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Abstract

Verbal fluency is an experimental paradigm
used to examine human knowledge retrieval,
cognitive performance and creative abilities.
This work investigates the psychometric capac-
ities of LMs in this task. We focus on switching
and clustering patterns and seek evidence to
substantiate them as two distinct and separa-
ble components of lexical retrieval processes
in LMs. We prompt different transformer-
based LMs with verbal fluency items and ask
whether metrics derived from the language
models’ prediction probabilities or internal at-
tention distributions offer reliable predictors
of switching/clustering behaviors in verbal flu-
ency. We find that token probabilities, but espe-
cially attention-based metrics have strong sta-
tistical power when separating between cases
of switching and clustering, in line with prior
research on human cognition.

1 Introduction

The processes underlying human creative abilities
have been an important topic of research in several
fields. Research in cognitive science suggests that
semantic association and search are core aspects of
creative thinking (Mednick, 1962; Gilhooly et al.,
2007; Beaty and Silvia, 2012). Therefore, creative
abilities in humans are commonly tested and mea-
sured using semantic search tasks such as verbal
fluency, in which participants are asked to list lexi-
cal items for a given category in a short period of
time (e.g., name as many animals as possible in 60
seconds) (Beaty et al., 2014a).

Human responses to such tasks exhibit a well-
known search pattern, which has been termed “clus-
tering and switching” or “exploitation and explo-
ration” (Troyer et al., 1997). During clustering,
humans generate sequences of words that belong
to the same subcategory, exploiting the neighbour-
hood of previous items in the semantic space. As
this subcategory becomes increasingly exhausted,

they switch to other subcategories, shifting their at-
tention to a different patch in their conceptual space
(see Figure 1). Recent work suggests that cluster-
ing and switching are two fundamental components
of semantic search related to creative abilities and
has aimed to identify neurocognitive correlates of
these processes (Ovando-Tellez et al., 2022).

In this paper, we investigate whether transformer
language models (LMs) provide further evidence
for the hypothesis that creative semantic search
in verbal fluency involves two distinct, separable
processes related to clustering and switching. The
design of our experiments follows Ovando-Tellez
et al. (2022), who tested correlations between the
occurrence of clusters and switches in participants’
responses to fluency tasks and metrics for partici-
pants’ creativity, semantic network structure, and
brain connectivity. In our study, we replace these
metrics of human neuro-cognitive processes with
a set of probability and attention-based measures
computed with language models over human verbal
fluency sequences. We test whether these measures
provide predictors of clusters and switches in the
human sequences, e.g., whether attention is dis-
tributed differently in the LM when retrieving a
word within a cluster as compared to a switch.

Our motivation for studying clustering and
switching in verbal fluency using LMs is twofold:
First, we note that cognitive science has a long-
standing interest in computational models that cap-
ture human behavior in verbal fluency and other cre-
ative search tasks. Existing models in this area typ-
ically implement graph-based semantic networks
and explicit search algorithms on top of these net-
works (Hills et al., 2012; Zemla and Austerweil,
2017). We believe that LMs are an obvious alterna-
tive modeling approach worth exploring here since
their implicit semantic representations and word
prediction processes have been shown to excel in
a variety of generative tasks. LM-based correlates
of clustering and switching would demonstrate the
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Figure 1: Translated verbal fluency response from BIEFU (Alacam et al., 2022) with annotations of clusters
and switches (first row); semantic distances (cosine distances of ConceptNet embeddings) between consecutive
items; LM predictors: attention entropy and surprisal predictors from BERT and GPT respectively (all scores are
min-maxed normalized for visualization). "Animals: deer" is the LM prompt used to (re)-generate the sequence.

potential of LMs to complement the landscape of
computational approaches in this field and, in par-
ticular, to provide an account of general language
and word sequence processing mechanisms in ver-
bal fluency that are hard to come by in small-scale
net-work-based models (cf. Heineman et al., 2024).
At the same time, research on LMs is increasingly
interested in testing their elementary language pro-
cessing abilities. Recent studies have tested the
extent to which surprisal or attention-based scores
computed with LM predict human reading times,
providing a cognitively plausible account of pro-
cessing difficulties in reading and language com-
prehension (see Oh and Schuler, 2022; Shain et al.,
2024). The verbal fluency paradigm complements
the landscape of existing probing tasks and analysis
methods toward production-oriented tasks involv-
ing semantic search and creative abilities. In this
study, we ask whether LM-based metrics separate
between clustering and switching, as two central
components of creative semantic search. Our re-
sults suggest that LMs provide novel and strong
predictors for modeling human behavior in the ver-
bal fluency task and that attention distribution in
LMs has predictive power in accounting for clus-
tering and switching.

2 Background

2.1 Verbal fluency

The verbal fluency task is a neuropsychological test
of verbal functioning that is commonly used to mea-
sure cognitive performance in e.g. lexical knowl-
edge and retrieval or executive control (Shao et al.,

2014). We focus on categorical fluency, which in-
volves repeated retrieval of lexical items for the
same category. This gets more challenging when
easily accessible words are exhausted and partici-
pants are required to transition from fast, associa-
tive processes to a more controlled semantic search
(Demetriou and Holtzer, 2017). Verbal fluency data
is often analyzed in terms of clusters and switches
structuring the word sequence, i.e., word spans that
fall into the same semantic subcategories or tran-
sitions between subcategories (Troyer et al., 1997;
Kim et al., 2019). In Figure 1, for example, the se-
quence rabbit, cat, dog, ... corresponds to a cluster
followed by switch from budgie to tiger. Words
within a cluster are typically produced in a fast,
associative manner. Switches, in turn, show longer
retrieval times as they involve effortful search, ex-
ecutive control (i.e. inhibition of common or pre-
vious items), and efficient navigation of long-term
semantic memory (Michalko et al., 2023).

