensitivity study in this Appendix reveals
that the hyperparameters selected in the evalu-
ation section have a large impact on the perfor-
mance of the trained model. Due to our lim-
ited compute budget, we are unable to present
more comprehensive hyperparameter tuning
experiments than those presented later in this
Appendix.

124M 355M 774M 1.5B
Layers 12 24 36 48
#Heads 12 16 20 25
n_embd 768 1024 1280 1600

Table 6: Number of layers, attention heads, and the
embedding dimensions in the GPT-2 models used for
pretraining.

Figure 6: Clustering the data embeddings from the
SlimPajama dataset using the Llama-300M model at
the 50k training step.

A.3 Llama Pretraining - Data Importance

In this section, we study the data points identified
as easy and challenging by LFR when pretraining
with the SlimPajama dataset. Listing A.3 provides
an example of a code snippet from Github classified
as easy by LFR, and discarded in the Focus stage
of the Llama model training. Listing A.3 provides
an example of a data sample retained from the
Github cluster. Note that this code is more complex,
presents an opportunity to the model to improve
its coding capabilities as opposed to the variable
declarations in Listing A.3.

Listing 1: Code snippet classified as easy by LFR, pri-
marily consisting of variable declarations. As seen
from the code, it contributes minimally to enhancing the
model’s coding capabilities.

package f r c l i b j ;

import edu . wpi . f i r s t . w p i l i b j .
Timer ;

p u b l i c c l a s s TrcDbgTrace
{

p u b l i c s t a t i c f i n a l S t r i n g
ESC_PREFIX = " \ u001b
[" ;

281

Parameter Value
Context Length 1024
Embedding Dimen-
sion

(768, 1024, 1280,
1600)

Total Iterations 40000
Effective Batch Size 512
Batch Size (16, 16, 8, 4)
Gradient Accumula-
tion Steps

(32, 32, 64, 128)

Block Size 1024
Weight Decay 1.00E-01
Adam β1 0.9
Adam β2 0.95
Warmup Iterations 2000
Minimum Learning
Rate

6.00E-05

Maximum Learning
Rate

6.00E-04

Learning Rate Sched-
ule

Linear

Learning Rate Decay
Iterations

40000

GPUs (4xMI100, 4xMI210,
4xMI210, 4xMI210)

Table 7: Pretraining hyperparameters for the GPT-2
124M-1.5B parameter models. Parameters with multiple
values (e.g. Embedding dimensions, batch size, gradient
accumulation steps, and GPUs) specified in brackets are
for the 124M, 345M, 774M, and 1.5B parameter models
respectively.

p u b l i c s t a t i c f i n a l S t r i n g
ESC_SUFFIX = "m" ;

p u b l i c s t a t i c f i n a l S t r i n g
ESC_SEP = " ; " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_RESET = " 0 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_BRIGHT = " 1 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_DIM = " 2 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_ITALIC = " 3 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_UNDERLINE = " 4 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_BLINKSLOW = " 5 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_BLINKFAST = " 6 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_REVERSE = " 7 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_HIDDEN = " 8 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_CROSSEDOUT = " 9 " ;

p u b l i c s t a t i c f i n a l S t r i n g
ESC_NORMAL =
ESC_PREFIX ;

}

Listing 2: Code snippet classified as challenging by
LFR. This code consists of a function which executes
an Oracle query and returns a scalar value. As seen
from the code, it contributes significantly to enhanc-
ing the model’s coding capabilities as compared with
Listing A.3.

/ / / <summary>
/ / / E x e c u t e s an O r a c l e que ry t h a t

r e t u r n s a s i n g l e s c a l a r v a l u e
as t h e r e s u l t .

/ / / </ summary >
/ / / <param name=" commandText ">The

O r a c l e que ry t o e x e c u t e < /
param >

/ / / <param name=" p a r a m e t e r s ">
O p t i o n a l p a r a m e t e r s t o p a s s t o

t h e query < / param >
/ / / < r e t u r n s >The r e s u l t o f t h e

que ry as an o b j e c t < / r e t u r n s >
p u b l i c o b j e c t QueryValue (s t r i n g

commandText , IEnumerab le
p a r a m e t e r s)

{
o b j e c t r e s u l t ;

i f (S t r i n g . I sNul lOrEmpty (
commandText))

{
throw new

ArgumentExcep t ion ("
Command t e x t c a n n o t be

n u l l o r empty . ") ;
}

t r y
{

ensu reConne c t i onOpen () ;
v a r command =

createCommand (
commandText ,

282

p a r a m e t e r s) ;
r e s u l t = command .

