Principal Parts Detection for Computational Morphology:
Task, Models and Benchmark

Dorin Keshales, Omer Goldman, Reut Tsarfaty
Bar-Ilan University
{dorinkeshales14, omer.goldman}@gmail.com, reut.tsarfaty@biu.ac.il

Abstract

Principal parts—defined as the minimal set
of cells from which all other forms within
a lexeme’s inflectional paradigm can be de-
duced—are an important concept in theoretical
morphology. This concept, which outlines the
minimal memorization needed for a perfect in-
flector, has been largely overlooked in computa-
tional morphology despite impressive advances
in the field over the past decade. In this work,
we formalize PRINCIPAL PARTS DETECTION
as a computational task under the static scheme
assumption, identifying a single set of cells as
principal parts uniformly applicable across lex-
emes within a syntactic category. We construct
a multilingual dataset of verbal inflection tables
with gold principal parts annotations for ten
typologically diverse languages. We evaluate
several computational models for PRINCIPAL
PARTS DETECTION, each implementing the
same three-stage framework: characterizing re-
lations between each pair of cells, clustering
the resulting vector representations, and select-
ing a representative cell from each cluster as a
predicted principal part. Our best-performing
model, combining Edit Scripts between inflec-
tions with Hierarchical K-Means clustering,
achieves an average F1 score of 55.05%, sig-
nificantly outperforming a random baseline of
21.20%. While these results demonstrate initial
success, further research is needed to advance
PRINCIPAL PARTS DETECTION, which could
optimize inputs for morphological inflection
models and encourage exploration into the the-
oretical and practical significance of compact
morphological representations.

1 Introduction

Morphological analysis is essential for understand-
ing natural language, particularly in languages with
complex inflectional systems. In both linguistic the-
ory and language pedagogy, the concept of princi-
pal parts plays a central role in structuring and sim-
plifying inflectional paradigms (Finkel and Stump,

2007; Stump and Finkel, 2013). Principal parts
form the minimal subset of paradigm cells from
which all other forms can be systematically derived.

By identifying these key forms, principal parts
provide a compact representation of inflection ta-
bles and facilitate the analysis of morphologically
rich languages. Despite their theoretical signif-
icance, the detection of principal parts remains
largely unexplored in computational morphology.
While they have inspired research in inflection and
reinflection (Cotterell et al., 2017; Liu and Hulden,
2020), they are rarely used explicitly. Most compu-
tational approaches instead rely on a single citation
form, the lemma (Cotterell et al., 2016; Goldman
et al., 2023), or select input forms randomly (Cot-
terell et al., 2016; Kann et al., 2017). This reliance
on suboptimal input representations overlooks the
potential of principal parts as a more efficient foun-
dation for inflectional modeling.

In this paper, we formalize PRINCIPAL PARTS
DETECTION as a computational task under the
static principal-parts scheme assumption: given
a collection of inflection tables belonging to the
same syntactic category, the goal is to identify a
single, minimal set of cells that uniformly serve as
principal parts across all lexemes. Crucially, inflec-
tion tables typically contain standard morphologi-
cal annotations but are not explicitly labeled with
principal parts, making this an unsupervised learn-
ing problem. To promote research in this area, we
deliver a standardized dataset covering the verbal
paradigms of ten diverse languages. We sourced
principal parts for each language from online dictio-
naries, where they are often listed to aid language
learners, and obtained full inflection tables from
UniMorph (Batsuren et al., 2022).

We develop several computational approaches
for PRINCIPAL PARTS DETECTION, leveraging the
defining property of principal parts: their encap-
sulation of implicative relations existing among
cells in the paradigm. Our models character-

251

Proceedings of the 29th Conference on Computational Natural Language Learning, pages 251-267
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics



ize inter-cell similarity and cluster cells into sub-
paradigms, selecting a representative cell from
each sub-paradigm as predicted principal parts. We
explore different methods for characterizing inter-
cell relations, including Edit Distance, Edit Script,
and Reinflection Accuracy, and we experiment with
clustering techniques such as Affinity Propagation
and a Hierarchical K-Means algorithm. Our best-
performing model, combining Edit Script similar-
ity measure + Hierarchical K-Means clustering,
achieves an average F1 score of 55.05% across the
ten languages in our dataset, significantly outper-
forming a random baseline of 21.20%.

By formalizing PRINCIPAL PARTS DETECTION
as a computational task, we lay the groundwork
for future research on more efficient morphological
representations. To the best of our knowledge, this
is the first work to deliver a standardized bench-
mark of PRINCIPAL PARTS DETECTION alongside
a fully-operational detection framework. Success-
fully solving this task could enhance applications
in morphological inflection and analysis by provid-
ing more informative input forms. Our findings
suggest that principal parts can be computation-
ally identified with reasonable accuracy, but further
improvements are necessary to fully realize their
potential.

2 The PRINCIPAL PARTS DETECTION
Task and Dataset

The PRINCIPAL PARTS DETECTION Task.
The task of PRINCIPAL PARTS DETECTION is de-
fined as identifying the minimal set of cells within
a paradigm that, when known, allow the derivation
of all other paradigm forms. For instance, in En-
glish, the principal parts of the verbal paradigm
are the cells corresponding to the infinitive, sim-
ple past and past participle (for example, eat, ate,
and eaten), as these forms are not predictable from
one another, especially for strong verbs. On the
other hand, the forms corresponding to the present
participle and the 3rd person singular present are
deterministically predictable from the infinitive and
they therefore provide no additional information
for inflection if the infinitive is known.

Formally, the task of PRINCIPAL PARTS DE-
TECTION is defined under the static principal-parts
scheme assumption. Specifically, given a language
L, a syntactic category PO.S, and their associated
paradingﬁOS = {c1,c2,...,cn}, where each
cell ¢; corresponds exactly to one coherent morpho-

syntactic feature set associated with POS, along-
side a set of lexeme-specific inflection tables:
I L L L

Tros = {tPPOS:Zl 1 UPpositar - 7tPPOS’£k}’

each table instantiating the paradigm Pﬁo g for
a specific lexeme /;.