The interaction of clustering and switching that
typically appears in human verbal fluency re-
sponses plays an important role in creativity re-
search (Silvia et al. 2013; Beaty et al. 2014b; Beaty
and Kenett 2023, among others). Ovando-Tellez
et al. (2022) show that clustering is related to di-
vergent thinking, i.e., generating new and effective
ideas, while switching is connected with conver-
gent thinking or combining available information
in creative ways, and both are characterized by
distinct brain connectivity patterns. They argue
that clustering involves associative abilities, while
switching requires controlled memory retrieval pro-
cesses, executive functions and memory.
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2.2 Computational Models of Verbal Fluency

The computational modeling of verbal fluency data
has received considerable attention in cognitive
science research. Existing models typically imple-
ment the generation of verbal fluency responses as
a search over a semantic network or graph (Hills
et al., 2012; Abbott et al., 2015; Zemla and Auster-
weil, 2017; Avery and Jones, 2018), where cluster-
ing and switching emerges from the search strategy
as in the foraging model by (Hills et al., 2012) or
from the underlying structure of the network as in
the model by (Abbott et al., 2015). To a similar
end, other approaches make use of biologically in-
spired neural networks (Kajić et al., 2017) or, more
recently, pre-trained transformer models (Nigho-
jkar et al., 2022) and LLMs (Heineman et al., 2024;
Wang et al., 2025). In general, these models are
tested for their ability to predict or simulate human
fluency sequences on a word level.

Other computational work on verbal fluency
focused explicitly on automatically annotating
clustering-switching patterns in sequences pro-
duced by humans. Some studies have explored
the use of distributional semantic representations
and word embeddings for scoring semantic fluency
data (Linz et al., 2017; Paula et al., 2018; Kim
et al., 2019; Alacam et al., 2022) or the ability of
pre-trained LMs in predicting category switches
(Heineman et al., 2024).

In contrast to these models, our study does not
aim to explicitly reproduce or simulate the seman-
tic search strategies observed in human verbal flu-
ency responses with LMs. Instead, we focus on
investigating their underlying word retrieval and
prediction processes. Inspired by Ovando-Tellez
et al. (2022), we ask whether we can identify dis-
tinct components of verbal fluency, i.e. clustering
and switching, from processing-related behavioural
measures computed with an LM.

2.3 Linguistic and Cognitive Probing of LMs

The analysis of linguistic and cognitive capabilities
captured in LMs has become an important area of
research (Belinkov and Glass, 2019; Baroni, 2022;
Chang and Bergen, 2023; Binz and Schulz, 2023;
Strachan et al., 2024). A common paradigm in
LM probing is behavioral analysis, which treats
the pretrained LM as a black box and uses care-
fully controlled test suites or experimental datasets
from (psycho-)linguistics to compare model out-
puts against human productions or judgments. This

paradigm is useful for testing whether LMs learn
particular linguistic rules and generalizations, in
particular in the domain of syntax (Warstadt et al.,
2020), but provide very limited insights into how
underlying processing mechanisms in LMs align
to human language processing and cognition (cf.
Baroni, 2022; Chang and Bergen, 2023).

Other work on probing LMs focuses on their
ability to account for effects of processing diffi-
culty, and mostly goes back to the idea of “surprisal”
(Hale, 2001; Levy, 2008; Demberg and Keller,
2008; Smith and Levy, 2013). Surprisal is defined
as the negative log probability of a word in context
and has been demonstrated to provide a very robust
predictor for human processing times (e.g., to read-
ing times) when computed with language models of
different sizes or perplexities (Goodkind and Bick-
nell, 2018; Shain et al., 2024). These findings lend
support to expectation-based accounts of sentence
processing in psycholinguistics, aligning word pre-
diction processes in LMs with humans’ anticipation
of upcoming material in sentence reading. A few
recent studies explored further predictors comple-
menting surprisal. Thus, the attention mechanism
of transformer LMs has been considered to approx-
imate aspects of memory and attention in human
cognition (Ryu and Lewis, 2021; De Varda and
Marelli, 2024). Most importantly for our study,
Oh and Schuler (2022) showed that attention dis-
tribution and distance metrics from internal layers
of the LM yield very powerful predictors for self-
paced reading times and gaze durations in naturalis-
tic reading, drawing connections to memory-based
accounts of sentence processing. As memory is
an important aspect of semantic search in the ver-
bal fluency task (Ovando-Tellez et al., 2022), our
study will examine both surprisal (or, more gen-
erally, probability-based) predictors computed at
the LM’s output layer as well as attention-based
predictors from the internal layers.

However, although LMs are now frequently used
as computational testbeds for theories of language
processing and cognition, the field is still debating
which of the many existing LMs can provide the
most robust and cognitively plausible predictors
of human processing. Oh et al. (2022) tested sur-
prisal estimates from GPT-2 models of different
sizes and showed that the surprisal computed with
smaller model sizes achieved a better fit with hu-
man reading times than larger model sizes. Similar
observations have been made in (Kuribayashi et al.,
2022; Oh and Schuler, 2023). Wilcox et al. (2023),
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on the other hand, trains LMs of small and medium
size on a range of languages and finds that LM
quality generally correlates with its psychometric
predictive power. Therefore, in the following, we
will rely on some less recent but widely used LMs
such as BERT or GPT-2, but also include variants
of more recent models available in different sizes.