E x e c u t e S c a l a r () ;
}
f i n a l l y
{

e n s u r e C o n n e c t i o n C l o s e d () ;
}

r e t u r n r e s u l t ;
}

Similarly, we also provide examples of question-
answer pairs from StackExchange which were dis-
carded and retained in the Focus stage of the Llama
pretraining in Listings A.3 and A.3 respectively.

Listing 3: Question-answer pair from StackExchange
classified as easy by LFR. The question revolves around
a process in PayPal which does not contribute as much
to the answering capability or world knowledge of the
model.

Q: PayPa l IPN $_POST [’ t x n _ i d ’]
n o t s e t . I ’m u s i n g t h e PayPa l
sandbox t o do a s u b s c r i b e
b u t t o n , and t h e n when I g e t
t h e IPN r e s p o n s e f o r a
s u b s c r i p t i o n o r a s u b s c r i p t i o n

c a n c e l l a t i o n $_POST [’ t x n _ i d ’]
i s n e v e r s e t .

So I don ’ t know how t o i d e n t i f y
t r a n s a c t i o n s t o on ly a c c e p t
un iq ue ones .

Thanks !
EDIT : f o r example , a l l t h e i n f o

t h a t I have i n POST f o r a
s u b s c r _ c a n c e l a r e :

amount1 , amount3 , a d d r e s s _ s t a t u s ,
s u b s c r _ d a t e , p a y e r _ i d ,

a d d r e s s _ s t r e e t , mc_amount1 ,
mc_amount3 , c h a r s e t ,
a d d r e s s _ z i p , f i r s t _ n a m e ,
r e a t t e m p t ,
a d d r e s s _ c o u n t r y _ c o d e ,
address_name , n o t i f y _ v e r s i o n ,
s u b s c r _ i d , custom ,
p a y e r _ s t a t u s , b u s i n e s s ,
a d d r e s s _ c o u n t r y , a d d r e s s _ c i t y ,

v e r i f y _ s i g n , p a y e r _ e m a i l ,
b t n _ i d , l a s t_name ,
a d d r e s s _ s t a t e , r e c e i v e r _ e m a i l ,

r e c u r r i n g , t x n _ t y p e ,
item_name , mc_currency ,

r e s i d e n c e _ c o u n t r y , t e s t _ i p n ,
p e r i o d 1 , p e r i o d 3 ,
c o r r e l a t i o n _ i d .

A: Accord ing t o Tab le 2 . Summary
of s u b s c r i p t i o n v a r i a b l e s :

For s u b s c r i p t i o n v a r i a b l e s , t h e
t r a n s a c t i o n ID (t x n _ i d) i s
on ly a v a i l a b l e f o r USD Payment

and Mul t i − Cur rency Payment
t r a n s a c t i o n t y p e s (t x n _ t y p e) .

As e xpec t ed , PayPa l w i l l n o t send
t h e t x n _ i d t o your IPN f o r

t h e t r a n s a c t i o n type ,
s u b s c r _ c a n c e l , and w i l l on l y
send t x n _ i d i f t h e t r a n s a c t i o n

t y p e i s s u b s c r _ p a y m e n t .

For f u r t h e r e x p l a n a t i o n on which
v a r i a b l e s a r e s e n t t o your IPN
URL based on your t r a n s a c t i o n

, p l e a s e check o u t IPN and PDT
V a r i a b l e s .

Have you checked $_REQUEST[’
t x n _ i d ’] a s t h i s may be s e n t
t o your s e r v e r v i a GET .

Listing 4: Question-answer pair from StackExchange
classified as challenging by LFR. The question revolves
around solving an ODE which contributes more to the
learning of the model than Listing A.3.