Then, the task is to identify the minimal subset
of cells Cpp C Pﬁo g from which all remaining
forms within each inflection table tlL’pos, 0 € 7%0 g
can be deterministically deduced.

The PRINCIPAL PARTS DETECTION Dataset.
To empirically evaluate methods for the detec-
tion of principal parts, we first need a dataset
to evaluate against. To this end, we constructed
the multilingual PRINCIPAL PARTS DETECTION
dataset, containing verbal inflectional paradigms
from ten typologically diverse languages: He-
brew, English, French, German, Spanish, Danish,
Swedish, Finnish, Turkish, and Latin. These lan-
guages were selected based on the availability of
comprehensive inflectional data and suitable re-
sources for identifying principal parts.

The input side of the task comprises complete in-
flection tables sourced from the UniMorph corpus
(Batsuren et al., 2022), a large-scale morphologi-
cal resource providing comprehensive inflectional
data across languages, organized by lexeme and
morpho-syntactic features.

Gold principal parts annotations — the target
output for evaluation — were primarily obtained
from two online resources. For five languages (En-
glish, German, French, Latin, and Spanish), we
directly adopted principal parts from Wikipedia’s
dedicated principal-parts page.! For the other lan-
guages, where principal parts were not explicitly
documented, we identified them directly based on
the forms presented in Wiktionary’s standardized
verb conjugation templates, except for Finnish,
for which we consulted a specialized language-
learning resource.”

The dataset preparation involved rigorous nor-
malization and error correction applied specifically
to the inflection tables. We retained only strictly in-
flectional forms, excluding derivational forms, and
ensured exactly one form per feature set. Sparse,
marginal, or inconsistent feature sets were removed,
and problematic entries originating from the origi-
nal sources were manually reviewed and corrected

1ht’cps: //en.wikipedia.org/wiki/Principal_parts
2https: //ielanguages.com
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to ensure a reliable dataset (see Appendix A for
details).

The PRINCIPAL PARTS DETECTION dataset pro-
vides a strong empirical foundation for compu-
tational modeling, bridging linguistic theory and
practical applications, and constitutes a robust re-
source for future research on morphological inflec-
tion and principal parts detection. The next section
shifts focus to computational methods for detecting
principal parts, drawing on the linguistic insights
outlined in the literature.?

3 Translating Linguistic Insights into
Computational Methods

The linguistic principle underlying PRINCIPAL
PARTS DETECTION is that principal parts encap-
sulate the implicative relations among cells within
a lexeme’s inflectional paradigm, constituting the
minimal subset of cells from which all remaining
cells can be deduced (Finkel and Stump, 2007;
Stump and Finkel, 2013). In this work, we adopt
the static principal-parts scheme, framing PRINCI-
PAL PARTS DETECTION as the automatic identifi-
cation of a minimal, uniform subset of paradigm
cells applicable consistently across all lexemes
within a given syntactic category.

However, linguistic theory alone does not pro-
vide a direct computational method for system-
atically generalizing or approximating these im-
plicative relations across multiple lexemes at the
syntactic-category level. To operationalize PRINCI-
PAL PARTS DETECTION computationally, we hy-
pothesize that implicative relationships across lex-
emes can be indirectly approximated through mea-
surable morphological patterns observable within
lexemes’ inflectional paradigms. Specifically, we
propose three types of measurable morphological
patterns: (i) surface-level similarities, observed as
orthographic overlap, shared morphological mark-
ers, or recurring affixation patterns across multiple
cells; (i1) structural correspondences, represented
by minimal transformations converting one cell’s
form into another; and (iii) predictive relations,
characterized by the consistent ability of one cell’s
realization to predict another’s.

By quantifying the morphological relations
among cells based on these measurable patterns,
we obtain empirical evidence enabling the organi-
zation of cells into meaningful subsets. We intro-

3The data is publicly available in https://github.com/
DorinK/Principal-Parts-Detection.

duce the notion of sub-paradigms, computational
abstractions (not formally defined in linguistic the-
ory) that group cells whose realizations consistently
display morphological and functional similarities.
Cells grouped into a sub-paradigm thus implicitly
share similar morphological and functional roles
across lexemes, indirectly reflecting broader im-
plicative trends, even though exact implicative rela-
tionships vary between individual lexemes.

Selecting principal parts thus naturally corre-
sponds to choosing exactly one representative cell
from each identified sub-paradigm. This ensures
the resulting principal-part set compactly and effec-
tively captures the generalized morphological roles
identified through sub-paradigm formation.

This conceptualization leads directly to a three-
phase computational methodology for PRINCIPAL
PARTS DETECTION: First, we characterize mor-
phological relationships between pairs of cells
through similarity measures. Next, we cluster these
cells into coherent sub-paradigms based on their
quantified morphological similarities. Finally, we
select exactly one representative cell from each
sub-paradigm as its principal part. Together, these
principal parts constitute a minimal and compre-
hensive set capable of systematically deriving all
remaining paradigm cells across lexemes.

4 Framework and Task Empirical Design

The PRINCIPAL PARTS DETECTION framework
we propose in this work is composed of three inter-
connected stages: characterization, clustering, and
principal-parts selection, each implemented using
well-defined computational methods. These stages
operate independently, meaning that different con-
figurations of the framework can mix and match
methods in seeking the best combination. Below,
we briefly review the computational methods con-
sidered for each stage.

4.1 Characterization: Quantifying
Morphological Relations Between Cells

The characterization stage quantifies morphologi-
cal relationships between paradigm cells by com-
puting numerical similarity scores between them.
This work explores three distinct characterization
methods, each offering a different perspective on
morphological relations between cells.