3 Motivation and research questions

The main question of this work is whether current
transformer LMs can account for effects of pro-
cessing difficulty in a creative word retrieval task –
verbal fluency – where clear differences in retrieval
difficulty have been widely observed in terms of
clustering-switching patterns (Troyer et al., 1997;
Hills et al., 2012). In the following, we will detail
the assumptions underlying this question.

Why could prediction and attention mechanisms
implemented in LMs explain effects of process-
ing difficulty in the verbal fluency task? At
a basic level, verbal fluency involves repeated re-
trieval of lexical items, which aligns well with the
autoregressive, left-to-right word prediction objec-
tive implemented in modern LMs. Research on
verbal fluency in psychology and linguistics typ-
ically emphasizes that the verbal fluency task in-
volves a whole range of different cognitive and ver-
bal abilities, such as access to the mental lexicon,
semantic knowledge, search strategies, language
processing, executive control functions, long-term
memory, and attention (Kim et al., 2019; Michalko
et al., 2023; Ovando-Tellez et al., 2022). Impor-
tantly, many previous studies have found strong
evidence for lexical access and language produc-
tion processes being critical components in verbal
fluency (Weckerly et al., 2001; Whiteside et al.,
2016; Marko et al., 2023). Therefore, we believe
that LMs with their complex underlying architec-
ture for representing and modeling word sequences
may offer additional benefits over traditional, rel-
atively small-scale network models (Hills et al.,
2012; Abbott et al., 2015) building on Markovian
assumptions and being detached from general lan-
guage processing accounts (Heineman et al., 2024).

Which LM-based predictors can be expected
to account for processing effects of clustering
and switching in verbal fluency? While previ-
ous modeling approaches typically rely on some
form of semantic distance to account for clustering-
switching patterns, this work proposes to use word

prediction and attention-based measures computed
from LMs as proxies of retrieval difficulty in ver-
bal fluency. We expect these predictors to inher-
ently account for sequence processing effects and
to capture retrieval difficulties beyond semantic-
taxonomic distances. As a motivating example,
consider the first cluster of the sequence in Figure 1
corresponding to common “pets” (rabbit, dog, cat,
...). Here, attention entropy and surprisal scores
computed with BERT predict that these words are
easy to retrieve, matching the annotation as a clus-
ter. However, the semantic distance predicts greater
difficulty, potentially due to taxonomic distances
between, e.g. mouse and bird. In simple terms, we
assume that words corresponding to switches and
higher retrieval difficulty in humans are modeled
as less predictable and requiring higher attention-
entropy in LMs. For instance, the word dog fol-
lowing cat should have a relatively low surprisal
compared to the word tiger following budgie, as
illustrated in Figure 1. Higher attention entropies,
in turn, indicate that the model distributed attention
weights more evenly across the preceding sequence
which in Figure 1 is often the case for words corre-
sponding to switches (tiger, whale, sparrow, ...).

4 Experimental Method

4.1 Data

We base our experiments on BIEFU (Alacam et al.,
2022), a dataset of German verbal fluency re-
sponses, which covers a fairly high number of cat-
egories. The BIEFU data was collected from 100
participants and contains verbal fluency responses
that enumerate words for 10 different semantic cat-
egories (e.g., animals, hobbies, body parts). An
overview of the data is shown in Table 4 (App. A).

Soft and Hard Switches The BIEFU dataset in-
cludes manual annotations of lexical items with
semantic subcategories. Based on these, we deter-
mine soft (fluid) and hard (static) switches, follow-
ing Zemla and Austerweil (2019). A soft cluster
switch occurs when the next word in a list does not
share a sub-category label with the previous word,
while a hard switch occurs whenever the next word
does not share a sub-category label with any of the
previous words since the start of the last cluster.
Soft switches are the most commonly examined
types of switches in the literature and we will focus
on these in the following.
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4.2 Prompting

To obtain prompts from human verbal fluency se-
quences, Nighojkar et al. (2022) replaced the last
item in a partial verbal fluency sequence with a
mask token, cf. (1).

(1) [C]s I know are wn−1−ct, . . . , wn−1, and
the [MASK] .

Here, wn−1−ct (ct being the context size) is the ini-
tial and wn−1 the penultimate item in a sequence
produced for category C. [MASK] always repre-
sents the last item. We adopt this scheme and itera-
tively mask out subsequent items in each human-
produced sequence, i.e., shift the masked token
from left to right by truncating them at the position
of the masking token, cf. the prompts in Table 1.
Baseline prompt (pr-0), which consists of a sim-
ple enumeration preceded by the category name, is
added for comparison. Since LMs can be very sen-
sitive to the specification of their prompts, we con-
ducted further experiments with prompt design that
addresses both auto-regressive and bidirectional
prompt strategies with different wording variations,
see Table 5 (App. B.2) for additional results on
these.

Seq: dog, cat, mouse, ...

pr-01 Animals: dog, [MASK]
pr-02 Animals: dog, cat, [MASK]

pr-11 Animals I know are dog, [MASK]
pr-12 Animals I know are dog, cat, [MASK]

Table 1: A (translated) sample of a human response
and derived LM prompts for two subsequent steps in a
verbal fluency sequence for autoregressive prompting.