Q: P a s s i n g a d d i t i o n a l i t e r a t i o n −
d e p e n d e n t i n p u t s t o ode45

I ’m t r y i n g t o s o l v e a
d i f f e r e n t i a l e q u a t i o n u s i n g
t h e ode45 f u n c t i o n . C o n s i d e r
t h e f o l l o w i n g code ,

[t1 , X2] = ode45 (@(t , x) fun (t , x , C1 ,
C2 , C3 , C4) , t0 , X01) ;

where p a r a m e t e r s C1 , C2 , C3 , and
C4 a r e column v e c t o r s , which
s h o u l d be a v a i l a b l e t o t h e
f u n c t i o n t h a t ode45 i s
r e f e r r i n g t o (fun .m) .

I want t h e v a l u e s t o change a f t e r
e v e r y i t e r a t i o n , so f o r

example , a t t h e b e g i n n i n g t h e
e n t r y o f C1 I want i s C1 (1) ,
i n t h e n e x t i t e r a t i o n i t ’ s C1

283

(2) , e t c .
How can I implement t h a t ?

A: You may have n o t i c e d t h a t t h e
o f f i c i a l docs a r e n o t t o o
h e l p f u l i n t h i s s c e n a r i o (a s
t h e y p r e t t y much f o r c e you t o
use g l o b a l v a r i a b l e s − which
i s doab le , b u t d i s c o u r a g e d) .

I n s t e a d , I ’ l l show you how t h i s
can be done wi th c l a s s e s and
f u n c t i o n h a n d l e s . C o n s i d e r t h e

f o l l o w i n g :

c l a s s d e f SimpleQueue < h a n d l e
%SIMPLEQUEUE A s i m p l e FIFO d a t a

s t r u c t u r e .

p r o p e r t i e s (Access = p r i v a t e)
d a t a
p o s i t i o n

end

methods (Access = p u b l i c)
f u n c t i o n o b j = SimpleQueue (

i n p u t D a t a)
%SIMPLEQUEUE C o n s t r u c t an

i n s t a n c e o f t h i s c l a s s
o b j . d a t a = i n p u t D a t a ;
r ewind (o b j) ;

end % c o n s t r u c t o r

f u n c t i o n o u t = pop (obj ,
howMany)

%POP r e t u r n t h e n e x t
howMany e l e m e n t s .

i f n a r g i n < 2
howMany = 1 ; % d e f a u l t

amount o f v a l u e s t o
r e t u r n

end
f i n a l P o s i t i o n = o b j .

p o s i t i o n + howMany ;
i f f i n a l P o s i t i o n > numel (

o b j . d a t a)
e r r o r (’ Too many e l e m e n t s

r e q u e s t e d ! ’) ;
end
o u t = o b j . d a t a (o b j . p o s i t i o n

+ 1 : o b j . p o s i t i o n +
howMany) ;

o b j . p o s i t i o n =

f i n a l P o s i t i o n ;
end % pop

f u n c t i o n [] = rewind (o b j)
%REWIND r e s t a r t s t h e

e l e m e n t t r a c k i n g
% S u b s e q u e n t c a l l s t o pop ()

s h a l l r e t u r n e l e m e n t s
from t h e b e g i n n i n g .

o b j . p o s i t i o n = 0 ;
end % rewind

end % methods
end % c l a s s d e f

How t o use t h i s ? Simple :
C1q = SimpleQueue (C1) ;
C2q = SimpleQueue (C2) ;
C3q = SimpleQueue (C3) ;
C4q = SimpleQueue (C4) ;

[t1 , X2] = ode45 (@(t , x) fun (t , x ,
@C1q . pop , @C2q . pop ,

@C3q . pop , @C4q . pop) , t0 , X01) ;

As you can see , i n s i d e fun we use
C1q () i n s t e a d o f C1 .