Edit Distance A metric that measures surface-
level similarity between forms based on minimal
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edit operations — insertions, deletions, or substi-
tutions — required to transform one form into an-
other (Levenshtein, 1966). This method is imple-
mented by computing the average Edit Distance
from each paradigm cell to all others (calculated
across all lexemes in the data), treating one as the
source and the rest as destinations. The result-
ing vector representations store these averaged dis-
tances, capturing surface-level similarity between
cells. Pairs of paradigm cells with low Edit Dis-
tance scores exhibit orthographic overlap.

Edit Script A metric that captures transforma-
tional diversity by analyzing character-level trans-
formations between paradigm cells. Unlike tradi-
tional Edit Script approaches (Wagner and Fischer,
1974; Myers, 1986), which focus on the exact se-
quence of operations needed to transform one string
into another, this approach computes the number
of unique character-level transformations observed
across all surface realizations of each paradigm-
cell pair. Each transformation is counted only once
per cell pair (calculated across all lexemes), cap-
turing distinct transformational patterns rather than
repeatedly occurring character changes. The re-
sult is a vector representation for each cell pair,
where each entry encodes the number of unique
transformations required to convert one cell to an-
other, representing their transformational distance.
This method provides insight into the variation in
morphological transformations within a paradigm.
Cells with lower transformation diversity may ex-
hibit more stable morphological patterns, making
them stronger principal part candidates. In contrast,
higher transformation diversity may signal greater
variability in inflectional behavior, affecting pre-
dictability.

Reinflection Accuracy A metric that evaluates
the functional predictability of paradigm cells. It
leverages the Base LSTM reinflection model (Gold-
man et al., 2021) trained to generate a target form
given a source form and the morpho-syntactic fea-
tures of the target. Unlike edit-based methods that
focus on surface similarity and transformational di-
versity, Reinflection Accuracy captures functional
dependencies between cells, reflecting their predic-
tive capacity within a paradigm.

Reinflection Accuracy is particularly effective
in languages with complex inflectional systems,
where orthographic similarity alone is not a reli-
able predictor of implicative relations. By cap-
turing functional dependencies rather than surface

transformations, it provides a direct measure of a
cell’s ability to generate other forms. However,
its performance depends on training data quality
and resource availability. In low-resource settings,
data sparsity may lead to biased results, and the ap-
proach is computationally intensive, as it requires
training multiple models—one model per paradigm
cell. Despite these challenges, its ability to model
functional predictability makes it a valuable tool
for identifying paradigm cells suitable as princi-
pal parts, particularly in morphologically complex
languages.

Each characterization method produces a simi-
larity table, where rows represent source paradigm
cells and columns represent target paradigm cells,
encoding pairwise morphological relationships (see
Appendix B). Before clustering, all similarity ta-
bles are standardized by removing the mean and
scaling to unit variance to ensure comparability
across methods. These standardized characteriza-
tion tables form the empirical basis for the cluster-
ing stage.

4.2 Clustering: Structuring Cells into
Sub-Paradigms

The clustering stage groups paradigm cells based
on their quantified morphological relationships,
forming computational abstractions termed sub-
paradigms. These sub-paradigms approximate the
internal morphological organization of paradigms.
The framework implements two clustering algo-
rithms, each offering distinct computational proper-
ties. As with characterization, only one clustering
algorithm is employed at a time.

Affinity Propagation A message-passing clus-
tering algorithm that dynamically determines the
number of clusters based on pairwise similarity
scores (Frey and Dueck, 2007). Unlike traditional
clustering methods, it does not require a prede-
fined number of clusters. Instead, it iteratively up-
dates responsibility and availability values, which
determine how well a paradigm cell serves as an
exemplar (cluster center), until the algorithm con-
verges on a final set of exemplars. This property
makes it particularly suitable for paradigms with
high morphological variability. The algorithm is
implemented using scikit-learn’s AffinityPropaga-
tion module, with similarity scores computed as
negative squared Euclidean distances. The prefer-
ence parameter is set to the median similarity value,
allowing clusters to emerge naturally. Additional
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parameters include a convergence iteration limit of
30 and a random state value of 10.

Hierarchical K-Means A hierarchical variant of
K-Means that recursively partitions paradigm cells
into two clusters per iteration until a well-defined
clustering structure is reached. The stopping cri-
terion is determined using the Calinski—Harabasz
Index (CHI) (Calinski and Harabasz, 1974), which
evaluates clustering quality by comparing between-
cluster dispersion to within-cluster cohesion. At
each step, the CHI is computed across the entire
clustering structure to assess how well-separated
the clusters are relative to their internal cohesion.
To prevent over-segmentation, clustering stops if
the number of clusters in the new best CHI solu-
tion exceeds that of the previous best CHI solution
by more than one cluster. The algorithm is imple-
mented using scikit-learn’s KMeans module with a
random state value of 10. By grouping paradigm
cells into sub-paradigms, the clustering stage pro-
vides a data-driven approximation of generalized
morphological and functional roles. The resulting
sub-paradigms form the structured basis for the
principal-parts selection stage.

4.3 Principal Parts Selection: Identifying
Representative Cells

The principal-parts selection stage finalizes the
PRINCIPAL PARTS DETECTION framework by
transforming sub-paradigms into a compact, gen-
erative summary of the paradigm structure. In this
stage, exactly one representative cell from each
sub-paradigm is selected, capturing the morpholog-
ical and functional properties that characterize its
sub-paradigm. These representative cells collec-
tively constitute the principal parts, ensuring com-
prehensive morphological coverage while maintain-
ing compactness and predictive capacity.

Specifically, we adopt the Minimum Average In-
flectional Length criterion. Under this criterion, the
principal part selected from each sub-paradigm is
the paradigm cell whose realizations exhibit the
minimal average length, computed across all lex-
emes. This selection ensures that the chosen cell
is both structurally central and morphologically
efficient within its sub-paradigm. Such a crite-
rion aligns with linguistic insights suggesting that
shorter inflectional paths often correspond to cen-
tral morphological roles, enhancing their suitability
as principal parts.