4.3 Language Models

Since our investigation is one of the first to test
the predictive power of LMs in distinguishing clus-
tering and switching, we select basic transformer
LMs that have also been widely used in the litera-
ture on cognitive probing – GPT-2 (Radford et al.,
2019), BERT (Devlin et al., 2019) and T5 (Raf-
fel et al., 2020). Next to these, we also include
open-source German or multilingual models that
come in different size – Bloom (350m, 1b5, 1b7)
(Scao et al., 2023) and XGLM (560M, 1b7) models
(Lin et al., 2021). This model selection ensures a
representative comparison across transformer ar-
chitectures that employ different versions of the

self-attention mechanism: BERT as a bidirectional
encoder model, GPT-2, Bloom and XGLM as uni-
directional autoregressive decoder models, and T5
as an encoder-decoder transformer.

4.4 Predictors of Switching and Clustering

We use generalized linear mixed-effect models to
test the predictive power of probability-based and
attention-based metrics derived from LMs to sepa-
rate clustering and switching in verbal fluency data.
In the following, we describe the predictors we
include in this statistical analysis.

4.4.1 Psycholinguistic Predictors
We implement a strong baseline model that predicts
clustering/switching based on fixed and random ef-
fects established in recent verbal fluency literature
(Michalko et al., 2023). These predictors are tempo-
ral order, task demand, Typicality, Inter-response
similarity. We add the participants and semantic
categories as a crossed random effect to the initial
model (m0).

Temporal order (TEMP). The normalized tem-
poral order (TEMP) corresponds to the current posi-
tion of the word in a sequence divided by the length
of that sequence (range between 0 and 1). This pre-
dictor captures the fact that words are more difficult
to produce the longer the sequences become.

Task demand (TD). This predictor reflects that
certain verbal fluency categories are systematically
easier to enumerate than others, due to their fa-
miliarity, frequency, and lexical specificity. For
instance, categories like animals and vegetables are
easier to enumerate since they are more frequent,
while other categories like fabrics or insects are less
easily accessible. Following Michalko et al. (2023),
we manually group the verbal fluency categories
into three so-called “task demand categories”.

Typicality (TYP). Next, we add a fixed effect that
captures the typicality of an item within a verbal
fluency category (TYP). TYP is calculated as the
logarithm of the absolute number of occurrences of
a word among all items enumerated by all partici-
pants within that particular category. See App. A
for further detail.

Inter-response similarity (IRS) We compute the
semantic similarity of subsequent lexical items
in a verbal fluency sequence. Here, we deviate
slightly from Michalko et al. (2023) and use the
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cosine similarity between the items’ word embed-
dings, computed with the ConceptNET Number-
batch word embedding. This semantic space is en-
riched with ConceptNet taxonomic relations (Speer
et al., 2017), achieves the best performance in pre-
dicting clustering and switching patterns in BIEFU
data Alacam et al. (2022).

Retrieval latency (RL) Our data records time
stamps of every typed character in the verbal flu-
ency sequence. We define retrieval latency as the
time span as the offset between a preceding item
and the onset of the next item. We calculate it by
subtracting the offset of the first item from the onset
of the second item.

4.4.2 Probability-based Predictors
Our first set of LM predictors is derived from word
probabilities. We regard these as measures of re-
trieval difficulty or predictability in sequence gen-
eration, mirroring the notion of “expectation” in
sequence understanding (Shain et al., 2024). We
expect that clustering corresponds to less surpris-
ing items, whereas switching should show higher
surprisal and lower probabilities. The handling of
words composed of subwords across different LM
architectures is detailed Appendix B.1. To test this
hypothesis, we consider the following predictors:

Surprisal (Surp.). We transform word probabili-
ties into surprisal scores, quantifying the informa-
tion content it conveys in the context in which it
appears. The surprisal of a word w is calculated as
the negative log-likelihood of its probability. We
expect a positive correlation with switching.

Surprisal(wi) = − log2 p(wi |w<i)

Rankings (Rank). This predictor derives deter-
mines the rank of the word w in the word probabil-
ity distribution. We expect a positive correlation
with switching. The rank parameter is highly de-
pendent on the vocabulary size of the LM architec-
ture. In our analysis, the rank scores are normal-
ized, but see Appendix B.4 for more information.

Rank(w) = arg mini {p(w | context) : i = 1, 2, . . . , N}

Entropy (Ent.). As another account of retrieval
difficulty in context, we include the entropy of
the word probability distribution, quantifying the
model’s uncertainty in the given context, regardless
of the probability or rank of the target item. We
expect a positive correlation with switching.

Entropy(wi) = −
∑

wi

p(wi |w<i) log2 p(wi |w<i)

4.4.3 Attention-based Predictors
The second set of LM predictors derives from the
model’s internal attention distributions as measures
of cognitive effort, related to monitoring and shift-
ing working memory and attention (Ryu and Lewis,
2021; De Varda and Marelli, 2024). We expect that
switching corresponds to higher cognitive effort,
e.g., wider attention distributions across layers and
heads, than clustering which we expect to show
more localized attention patterns.

We extract the attention-based predictors consid-
ering different layers and attention heads in the
transformer architecture (144 heads in total for
the smaller LMs, 256 for the larger LMs). We
first transform the embeddings of tokens or hidden
states of a sequence to a triple of query (q), key
(k), and value (v) embeddings. The heads then
compute the attention weight between the query
and key vectors for all pairs of tokens in the input
prompt as soft-max-normalized dot products.

αij =
exp(qTi kj)∑n
l=1 exp(q

T
i kl)

The diffuseness of attention obtained from these
attention maps α can be calculated in different
ways. We follow Clark et al. (2019) and consider
attention head entropy and distance between at-
tention distribution for subsequent items in the se-
quence.