A.4 Sensitivity Study

In this section, our goal is to understand the effects
of more aggressive focus, revision, and learning
strategies than the training strategy presented in the
paper. Here, we vary the values of hyperparame-
ters p1, s1, p2, p3, and reps and study the effects
on the downstream task perplexity. Note that the
GPT-2 models used a four phase training process.
Specifically, we aim to answer the following two
questions using the GPT-2 models:

1. What is the impact of not reintroducing the
discarded data samples?

2. What is the impact of the degree of pruning in
Phases 2 and 4?

To answer the first question, we pretrain a 124M
parameter GPT-2 model without the reintroduction
of data blocks in Phase 3, and use the reduced sub-
set from Phase 2 for the rest of the training. Then,
we finetune for downstream language modeling
tasks similarly and compared the perplexities us-
ing LFR in Table 8. This training strategy which
removes Phase 3, is labeled as no-reintro. Next,

284

to answer the second question, we pretrain a 124M
parameter GPT-2 model using LFR but increase the
degree of pruning in Phase 2 from 50% to 70%, i.e.,
reduce the training subset to 30% of the original
size. This aggressive training strategy is labeled as
aggr-2.

We observe that both aggressive training strate-
gies do not work as well as the original method.
However, we continue to explore more automated
ways of deciding the training schedule for different
model families as part of our future work.

Model WikiText-2 WikiText-103 LAMBADA 1BW
no-reintro 23.24 25.76 17.27 36.02

aggr-2 23.91 27.00 21.11 38.62
LFR 19.81 22.49 16.61 32.27

Table 8: Downstream task perplexities with more ag-
gressive training strategies.

A.5 Analysis on Dropped and Retained Data
Blocks - GPT-2

In this section, our goal is to characterize the data
points retained and dropped during pretraining by
LFR in Phases 2 and 4 across the training time
and model size. Specifically, we aim to answer the
following questions:

1. What types of data blocks are learned ear-
lier in the training process compared to those
learned later?

2. Are similar data blocks considered learned
and dropped in Phases 2 and 4?

3. Are the dropped data blocks similar across
model sizes?

4. Are the data blocks dropped similar to those
retained at any given training phase?

To answer the first question, we printed out the
texts dropped and retained at different training
phases. Tables 12 and 14 show text blocks dropped
in Phases 2 and 4 by the 345M and 124M parameter
models, while Tables 13 and 15 show data blocks
retained. By reading through the texts, we notice
that the model first learned conversations and per-
sonal anecdotes, before being able to retain factual
information. We provide a more detailed analysis
of the learning process in Section A.6.

In order to answer questions 2-4, we recorded
only the IDs of dropped data blocks during Phases
2 and 4 for both the GPT-2 124M and GPT-2 345M

models, totaling 4 lists of dropped IDs. We then
load the recorded data blocks and embed them into
a higher dimensional space using the GPT-2 tok-
enizer. Considering that there is a total of 8.7M
data blocks (9B tokens divided into blocks of 1024
tokens), we cluster the embeddings using k-means
clustering with k = 270 to reduce the analysis
space and complexity. Finally, for each model, we
compute the cosine similarity for all combinations
of the embeddings of dropped data blocks across
training phases and visualize them using a heatmap.
These heatmaps plot the cosine similarity values
(ranging between 0 and 1) such that lighter values
(closer to 1) indicate higher similarity.

Figure 7 shows the similarity of dropped data
blocks across the time scale (Phase 2 shown on the
X-axis and Phase 4 shown on the Y-axis) for the
124M (left) and 345M (right) parameter models.
We find that there is a higher similarity in the data
points dropped by the 124M parameter model in
Phases 2 and 4 than in the case of the 345M param-
eter model (mean, variance, and standard deviation
are provided in Table 9). This behavior signals that
the lower capacity of the 124M parameter model
inhibits its learning process in Phase 3, such that it
finds similar points confusing in Phases 2 and 4. In
contrast, the 345M parameter model learns the data
blocks it found confusing in Phase 2 by focusing
on them, and moves on to learning new complex
blocks by Phase 4.

We conduct a similar study in order to character-
ize the similarity in data blocks across model sizes.
Figure 8 plots the cosine similarity heatmap for the
data blocks dropped by the 124M parameter model
(X-axis) and those dropped by the 345M parameter
model (Y-axis) in Phase 2. The mean, variance,
and standard deviations of the cosine similarity are
0.38, 0.15, and 0.023, respectively. This indicates
that the data blocks found easy and dropped in
Phase 2 by both models display a moderate level
of similarity, but also differ significantly.