Together, the principal parts derived from this se-

lection process form a minimal and comprehensive
set capable of systematically deriving all remaining
paradigm cells across lexemes, in accordance with
the static principal-parts scheme assumption.

S Experimental Setup and Results

We conduct a series of experiments to evaluate
the effectiveness of the PRINCIPAL PARTS DE-
TECTION framework across ten typologically di-
verse languages. The evaluation compares six
model configurations, each formed by pairing one
of three characterization methods—Edit Distance,
Edit Script, and Reinflection Accuracy—with one
of two clustering algorithms—Affinity Propagation
and Hierarchical K-Means. To establish a perfor-
mance threshold, we include a random baseline,
selecting principal parts at random.

5.1 Dataset

The PRINCIPAL PARTS DETECTION dataset uti-
lized in our experiments comprises ten typologi-
cally diverse languages, structured into two sub-
sets to rigorously assess our framework’s cross-
linguistic generalization.

The first subset (Hebrew, English, French, Ger-
man, Spanish) was used during method develop-
ment, providing a broad and representative mor-
phological foundation. Hebrew exhibits synthetic
morphology, encoding multiple grammatical fea-
tures within single inflected forms. English, in con-
trast, is predominantly analytic, relying primarily
on word order and function words to indicate gram-
matical relations. French and Spanish, as fusional
languages, embed tense, mood, and person distinc-
tions within single inflectional forms, exhibiting
varying degrees of morphological regularity. Fi-
nally, German presents a hybrid morphological
system, integrating analytic and fusional charac-
teristics.

The second subset (Danish, Swedish, Finnish,
Turkish, Latin) was reserved exclusively for
independent validation of the finalized meth-
ods’ generalizability, evaluating their performance
on languages not encountered during develop-
ment. Finnish and Turkish exemplify agglutinative
morphology, expressing grammatical information
through clearly segmentable morphemes arranged
sequentially. Latin, a highly inflected classical lan-
guage, provides a challenging scenario due to ex-
tensive distinctions in case, number, and gender.
Danish and Swedish, characterized by regular and
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predictable inflectional paradigms, allow us to as-
sess method robustness in languages with simpler
morphological structures.

This structuring enables a rigorous and unbiased
evaluation of our framework’s adaptability, robust-
ness, and cross-linguistic generalization across di-
verse morphological systems.

5.2 Evaluation Metric

To evaluate model effectiveness, we utilize the F1
score, balancing precision (correctness of predicted
principal parts) and recall (coverage of gold princi-
pal parts) to assess both accuracy and completeness
in PRINCIPAL PARTS DETECTION.

In addition to reporting F1 scores, we bench-
mark our models against a random baseline,
which selects principal parts randomly within each
paradigm. Given a paradigm with z cells and y
gold principal parts, the probability of randomly
selecting a correct principal part is £. As the base-
line selects exactly y principal parts, the expected
number of correct predictions is y X % = %2 Thus,
the expected precision, recall, and consequently the
F1 score, are all equal to %

Since principal parts are inherently sparse within
most paradigms, the random baseline represents
a challenging threshold. Models that significantly
exceed this baseline demonstrate an ability to detect
principal parts systematically rather than relying
on chance.

5.3 Reinflection Settings

For models utilizing Reinflection Accuracy, we
train a separate reinflection model for each
paradigm cell, treating it as the source while all
other cells serve as targets. The model is based
on the Base LSTM architecture (Goldman et al.,
2021), a character-based sequence-to-sequence
model comprising a one-layer bidirectional LSTM
encoder and a one-layer unidirectional LSTM de-
coder with a global soft attention layer (Bahdanau
et al., 2014). Each model is trained for 50 epochs,
optimizing categorical cross-entropy.

The dataset is split 70%-30%, ensuring test
lexemes remain unseen during training. Each
paradigm cell is trained using a dedicated dataset,
where it serves as the source inflection across differ-
ent lexemes. Since each cell is evaluated on its abil-
ity to generate all other cells within the paradigm,
corresponding test sets are created—one per target
cell.

Model Algorithmic Evaluation
Random Baseline 21.20
Edit Distance + Affinity Propagation 31.29
Edit Distance + Hierarchical K-Means 32.51
Reinflection Accuracy + Hierarchical K-Means 4243
Edit Script + Affinity Propagation 44.62
Reinflection Accuracy + Affinity Propagation 45.56
Edit Script + Hierarchical K-Means 55.05

Table 1: Average F1 scores across the ten languages of
our PRINCIPAL PARTS DETECTION dataset for differ-
ent model configurations. The best-performing model
configuration is highlighted.

Each trained model is evaluated on how accu-
rately it inflects from its assigned source cell to
each target cell. The resulting accuracy scores
form a representation vector, capturing a cell’s pro-
ficiency in generating others. Cells with high Re-
inflection Accuracy scores demonstrate strong pre-
dictive capacity, making them effective candidates
for principal parts.

5.4 Results

Table 1 presents the average F1 scores across the
ten languages, providing a comparative evaluation
of model performance. All models outperform
the random baseline, which achieves the lowest
F1 score of 21.20%. The best-performing model,
Edit Script + Hierarchical K-Means, achieves an
F1 score of 55.05%, highlighting its ability to ef-
fectively characterize morphological relationships
among paradigm cells and cluster these cells across
diverse languages.

Reinflection Accuracy-based models perform
competitively, with F1 scores of 45.56% (Affinity
Propagation) and 42.43% (Hierarchical K-Means).
In contrast, Edit Distance-based models yield lower
scores of 31.29% and 32.51%, indicating that
surface-level similarity alone is insufficient for
PRINCIPAL PARTS DETECTION.

Overall, all tested methods surpass the random
baseline by at least 10.09 points, with the best-
performing model exceeding it by 33.85 points.
These results confirm the effectiveness of the pro-
posed methodology, highlighting a substantial im-
provement over random selection.