Average Attention-Heads Entropy (AHE). The
attention entropy is calculated in a similar way to
the probability-based entropy metric. The key dis-
tinction lies in its application to attention weight
distributions instead of a softmax-adjusted proba-
bility distribution. Subsequently, the attention en-
tropy is obtained by averaging across all heads for
the respective iteration of the input prompt. High
entropy is associated with bag-of-words context
incorporation (Clark et al., 2019).

Entropy(head) = −
N∑

i=1

α(i) log2 α(i)

Here, α(i) represents the probability associated
with the i-th element in the attention distribution.

Average JS-Divergence in attention heads (AH-
JSD). To explore whether attention heads in the
same layer can be grouped based on similar behav-
ior, we compute the distances between all pairs of
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attention heads. This pairwise distance between the
attention distribution of each pair of heads Hi and
Hj is calculated using Jenson-Shannon Divergence
following (Clark et al., 2019). Lower divergence in-
dicates that all heads process the inputs in a similar
way.

JSD =
∑

token∈Prompt

JS(Hi(token), Hj(token))

5 Experiments

We now describe our experiments, testing the pre-
dictive power of LM predictors in distinguishing
between clustering and switching in a creative se-
mantic search task. All analyses were carried out
in R version 2024.12.x (R Core Team, 2021). The
models are compared using ANOVA and all nu-
merical values are (z-)normalized using the scale
function in R.

5.1 Baseline Models
We use mixed-effect logistic regression (glmer) and
fit them on annotations of switching and clustering
in human verbal fluency responses. The dependent
variable is coded as a binomial variable (0: clus-
ter, 1: switch), indicating clustering or switching
between consecutive words in a sequence.

For the baseline model, we applied forward step-
wise inclusion starting with m0 which has only
crossed-random effects of participant and category.
The order of the inclusion of the parameters in the
baseline is from more basic (temporal order) to
complex (retrieval latency). For model m1 to m5,
we add the baseline predictors from Section 4.4.1
as follows:

m0 :switch+ (∼ 1|part.)+ (∼ 1|cat.)
m1 :m0+ TEMP

m2 :m1+ TASKDEMAND

m3 :m2+ TYP
m4 :m3+ IRS

m5 :m4+ RL

The temporal order parameter did not improve the
model fit (χ2(1) = 1.31, p > .05). Adding task
demand (TEMP) has a significant effect (χ2(2) =
6.64, p < .05). The main effects of the typicality
(TYP) and of the inter-response similarity param-
eter (IRS) were also found significant ((χ2(1) =
44.63, p < .0001) and (χ2(1) = 3384, p < .001),
respectively). For the hard switch, all parame-
ters significantly contributed to model fit (see Ap-
pendix B.3 for the details). The results indicate that
m5 is the strongest baseline for switch modeling.

This set of baseline models, commonly used in
the verbal fluency literature, enables us to quantify
and compare the individual contributions of a rich
array of LM predictors that we propose.

5.2 Models with LM predictors

Next, we analyze the power of LM predictors in
modeling clustering and switching. The following
model list shows in which order the probability and
attention-based variables from Sections 4.4.2 and
4.4.3 are included:

lm_m6 :(m3, m4, or m5)+ ProbLMtype

lm_m7 :(m3, m4, or m5)+RankLMtype

lm_m8 :(m3, m4, or m5)+ EntLMtype

lm_m9 :(m3, m4, or m5)+AHELMtype

lm_m10 :(m3, m4, or m5)+AH − JSDLMtype

Thus, adding LM predictors to m3 shows the
contribution of probability and attention-based pre-
dictors to a model that includes the baseline predic-
tors of temporal order, task demand, and typicality.
Then, we test the predictive power of LM parame-
ters to the m4 model, which includes a significant
predictor for semantic similarity between consec-
utive words (IRS). Finally, we add them to the
m5 model, which further includes retrieval latency
(RL), a highly predictive variable for clustering and
switching.

5.3 Results

Table 2 summarizes the contribution of each LM
predictor for soft switch modeling when added to
the defacto baseline model (m3). The results for
m3 in Table 2 show clear evidence for the predic-
tive power of LM predictors, in separating between
clustering and switching processes. The attention-
based metric AH-JSD, in particular, models these
processes very robustly and independently from
the underlying LM, i.e. it is highly significant for
all LMs. This also holds for the AHE metric, which
achieves slightly lower values across the board,
though. The probability-based metrics are less con-
sistent across LMs: T5, Bloom350, and XGLM
yield a highly significant RANK variable while sur-
prisal is less significant. However, SURPRISAL

derived from BERT achieves substantial predictive
power, comparably to AHE. Most probability-based
predictors from GPT-2 are insignificant.

Analysis with Concept Similarities and Re-
trieval Latency. We further investigate the re-
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Table 2: Soft Switch: the individual contributions of LM-predictors to the base model (m3) (Chi-Square).
*** denotes significance (p) < 0.001. ** : p < 0.01 and * : p < 0.05

BERT T5 GPT-2 Bloom350 Bloom1b5 Bloom1b7 XGLM560 XGLM1b7

m
3

Prob 37.44*** 11.28*** 2.20 0.65 0.62 2.64 4.68* 15.26***
Rank 9.64** 51.25*** 1.49 50.41*** 0.74 2.41 67.79*** 76.78***
Surprisal 64.08*** 12.89*** 3.86* 46.99*** 23.09*** 2.78 30.25*** 17.25***
Entropy 2.91 0.83 3.54 33.02*** 0.72 1.03 63.16*** 3.21