Finally, we observe the cosine similarity of data
blocks dropped and retained during phase 4 for the
124M (left) and 345M (right) parameter models in
Figure 9. The mean, standard deviation, and vari-
ance are detailed in Table 10. The smaller model
displays greater similarity (lighter values in the
heatmap) between the dropped and retained blocks
than the larger model. We hypothesize that the
larger model can perform reasonably well across
similar data points, but struggles with very differ-
ent complex blocks by the fourth training phase.

285

GPT-2 124M Dropped Data Blocks in Phase 2

G
PT

-2
 1

24
M

 D
ro

pp
ed

 D
at

a
Bl

oc
ks

 in
 P

ha
se

 4

GPT-2 345M Dropped Data Blocks in Phase 2

G
PT

-2
 3

45
M

 D
ro

pp
ed

 D
at

a
Bl

oc
ks

 in
 P

ha
se

 4

Figure 7: Cosine similarity heatmaps for dropped data blocks during phases 2 and 4 of pretraining for the GPT-2
124M (right) and 345M (left) models. The smaller model displays greater similarity in dropped data blocks over
time (lighter color), indicating that it remained uncertain about similar data points than the larger model.

Model Mean Std Variance
GPT-2 124M 0.45 0.20 0.04
GPT-2 345M 0.30 0.12 0.01

Table 9: Mean, standard deviation (std), and variance
of cosine similarity matrices for dropped data blocks
across time scale (Phase 2 and Phase 4) for the GPT-2
124M and 345M models.

In contrast, the smaller model does not display the
same high-level of understanding (similar perplex-
ity values) on related data blocks.

To summarize, data block importance varies
across training time, and across model sizes.
Therefore, static data selection techniques (Tiru-
mala et al., 2023; Abbas et al., 2023; Kaddour,
2023; Xie et al., 2023) which select a fixed subset
to train for the entire training duration for all model
architectures do not adapt to the changing train-
ing dynamics of LLMs. Based on our analysis in
Figure 8 and 7, different data blocks are found dif-
ficult by models of different capacities at different
training instants, driving the need for dynamic data
selection methods like LFR. We detail further anal-
ysis on the selected and discarded data blocks and
demonstrate how models initially focus on learning
conversational and anecdotal data, before proceed-
ing to learn factual data in Appendix A.6.

A.6 Extended Analysis on Dropped and
Retained Data Blocks for GPT-2

In this section, we expand on the ablation study in
Section A.5 in order to better characterize the data

Model Mean Std Variance
GPT-2 124M 0.44 0.21 0.046
GPT-2 345M 0.32 0.13 0.018

Table 10: Mean, standard deviation (std), and variance
of cosine similarity matrices for dropped and retained
data blocks in Phase 4 of pretraining for the GPT-2
124M and 345M models.

Figure 8: Cosine similarity heatmap for data blocks
dropped during Phase 2 of GPT-2 124M and 345M pre-
training shows moderate similarity, indicating different
data points are considered easy by each model.

Model Mean Std Variance
GPT-2 124M 0.42 0.19 0.04
GPT-2 345M 0.40 0.18 0.03

Table 11: Mean, standard deviation (std), and variance
of cosine similarity matrices for dropped and retained
data blocks in phase 2 of pretraining for the GPT-2
124M and 345M models.

286

GPT-2 124M Dropped Data Blocks in Phase 4

G
PT

-2
 1

24
M

 R
et

ai
ne

d
D

at
a

Bl
oc

ks
 in

 P
ha

se
 4

G
PT

-2
 3

45
M

 R
et

ai
ne

d
D

at
a

Bl
oc

ks
 in

 P
ha

se
 4

GPT-2 345M Dropped Data Blocks in Phase 4

Figure 9: Cosine similarity heatmaps for dropped and retained data blocks during Phase 4 of pretraining for the
GPT-2 124M (right) and 345M (left) models.