Table 2 provides a language-specific breakdown
of F1 scores, offering further insights into mod-
els’ performance across morphological typolo-
gies. [Edit Script + Hierarchical K-Means, our
best-performing model overall, achieves the high-
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est scores in Hebrew, French, Spanish, Turkish,
and Latin. This highlights its effectiveness in
capturing systematic morphological transforma-
tions—particularly beneficial in languages with
root-and-pattern morphology (e.g., Hebrew), fu-
sional systems (e.g., French, Spanish, Latin), where
single inflections encode multiple grammatical fea-
tures simultaneously, and in Turkish, an agglutina-
tive language characterized by clearly segmentable,
predictable morphological sequences.

While the Reinflection Accuracy + Affinity Prop-
agation model ranks second-best overall (45.56%),
it does not consistently outperform other mod-
els across languages. Its strongest results appear
specifically in languages characterized by relatively
transparent, regular, and predictable inflectional
paradigms, such as Danish and Swedish, where the
exemplar-based clustering method effectively orga-
nizes paradigm cells. Conversely, its performance
drops in morphologically opaque or fusional lan-
guages (e.g., Spanish, Finnish). However, the Rein-
flection Accuracy + Hierarchical K-Means model
achieves notably stronger results in Finnish and En-
glish, indicating differences in how clustering meth-
ods handle morphological predictability. These
contrasting patterns underscore the importance of
carefully matching characterization methods and
clustering algorithms to linguistic properties.

In contrast to the previously discussed models,
the weaker performance of Edit Distance-based
models is particularly evident in morphologically
opaque or highly fusional languages (e.g., Spanish,
Finnish), where subtle or irregular morphological
variations encode multiple grammatical features
simultaneously.

6 Analysis

We analyze how methodological factors shape
model performance, focusing on transformations
in characterization data and the effectiveness of
clustering strategies. This evaluation highlights
structural patterns influencing clustering quality
and examines the extent to which clustering results
align with ideal principal-parts selection.

6.1 Transpose Ablation: Evaluating the
Impact of Data Orientation

The Transpose Ablation study investigates whether
swapping the rows and columns of the charac-
terization tables influences clustering quality and
principal-parts selection. This transformation is

particularly relevant for Reinflection Accuracy,
where original tables encode directional relation-
ships—rows indicate how easily a paradigm cell
can inflect from itself to others, while columns
represent the reverse relationship. Unlike Edit Dis-
tance and Edit Script methods, which produce sym-
metric similarity matrices, Reinflection Accuracy
matrices are inherently asymmetric. Thus, transpos-
ing these tables meaningfully changes their direc-
tional structure and potentially impacts clustering
results.

Transposition is applied only to Reinflection Ac-
curacy models, as Edit Distance and Edit Script
methods generate symmetric similarity tables, mak-
ing transposition redundant. We evaluate two mod-
els: Reinflection Accuracy + Affinity Propaga-
tion and Reinflection Accuracy + Hierarchical K-
Means, comparing their performance before and
after transposition.

The results in Table 3 show that transposition
affects models differently. Reinflection Accuracy +
Affinity Propagation experiences a slight decrease
in performance (45.56% — 44.05%), while Re-
inflection Accuracy + Hierarchical K-Means im-
proves marginally (42.43% — 43.14%). This sug-
gests that transposition does not universally en-
hance clustering effectiveness and that its impact
depends on the underlying clustering strategy.

Despite the minor improvement for Hierarchical
K-Means, transposed results are excluded from the
main evaluation due to their limited effect and mis-
alignment with the principal-parts definition. Be-
cause original (non-transposed) cells encode gen-
erative properties crucial for inflection, preserving
this structure remains preferable. These findings
suggest that alternative data transformations, better
aligned with the linguistic task, may offer greater
benefits.

6.2 Oracle Evaluation

To estimate the theoretical upper bound of our mod-
els’ performance, we conduct an Oracle Evalua-
tion, where principal parts are selected directly
from the gold principal parts annotations rather
than relying on clustering results. This evaluation
disentangles the contribution of clustering quality
from principal-parts selection effectiveness: a low
Oracle score indicates fundamental limitations in
clustering, while a significant gap between Oracle
and Algorithmic scores highlights inefficiencies
specifically in the principal-parts selection stage.
By providing this performance ceiling, the Ora-
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Model Hebrew | English | French | German | Spanish | Danish | Swedish | Finnish | Turkish | Latin

Random Baseline 20.68 60.00 14.28 16.66 2.53 62.50 26.30 2.48 28.00 6.25

Edit Distance + Affinity Propagation 33.30 66.70 37.50 46.20 15.40 57.10 40.00 0.00 0.00 16.70

Edit Distance + Hierarchical K-Means 25.00 57.10 44.40 44.40 0.00 57.10 57.10 0.00 0.00  40.00
Reinflection Accuracy + Hierarchical K-Means 25.00 85.70 44.40 28.60 50.00 57.10 43.50 50.00 0.00 40.00
Edit Script + Affinity Propagation 50.00 80.00 54.50 66.70 36.40 50.00 60.00 23.50 6.90 18.20
Reinflection Accuracy + Affinity Propagation 36.40 80.00 26.70 60.00 16.70 75.00 75.00 46.20 17.40 | 22.20
Edit Script + Hierarchical K-Means 50.00 80.00 54.50 60.00 50.00 72.70 60.00 33.30 50.00  40.00

Table 2: Language-specific F1 scores illustrating variations in effectiveness of different model configurations across
morphological typologies. Top results are marked, with a unique color used for each language.