AHE 60.43 *** 33.66*** 45.02*** 32.31*** 32.31*** 31.97*** 52.68*** 52.68***
AH-JSD 106.26 *** 63.64*** 92.35 *** 71.07*** 68.34*** 73.56*** 85.11*** 79.52***

Table 3: Soft Switch: the individual contributions of LM-predictors on top of m4 and m5 models (Chi-Square).
*** denotes p < 0.001. ** : p < 0.01 and * : p < 0.05

BERT T5 GPT-2 Bloom350 Bloom1b5 Bloom1b7 XGLM560 XGLM1b7

m
4

Prob 1.56 22.85 *** 29.05 *** 56.94 *** 50.15 0.005 9.77** 15.11***
Rank 4.26 * 16.50 *** 8.35 ** 35.96 *** 48.61*** 8.92** 14.92*** 29.39***
Surprisal 10.76 ** 0.89 1.34 53.55 *** 74.28*** 1.22 0.02 4.19*
Entropy 0.15 0.97 1.96 42.27*** 0.79 0.01 71.10*** 7.19**

AHE 46.65 *** 21.03 *** 31.24 *** 20.27 *** 20.27*** 15.79*** 34.95*** 34.95***
AH-JSD 71.41 *** 29.28 *** 58.64 *** 38.61 *** 35.16*** 34.88*** 43.88*** 39.10***

m
5

Prob 1.85 24.05 *** 30.05 *** 56.13 *** 50.69*** 0.001 8.81** 16.83***
Rank 4.54 * 17.57 *** 6.80 ** 33.12*** 43.35*** 7.13** 15.82*** 28.39***
Surprisal 8.95 ** 2.06 0.93 51.61 *** 74.14*** 1.55 0.20 4.68*
Entropy 0.49 1.59 2.05 35.39 *** 1.32 0.02 69.39*** 6.12*

AHE 14.99 *** 3.51 * 7.44 ** 2.67 2.67 1.11 8.73** 8.73**
AH-JSD 24.93 *** 4.02 * 17.93 *** 7.28 ** 5.71* 5.13* 8.64** 6.35*

lationship between LM parameters and semantic
similarity (IRS) – one of the most frequently used
NLP metrics in verbal fluency modeling – as well
as retrieval latency (RL) as a strong behavioural
measure of processing difficulty. Table 3 summa-
rizes the contribution of each LM predictor for soft
switch modeling when added to the m4, and m5
models, respectively. Looking at the results for m4,
we find that a number of LM predictors remain
highly significant, even on top of the strong simi-
larity variable IRS. This holds in particular for the
attention-based metrics, most notably for AH-JSD.
This confirms our hypothesis that attention distribu-
tions in the internal layers of LMs capture aspects
of processes in semantic search beyond static simi-
larities in embedding space. However, we also see
notable differences in how predictors from different
LMs interact with IRS. Bloom350 and Bloom1b5’s
attention-based metrics seem to be more closely
aligned with the IRS parameter (resulting in lower
contributions) compared to their probability-based
parameters. The probability-based predictors of
BERT, however, are not significant anymore when
combined with IRS.

The results for m5 closely align with those of

m4, with the primary difference being a substan-
tial decrease in the magnitude of contribution for
attention-based models. As m5 includes the highly
significant retrieval latency parameter from the hu-
man data, we take this as a promising finding sug-
gesting that attention-based metrics derived from
LMs show some alignment with humans internal re-
trieval processes. The inclusion of retrieval latency
does not influence the contribution of probability-
based metrics which supports the view that they
capture complementary aspects of clustering and
switching in our data.

LM Comparison. When comparing all three
testing conditions, attention-based metrics are the
most robust predictors across different LM archi-
tectures. Their predictive power only decreases
when added after the retrieval latency parameter,
which suggests that attention-based predictors are
highly aligned with retrieval latency in humans.
For the final m5 model, the probability-based met-
rics from small German Bloom models remain
highly significant. Interestingly, we observe a sim-
ilar effect here to other studies on surprisal (Oh
and Schuler, 2023), i.e. their predictive power
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decreases with increasing model size. Similarly,
we see some advantages of the smaller XGLM560
over the larger XGLM1b7. Finally, next to model
size, we see great differences between predictors
computed from different transformer architectures
(BERT, GPT2, T5). For instance, AH-JSD from
BERT remains significant in m5, while the same
is not true for T5 or GPT-2. This suggests that
attention patterns learned in different architectures
capture different aspects of humans’ cognitive pro-
cesses, supporting further research into novel LM
architectures (Charpentier and Samuel, 2024).

Finally, we complement the chi-square-based
evaluation with the model ranking according to
AIC scores (quantifying model fitness) in Appendix
Figure B.5. The AIC-based analysis confirms the
pattern described above. Among all variations for
the base model (m3), AH-JSD metric derived from
BERT had the highest model fit. However, for the
enriched models incorporating semantic similarity
(m4) and retrieval latency (m5), larger models –
particularly BLOOM1b5 and XGLM560 – demon-
strate superior performance.

5.4 Discussion
Our experiments on verbal fluency add to the exist-
ing evidence that language models show some de-
gree of human-likeness in their internal processing
mechanisms (cf. Kuribayashi et al., 2025). Thus,
we find that well-known predictors derived from
LMs’ word predictions, i.e., surprisal and related
measures, as well as predictors computed from
LMs’ attention distributions, have strong statisti-
cal power when separating between clustering and
switching in human verbal fluency responses.