Become a fan of Slate on Facebook. Follow us
on Twitter.The first time I crocheted a soccer
ball was on the occasion of the 2010 World Cup.
It was being held on the continent of Africa,
and I thought the African Flower hexagon motif
was the perfect vehicle for a crochet soccer ball
celebrating the continent’s first time hosting the
World Cup: This time around, instead of using
all 9000 of my favorite colors, I limited myself
to the colors of the flags of the thirty-two coun-
tries that had made it to the final rounds of the
World Cup competition, and I did my best to
incorporate the designs of their flags into the
thirty-two hexagons and pentagons of a soccer
ball.
ML-77 Missile Launcher: Based on existing
technology, the ML-77 is a rapid-fire missile
launcher using seeking projectiles. Each projec-
tile features a friend-or-foe recognition system,
ensuring it will find a hostile target even if the
user’s aim is not completely accurate. The lock-
ing mechanism of the ML-77 allows the shooter
to ignore cover and line of sight when shooting
at locked on enemies, though an attack roll is
still required. Locking on to an enemy requires
a move action when the enemy is in line of sight
and lasts for the rest of the encounter, or until a
new target is locked.

Table 12: Examples of text dropped by the 345M model
in phase 2 (top) and phase 4 (bottom).

Figure 10: Cosine similarity heatmap for dropped data
blocks during Phase 4 of GPT-2 124M and Phase 2 of
the 345M model.

blocks considered easy / hard.
Tables 12 and 14 provides examples of text

blocks dropped in Phases 2 and 4 by the 345M and
124M parameter models respectively. Similarly,
Tables 13 and 15 provide examples of data blocks
retained by the models in Phases 2 and 4. We
printed out and went over all the text dropped and
retained in both Phases, and notice that text con-
sidered easy in phase 2 was more conversational,
and those considered easy in phase 4 were more
factual. This might indicate that the model first
learned conversations and personal anecdotes, be-
fore being able to retain factual information. These
findings are further corroborated by the examples
of data retained in both phases. We are working on
further analysis across different model families and

287

sizes to strengthen this understanding.
Next, we continue the analysis of the cosine sim-

ilarity heatmaps evaluated across training time and
model parameter scales presented in Section A.5.
Here, we answer the following questions:

1. Are there similarities in the data blocks con-
sidered easy and dropped in Phase 4 of train-
ing of the 124M parameter model with those
considered easy and dropped by the 345M
parameter model in Phase 2?

2. Are the data blocks dropped similar to those
retained at any given training phase? Note
that Section A.5 presented this analysis only
for Phase 4 of the 124M and 345M parameter
models in Figure 9.

Figure 10 depicts the cosine similarity heatmap
for the data blocks dropped by the 124M parame-
ter model in Phase 4 (X-axis) with those dropped
by the 345M parameter model in Phase 2 (Y-axis).
The mean, standard deviation, and variance of the
similarity are 0.43, 0.18, and 0.03 respectively. In
contrast, the mean cosine similarity of data blocks
dropped in Phase 2 of pretraining of both the mod-
els was 0.38 (Section A.5 and Figure 8). This indi-
cates that the smaller model "catches up" with the
knowledge accumulated by the larger model, and
considers similar block easy in Phase 4 as those
considered easy by the larger model in Phase 2.

Next, we plot the cosine similarity heatmap for
the dropped and retained data blocks in Phase 2 for
the 124M (left) and 345M (right) parameter mod-
els. The mean, variance, and standard deviations
of the similarity are shown in Table 11. Observing
the mean similarity value and heatmap in Table 10
and Figure 9, we find that the cosine similarity
for dropped and retained data blocks is higher in
Phase 2 than Phase 4 in case of the 345M parameter
model. In contrast, the value remains high in both
Phases for the 124M parameter model. This find-
ing indicates that both the smaller and larger model
start the training by being confused about similar
data blocks. However, the larger capacity of the
345M parameter model allows it to learn the dataset
well in Phases 2 and 3, and move on to more com-
plex data blocks in Phase 4 (thus reducing the mean
similarity in Phase 4). The smaller model continues
remaining unsure about similar data blocks. Since
we observed that the smaller model "catches up"
with the training of the larger model (in Figure 10),

we hypothesize that the smaller model will eventu-
ally display similar behaviour as the larger model
once trained for longer iterations.