Evaluati
Model Transpose | Algorithmic Evaluation Model Tr } Oracl eva :lag:)(:?thmi "

) . ) . X 45.56 X 58.78 45.56
Reinflection Accuracy + Affinity Propagation Reinflection Accuracy + Affinity Propagation

v 44.05 v | sssi| aaos

I N x 4243 X Jese | a6
Reinflection Accuracy + Hierarchical K-Means Reinflection Accuracy + Hierarchical K-Means

4 43.14 v 67.70 43.14

Table 3: Algorithmic evaluation of Reinflection Accu-
racy models with and without transposition across ten
languages. The averaged F1 scores highlight varying
impacts depending on the clustering algorithm.

Model Wd?’%
Edit Distance + Affinity Propagation 40.08 31.29
Edit Distance + Hierarchical K-Means 50.57 32.51
Reinflection Accuracy + Affinity Propagation | 58.78 45.56
Reinflection Accuracy + Hierarchical K-Means | 65.64 42.43
Edit Script + Affinity Propagation 54.16 44.62
Edit Script + Hierarchical K-Means 76.21 55.05

Table 4: Oracle and Algorithmic evaluations of PRINCI-
PAL PARTS DETECTION models across languages. Ora-
cle evaluation assumes perfect knowledge of principal
parts, establishing an upper bound on performance; Al-
gorithmic evaluation reflects actual model performance.

cle Evaluation identifies which components of the
PRINCIPAL PARTS DETECTION framework require
targeted improvement.

Table 4 reveals substantial gaps between Ora-
cle and Algorithmic scores, underscoring cluster-
ing limitations and principal-parts selection inef-
ficiencies. Edit Script + Hierarchical K-Means
achieves the highest Oracle score (76.21%), con-
firming strong clustering performance. However,
the 21.16-point gap suggests that principal-parts
selection remains a limiting factor.

Conversely, Edit Distance + Affinity Propaga-
tion exhibits the lowest Oracle score (40.08%), in-
dicating fundamental clustering challenges. Rein-

Table 5: Oracle and Algorithmic evaluations of Rein-
flection Accuracy models before and after transposition,
assessing clustering quality under ideal (Oracle) and
practical (algorithmic) conditions.

flection Accuracy + Hierarchical K-Means shows
a notably large Oracle-Algorithmic gap (65.64%
— 42.43%), highlighting that while clustering is
effective, principal-parts selection still requires re-
finement.

These findings emphasize the importance of opti-
mizing both clustering effectiveness and principal-
parts selection to bridge the gap between Oracle
and Algorithmic performance.

6.3 Interplay Between Transposition and
Oracle Performance

Table 5 examines the impact of transposition on
Reinflection Accuracy models under both Oracle
and Algorithmic evaluations.

The results indicate that while transposition im-
proves Oracle performance for Hierarchical K-
Means (65.64% — 67.70%), it has a negligible
effect on Algorithmic scores, indicating that while
transposition enhances clustering under ideal con-
ditions, it does not meaningfully improve principal-
parts selection. Additionally, Affinity Propagation
exhibits sensitivity to data orientation, showing
a slight decline in Oracle performance (58.78%
— 58.51%), suggesting that its clustering mech-
anism relies on specific directional patterns that
transposition may disrupt. Conversely, Hierarchi-
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cal K-Means benefits from transposed data, likely
due to its iterative refinement of clusters. However,
since Algorithmic scores remain largely unchanged
across models, these findings reinforce that refin-
ing selection heuristics, rather than adjusting data
orientation, is the key to improving model perfor-
mance.

7 Related Work

Early computational approaches to paradigm com-
pletion predominantly relied on the lemma as the
central reference form, treating it as the sole input
for generating full inflectional paradigms (Durrett
and DeNero, 2013; Hulden, 2014; Nicolai et al.,
2015; Ahlberg et al., 2015; Faruqui et al., 2016).
However, Cotterell et al. (2017) highlighted the lim-
itations of this approach, noting that forcing trans-
formations to pass exclusively through the lemma
can introduce unnecessary complexity. Instead,
more flexible models leveraging multiple inflected
forms have been proposed, allowing transforma-
tions to occur directly or via intermediary forms,
rather than constraining them to a single privileged
form. This shift aligns with the concept of principal
parts, defined as the minimal set of paradigm cells
required to deduce all others (Finkel and Stump,
2007; Stump and Finkel, 2013).

Cotterell et al. (2017) introduced a directed
graphical model that probabilistically generates
missing inflected forms by modeling dependen-
cies within paradigms. This approach enables the
prediction of a form from multiple inflected forms
rather than exclusively from the lemma. Around
the same time, Kann et al. (2017) introduced multi-
source reinflection, demonstrating that using mul-
tiple inflected forms as input improves accuracy.
Their work explicitly references principal parts as a
linguistic motivation, reinforcing the idea that cer-
tain cells within a paradigm hold stronger predic-
tive capacity. Additionally, Cotterell et al. (2019)
examined the structural complexity of inflectional
paradigms, proposing a neural method for ordering
paradigm slots based on their predictability—an
indirect computational realization of the principal
parts concept.

Liu and Hulden (2020) extended these ideas
by reformulating morphological inflection as a
Paradigm Cell Filling Problem (PCFP), where miss-
ing forms are inferred from a partially observed set
of paradigm cells. While their work does not ex-
plicitly model principal parts, it aligns with their

predictive role in improving inflectional accuracy,
particularly in low-resource settings.

Despite these advancements, no prior work has
proposed a systematic, data-driven approach to
PRINCIPAL PARTS DETECTION. Existing stud-
ies have either assumed pre-defined principal parts
or incorporated them indirectly within broader in-
flectional tasks. In contrast, we have introduced
PRINCIPAL PARTS DETECTION as a formal com-
putational task, developed a multilingual bench-
mark, and proposed a principled methodology for
automatic PRINCIPAL PARTS DETECTION. By
integrating linguistic insights with computational
modeling, we establish a structured framework for
PRINCIPAL PARTS DETECTION.