For research on creativity in human cognition,
this result supports the assumption that different
processes are at play in creative semantic search
tasks (Ovando-Tellez et al., 2022). When LMs re-
generate humans’ verbal fluency responses, they
show clearly distinct attention and prediction pat-
terns that neatly align with annotations of clustering
and switching in these sequences. Previous studies
identified these patterns based on distances in word
embedding spaces (Alacam et al., 2022). Our study
complements this with further metrics computed,
in particular, from the LMs’ internal attention dis-
tribution. These attention-based LM predictors re-
mained significant even when added to a baseline
model that included a semantic distance-based vari-
able (IRS). This suggests that attention distributions
capture processing-related mechanisms in verbal

fluency beyond semantic distances.
The fact that attention-based predictors are su-

perior to probability-based metrics in our verbal
fluency setting supports previous work proposing
that attention patterns in transformer LMs could re-
flect processes or retrieval and memory search (Ryu
and Lewis, 2021; De Varda and Marelli, 2024). The
creative search processes involved in verbal fluency
pose particularly strong demands on memory and
executive processes of working memory and inhibi-
tion (Shao et al., 2014). This further underlines the
plausibility of our findings and explains why sur-
prisal predictors, which are prominent in studies on
processing difficulty in natural reading, show less
consistent patterns than attention-based metrics.

While recent work on cognitive probing of LMs
has mostly focused on autoregressive GPT-style
architectures, our results show that attention pre-
dictors from encoder models like BERT outper-
form GPT models. This is surprising since autore-
gressive word prediction and causal, left-to-right
self-attention seem intuitively more aligned with
incremental sequence generation in verbal fluency.
A hypothesis to explore in future work is that the
bidirectional self-attention in the BERT encoder
could allow the model to obtain a richer seman-
tic space and account for more complex attention
and retrieval operations involved in a challenging
semantic search task.

Finally, our study points to new directions for the
cognitive probing of LMs. Whereas most previous
work looked at modelingreading times, our study
shows the fitness of LM predictors in accounting
for generative and creative tasks. Future tasks to
consider could be related to naming (Silberer et al.,
2020), reference (Junker and Zarrieß, 2024) or as-
sociation (Chen and Ding, 2023).

6 Conclusion

Our work contributes to understanding the process-
ing mechanisms of LMs with the help of verbal
fluency, an established experimental task from cog-
nitive science research. We showed that LMs can
distinguish two central components of creative se-
matic search, clustering and switching, via their
metrics derived from their attention and probability
distributions. Our study is one of the first to show
that distributions of attention weights in the internal
layers and attention heads of the transformer archi-
tecture correlate to a great extent with processing
difficulty in a creative semantic search task.
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Limitations

We have employed the vanilla versions of the se-
lected language models and all the metrics derived
from the models were not subjected to heavy trans-
formations except the basic soft-max, negative log-
likelihood, or pooling over layers and attention
heads. Since the evidence from the analysis points
towards the advantage of using attention-based met-
rics, further investigation on calculating different
attention scores (Oh and Schuler, 2022) is a promis-
ing line of research.

The verbal fluency data were processed using
off-the-shelf NLP text processing tools. Compound
words are generally common in German, and the
vocabulary used by participants also frequently
contains compound words such as “Klavierspielen”
(piano playing), “Krankenpfleger” (health nurse),
“Fahrradfahren” (bike riding). Unfortunately, many
of the compounds do not exist in the vocabulary of
the static embedding models such as ConceptNet,
whereas BERT and succeeding language models
can deal with out-of-vocabulary tokens due to their
sub-word tokenization method.

Ethical Statement

Our study utilizes a published and openly available
dataset with annotations on verbal fluency, without
annotator-related information. Additionally, we
ensure that our use of the dataset aligns with its
intended purpose.
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Appendix

A BIEFU data

Table 4 presents basic statistics for word counts
and retrieval latencies for BIEFU verbal fluency
sequences within each category and across cate-
gories (as global). This overview highlights some
characteristic differences between the categories:
participants enumerated almost 11.5 items on av-
erage. For the animals and countries, the number
is high as 19.11 and 18.5 respectively, while it
is around or below 10 items for fabrics, insects,
and vessels. Correspondingly, retrieval latency for
countries, animals, groceries and body parts are
significantly lower than categories that are less easy
to enumerate such as fabrics or insects.

Table 4 also includes typicality and IRS scores
that we will use as predictors in our baseline model.
The IRS is the cosine similarity between consec-
utive words calculated with ConceptNet Number-
batch embeddings (Speer et al., 2017). We ob-
serve that the categories insects and fabrics which
elicited the smallest number of words (tokens and
types) across participants show the lowest typical-
ity values, i.e. participants retrieved relatively few
and rather divergent sets of words. Interestingly,
hobbies and occupations exhibit high typicality,

i.e. show more overlap between participants, but
also show the lowest IRS scores, i.e. they con-
tain words that have more distant embedding in
semantic space. The categories clothes, body parts,
insects, and vessels exhibit the highest IRS scores.
Based on the provided dataset, we further calcu-
late the retrieval latencies between each consec-
utive items. The mean retrieval latencies shown
in Table 4 further differentiate the overall picture.
Here, the categories countries and animals, the
most widely used category in verbal fluency, show
the lowest mean retrieval latencies, together with
high typicality and medium IRS.

Task demands For creating the task demand cat-
egories for BIEFU in a similar way as in Michalko
et al. (2023), we have looked at the held-out se-
quences (from another 100 participants on the same
categories, but without retrieval latency scores)
and calculated the basic statistics similar to Ta-
ble 4 except the retrieval latency score. Based on
these scores, we categorized the BIEFU categories
into three groups depending on the cognitive effort
needed to enumerate them. The low-demand cate-
gory consists of animals, body parts and countries.
Hobbies, occupations, groceries and clothes belong
to the moderate category. Finally, the high demand
category includes fabrics, vessels and insects.