288

Unofficial reports claimed the car was powered
by a 95kW 1.5-litre non-turbo petrol engine but
Tada didn’t confirm. When asked what pow-
ers the S-FR Tada revealed he was considering
three choices. "When you see the S-FR concept
I suppose you imagine it is a 1.5-litre car but
nowadays I can choose many kind of engines,"
he explained. "Downsized turbo, 1.5-litre natu-
rally aspirated and something additional as well.
Now we are thinking which one is the best en-
gine for a small sports car." Tada also admitted
that the company is unlikely to turn to a partner
like it did with Subaru for the 86/BRZ or the
new ’big brother’ sports car with BMW.
In April, MYIR released a Linux-powered MYS-
6ULX single board computer, which was no-
table for being available in two different ver-
sions using NXP’s low power, Cortex-A7 i.MX6
UltraLite (UL) or the more affordable, and al-
most identical i.MX6 ULL SoC. Now, MYIR
has released an “MYB-6ULX Expansion Board”
designed to stack onto either model. The
$21.20 accessory adds a second 10100 Ethernet
port to the MYS-6ULX, as well as new CAN,
RS485, audio, micro-USB, RTC, and camera
functions. MYB-6ULX Expansion Board with
MYS-6ULX (left) and detail view (click im-
ages to enlarge). The MYB-6ULX Expansion
Board has the same 70 x 55mm dimensions as
the MYS-6ULX, which is available in two mod-
els: The i.MX6 UL based MYS-6ULX-IND
has -40 to 85°C support instead of 0 to 70°C,
and the i.MX6 ULL based MYS-6ULX-IOT fea-
tures a USB-powered WiFi radio. The 4-layer
expansion board runs on 5V power, and shares
the industrial temperature support of the IND
model.

Table 13: Examples of text retained by the 345M model
in Phase 2 (top) and Phase 4 (bottom).

In the book, the mythical California is ruled by
Queen Califa and populated only with female
warriors who brandish gold weapons. They even
harness their animals in gold because it is the
only mineral on the island. The legend of Cal-
ifa and her island was well known among New
World explorers. In 1536 when Hernán Cortéz
arrived in Baja California, he believed he had
landed on the legendary island. Over three hun-
dred years later gold was discovered in Califor-
nia, making the legend partially true and earning
the state its nickname: The Golden State.
Segregated Witness, defined by Bitcoin Im-
provement Proposal 141 (BIP141), was de-
ployed using an activation mechanism (BIP9)
that requires 95 percent of all miners (by hash
power) to signal support for the upgrade within
the span of a two-week difficulty period. That’s
at least 1916 blocks within 2016 blocks, to be ex-
act. This threshold has just been reached. While
the current difficulty period will not end until
tomorrow, all blocks in this difficulty period are
signaling support for the upgrade so far. This
now totals over 1916 of them.

Table 14: Examples of text dropped by the 124M model
in Phase 2 (top) and Phase 4 (bottom).

289

to the GUI installer. Most notably there is no
support for configuring partition layout, storage
methods or package selection. Please refer to
the official documentation for details. Here you
can find some useful information on creating
and using kickstart files which can be used to
perform advanced configuring without the need
for the GUI installer. The message "Insufficient
memory to configure kdump!" appears during
install. This is a known issue which appears on
systems with less than 2 GB RAM. This can be
ignored. Content for both the i386 and x86_64
architectures is split into two DVDs. We have
tried to get all basic server and basic desktop
installs only from DVD-1. Make sure that you
setup correctly the selinux context of the public
key if you transfer it to a CentOS 6 server with
selinux enabled.
Once you signed up, you can either click on the
Todo tab or the sign in link to gain access to
the application. Note that if you are selecting
sign in in the same session in which you signed
up, you will automatically sign in with the same
account you used for signing up. If you are
signing in during a new session, you will be
presented with Azure AD’s credentials prompt:
sign in using an account compatible with the
sign up option you chose earlier (the exact same
account if you used user consent, any user form
the same tenant if you used admin consent). If
you try to sign-in before the tenant administrator
has provisioned the app in the tenant using the
Sign up link above, you will see the following
error.

Table 15: Examples of text retained by the 124M model
in phase 2 (top) and phase 4 (bottom).

290