8 Conclusions

This work introduces PRINCIPAL PARTS DETEC-
TION as a computational task, formalizing the
detection of principal parts within inflectional
paradigms under the static principal-parts scheme
assumption. We construct a multilingual dataset
covering ten typologically diverse languages and
develop a structured framework to automatically
detect principal parts uniformly applicable across
all lexemes belonging the verb syntactic category.

Our empirical evaluation demonstrates that quan-
tifying morphological relationships between cells,
clustering these cells into sub-paradigms, and se-
lecting representative cells from each sub-paradigm
provide a viable strategy for identifying principal
parts. Our best-performing approach — Edit Script
similarity combined with Hierarchical K-Means
clustering — achieves an F1 score of 55.05%,
significantly surpassing the random baseline of
21.20%. However, results across evaluated models
indicate that while clustering effectively organizes
paradigm cells into meaningful subsets, principal-
parts selection remains a key bottleneck.

Beyond theoretical interest, successfully address-
ing PRINCIPAL PARTS DETECTION has practi-
cal implications for computational morphology.
By identifying compact, generative subsets of
paradigm cells, principal parts can be leveraged
to optimize morphological inflection models, re-
duce annotation costs, and improve low-resource
language modeling. The structured computational
approach presented here lays the foundation for
future advancements, highlighting the relevance of
linguistic insights in shaping more efficient NLP
methodologies.
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Limitations

Despite the progress demonstrated in this study,
several open challenges remain. Irregular
paradigms, as seen in Latin, continue to pose dif-
ficulties, highlighting the need for methods that
can better capture morphological unpredictability.
Additionally, our reliance on UniMorph, while of-
fering broad linguistic coverage, exposes inconsis-
tencies that impact model generalization. More
curated linguistic resources could improve dataset
reliability and refine the evaluation of principal
parts across languages.

Future work could explore alternative clustering
strategies better suited to morphological structures,
such as graph-based methods or neural clustering
approaches. Transformer-based models may hold
potential for capturing deeper morphological de-
pendencies, offering an avenue for enhancing both
clustering accuracy and principal-parts selection.
These challenges are beyond the scope of this paper
and reserved for future research.

Finally, our dataset currently includes only ten
languages. Expanding the dataset to include addi-
tional morphologically rich and underrepresented
languages, such as polysynthetic languages, would
more comprehensively capture typological diver-
sity and potentially further validate the robustness
of PRINCIPAL PARTS DETECTION methods.
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Appendix

A Technical Overview of the PRINCIPAL
PARTS DETECTION Dataset

This section provides the technical details of the
PRINCIPAL PARTS DETECTION dataset, including
the number of samples per feature set in each lan-
guage’s verb paradigm and the total number of gold
principal parts for each language. In some cases,
specific feature sets were removed for various rea-
sons, as explained in subsection A.2.

Additionally, we list the gold principal parts for
each language, formatted as feature_set (e.g.,
form). When two feature sets share the same form,
the gold principal parts are listed in square brackets
[ 1. The first feature set corresponds to the princi-
pal part identified in linguistic literature, while the
second represents a feature set that consistently
shares the same form across all samples in the
dataset. In such cases, the second feature set is
included as a possible principal part, as the algo-
rithm’s choice between them does not affect the
analysis. To avoid redundancy, no principal part is
counted more than once in these scenarios.

A.1 Dataset Summary and Illustrative
Lexeme Examples

For each language, we provide an example lex-
eme to illustrate the principal parts, formatted as
feature_set (e.g., form). These examples are
illustrative and may not share the same meanings
across languages.

A.2 Explanatory Notes

The following explanatory notes clarify decisions
made during dataset preparation and supplement
the information presented in Table 6:

* Spanish: PRO feature sets, representing verbs
with object clitic pronouns, were removed.

¢ Swedish: The V-IMP-PASS feature set was
excluded due to insufficient samples (only
three).

e Latin:

— Passive feature sets were excluded.

— Feature sets starting with V.PTCP (in-
stead of V-V.PTCP) were removed.

— Feature sets with 30 or fewer samples
were excluded.

— The first-person-singular-perfect-active-
indicative feature set was excluded from
the gold principal parts list due to insuf-
ficient data (only two samples).

B Characterization Tables for Selected
Languages

To illustrate the structure of the characterization
methods, we present detailed characterization ta-
bles for three representative languages from our
dataset. These tables demonstrate how different
feature sets relate within the verb morphology of
each language, showcasing the variation across
Edit Distance, Edit Script, and Reinflection Ac-
curacy characterization methods.

Each language is represented by three tables, cor-
responding to the distinct characterization methods,
with principal parts highlighted in yellow for clarity.
Additionally, cases where two feature sets consis-
tently share the same form and are interchangeable
as principal parts are marked with a distinct color.
Since these feature sets carry identical information,
the model’s selection between them does not im-
pact the results.

Interpretation of Tables. The provided tables
exemplify the structure of the characterization
methods rather than an exhaustive display of all
ten languages in our study. While specific lexeme
examples are shown in the rows and columns, the
quantified relationships they capture apply to the
entire verb morphology of each language. These
examples serve to illustrate the broader implica-
tive patterns identified during the characterization
process.

B.1 Characterization Tables for English
Figures 1, 2, and 3 illustrate the Edit Distance, Edit
Script, and Reinflection Accuracy characterization
tables for English, respectively.

B.2 Characterization Tables for German
Figures 4, 5, and 6 illustrate the characterization
tables for German.

B.3 Characterization Tables for Swedish

Figures 7, 8, and 9 present the characterization
tables for Swedish.
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# of Gold

Gold Principal Parts

Language

Principal
Parts

Samples per

F
eatures Feature Set

V-NFIN,
V-2-SG-IMP-MASC,

(e.g., le’echol),
(e.g., echol!),

Hebrew

29 848-1,042

V-3-SG-FUT-MASC,
V-3-SG-PST-MASC,
V-SG-PRS-MASC,

V-NFIN-IMP+SBJV

(e.g., yochal),
(e.g., achal),
(e.g., ochel),

V.MSDR (e.g., achila)

(e.g., eat),

V-PST (e.g., ate),

English

23,896-31,848

V-IND-PRS-1-PL

V-V.PTCP-PST (e.g., eaten)

V-NFIN (e.g., mangier),
(e.g., manjons),

French

49 7,483-17,535

V-IND-FUT-1-SG
V-IND-PRS-1-SG
V-IND-PRS-3-PL

(e.g., mangié),
(e.g., mangerai),
(e.g., manju),
(e.g., manjiient),
(e.g., manjai)

V.PTCP-PST

V-IND-PST-1-SG-PFV
V-NFIN (e.g., essen),

German

30 2,307-6,661

V.PTCP-PST (e.g., gegessen),
[V-IND-SG-3-PST, V-IND-SG-1-PST

(e.g., aB)],
V-IND-SG-3-PRS (e.g., isst),
[V-SBJV-SG-3-PST, V-SBJV-SG-1-PST
(e.g., 4Be)]

(e.g., comer),

V-NFIN
(e.g., como)

V-IND-PRS-1-SG

Spanish

79 6,676-6,695

V-ACT-NFIN (e.g., danse),
V-ACT-IND-PRS (e.g., danser),

Danish

162

V-ACT-IND-PST (e.g., dansede),
V-ACT-IMP (e.g., dans),
V.PTCP-PASS-PST (e.g., danset)

[V-NFIN-ACT, V-IND-PL-ACT-PRS
(e.g., ata)l,

Swedish

19 2,114-2,536

(e.g., dter),
(e.g., at),
(e.g., dtit),
(e.g., dt)
(e.g., syodd),
(e.g., syon),

V-IND-SG-ACT-PRS
V-IND-SG-ACT-PST
V-V.CVB-ACT
V-IMP-ACT

V-NFIN-ACT+PASS
V-ACT-PRS-POS-IND-1-SG

Finnish

161 7,221-7,226

(e.g., soi),

V-ACT-PST-POS-IND-3-SG
(e.g., syonyt)

V.PTCP-ACT-PST

V-NFIN (e.g., icmek),
(e.g., icer)

Turkish

703 588

V-IND-PRS-HAB-3-SG-POS-DECL
V-IND-ACT-PRS-1-SG (e.g., -pleo),

V-NFIN-ACT-PRS (e.g., -plere),
V-V.MSDR-ACC-LGSPEC1 (e.g., -pletum)

48 450-947

Latin

illustrative lexeme examples.
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Features V-NFIN-IMP+SBJV - eat V-PRS-3-SG - eats V-PST - ate V-V.PTCP-PRS - eating V-V.PTCP-PST - eaten

V-NFIN-IMP+SBJV - eat 1.157683294  1.532683294 1.534943087

1.157683294 1.421493137 1.410905591

V-PRS-3-SG - eats

1.532683294

1.421493137

V-PST - ate

V-V.PTCP-PRS - eating

v | B W |N|=

1.410905591

V-V.PTCP-PST - eaten 1.534943087

Figure 1: Average edit distances for the English verb paradigm. Values range from 0 to 3.088. Darker red shades
indicate closer relationships between feature sets, while darker turquoise shades represent greater differences.

Features V-NFIN-IMP+SBJV - eat V-PRS-3-SG - eats V-PST - ate V-V.PTCP-PRS - eating V-V.PTCP-PST - eaten

V-NFIN-IMP+SBJV - eat

V-PRS-3-5G - eats

V-PST - ate

V-V.PTCP-PRS - eating

i | AW N |R

V-V.PTCP-PST - eaten

Figure 2: Edit Script scores for the English verb paradigm. Values range from 1 to 128. Darker purple shades
indicate fewer unique character sets (closer relationships), while darker air-force-blue shades reflect greater
variation.

Features V-NFIN-IMP+SBJV - eat V-PRS-3-SG - eats V-PST - ate V-V.PTCP-PRS - eating V-V.PTCP-PST - eaten

V-NFIN-IMP+SBJV - eat

V-PRS-3-SG - eats

V-PST - ate

V-V.PTCP-PRS - eating

v | B W IN|(R

V-V.PTCP-PST - eaten

Figure 3: Reinflection Accuracy scores for the English verb paradigm. Values range from 0.9 to 0.96. Darker teal
shades indicate higher accuracy, while darker pink shades reflect lower performance.

AR DCECD

L =

AN

Figure 4: Average edit distances for the German verb paradigm. Values range from 0 to 11.19. Darker red shades
indicate closer relationships between feature sets, while darker ball-blue shades represent greater distances.
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Figure 5: Edit Script scores for the German Verb Paradigm. Values range from 1 to 1,107. Darker purple shades
indicate fewer unique character sets (closer relationships), while darker air-force-blue shades reflect greater
variation.
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Figure 6: Reinflection Accuracy scores for the German verb paradigm. Values range from 0.66 to 0.9. Darker teal
shades indicate higher accuracy, while darker pink shades reflect lower performance.
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Figure 7: Average edit distances for the Swedish verb paradigm. Values range from 0 to 4.153. Darker red shades
indicate closer relationships between feature sets, while darker ball-blue shades represent greater differences.
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VSONACTPRS.  VSONACTPST-  V.SON-PASSPRS.  V-SON-PASSHST-
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ampACT- 3t

V-AND-PLACT-98S - 3ta

VANDPLACTST- b0
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Figure 8: Edit Script scores for the Swedish verb paradigm. Values range from 1 to 142.

Darker purple shades

indicate fewer unique character sets (closer relationships), while darker air-force-blue shades reflect greater

variation.
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1 NENPASS s
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w v [ o
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Figure 9: Reinflection Accuracy scores for the Swedish verb paradigm. Values range from 0.62 to 0.88. Darker teal
shades indicate higher accuracy, while darker pink shades reflect lower performance.
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