B Language Models

We utilize the verbal fluency data in German by
(Alacam et al., 2022) and we employ various dis-
tinct language models for German : (i) a pretrained
German BERT model1 (ii) a pretrained German
GPT-2 model2 , and (iii) a pretrained T5 model3

for German.
In this way, we aim to minimize any potential

impact of the training data’s nature on the overall
performance of our models. We generally use the
Hugging Face4 framework for reproducibility.

Next to these common LMs, we evaluate two
more recent autoregressive models on the dataset,
investigating the effects of model size and the dif-
ference between monolingual and multilingual lan-
guage models. Specifically, we employ (i) a mono-
lingual BLOOM model that is trained from scratch
on German data, comprising 350M parameters5,

1
https://huggingface.co/dbmdz/bert-base-german-cased.

2
https://huggingface.co/dbmdz/german-gpt2.

3
https://huggingface.co/t5-base.

4
https://huggingface.co/.

5
https://huggingface.co/malteos/bloom-350m-german.
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Table 4: BIEFU: Basic statistics (Max, min, and average values of sequences, retrieval latency and sub-category
counts per semantic category)

Categories Token Count in a Sequence Mean Total Subcat. Typicality IRS
Retrieval Token Count (mean) Similarity
Latency (Type) (mean)
(in sec.) Count

animals Max: 34, Min: 8, Mean: 19.11 1,96 1548 (202) 22 4.53 .39
body parts Max: 28 , Min: 8 , Mean: 17.02 2.50 1571 (144) 8 3.98 .50

clothes Max: 24, Min: 7, Mean: 16.5 2.31 1434 15 4.04 .52
countries Max: 33, Min: 6, Mean: 18.5 1.81 1688 (140) 6 4.19 .42

fabrics Max: 14, Min: 5, Mean: 7.9 5.06 633 (142) 15 3.94 .39
groceries Max: 28, Min: 7, Mean: 16.6 2.32 1550 (276) 14 4.69 .42

hobbies Max: 25, Min: 6, Mean: 14.49 2.63 1333 (302) 31 4.86 .32
insects Max: 17, Min: 5, Mean: 9.47 4.21 843 (99) 14 3.67 .49

occupations Max: 20, Min: 6, Mean: 12.23 2.89 1113 (296) 19 4.91 .35
vessels Max: 17, Min: 5, Mean: 10.13 3.83 902 (166) 9 4.13 .46
Global Max: 34, Min: 5, Mean: 11.51 3.05 19518 (2763) 153 4.13 .43

(ii) a multilingual BLOOM model adapted to the
German language via the CLP-Transfer method
with 1.5B parameters6, and (iii) a multilingual
BLOOMoom with 1.7B parameters7. Furthermore,
we use (iv) a multilingual XGLM model with 564M
parameters8, comparable in size to the monolingual
BLOOM model, and (v) a multilingual XGLM
model with 1.7B parameters9, equivalent in size to
the biggest multilingual BLOOM model.

We omit models like Chat-GPT or GPT-4 from
our analysis since these do not generally provide to-
ken probabilities or attention distributions through
their respective APIs and, hence, do make it possi-
ble to compute the type of measures and predictors
we need for our investigation.

B.1 Tokenization

We first tokenize the masked prompt with the word
w masked out by a single mask token m) and pass
it through the model. We then restrict the output
logits of the model to the position of the masked
token and pass them through a softmax function to
obtain a probability distribution over the model’s
vocabulary for the position of m. In the resulting
distribution, we select the probability of w, the en-
tropy of the distribution as well as the rank of w in
the model’s vocabulary sorted by the probability.
In addition to this, we also store the attention map
over the whole sequence. The subword tokeniza-
tion of BERT and T5 complicates this process, i.e.
w is not always represented by a single token in
the model’s vocabulary, but may consist of multi-

6
https://huggingface.co/malteos/bloom-1b5-clp-german.

7
https://huggingface.co/bigscience/bloom-1b7.

8
https://huggingface.co/facebook/xglm-564M.

9
https://huggingface.co/facebook/xglm-1.7B.

ple subword tokens (such as [Kol, ##ib, ##ri] for
the word Kolibri (hummingbird)). In such cases,
we iteratively replace m with each subword token
for w and take the average of the log probabili-
ties of all subwords as well as the lowest rank of
any subword as representative of the whole item
w. Such a method is considered useful for extract-
ing a more meaningful score for the multiword
expressions like [Großer Panda (Big Panda), Rote
Paprika (Red paprika)]. For the autoregressive
GPT-2, BLOOM and XGLM models, where uti-
lizing a masked token isn’t feasible, we truncate
the prompt at the position of the masked item and
then pass it through the models. The process of
extracting probabilities, ranks, surprisal scores, and
entropies with GPT-2, BLOOM and XGLM models
mirrors that are utilized for BERT and T5 models.
This also extends to the handling of the subword
tokens, as the autoregressive models employ the
same tokenization strategy.

B.2 Prompt Design

Since existing LMs can be very sensitive to the
specification of their prompts, we also test sev-
eral prompt variations for the calculation of prob-
abilities and attention distributions for verbal flu-
ency sequences. Depending on the type of LM,
these prompts can be divided into (i) unidirectional
prompts that only include left context for masked
tokens and (ii) bidirectional prompts where masked
tokens are presented in a left and right context. In
the following, we describe the design of the verbal
fluency prompts.
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Table 5: A sample of a human response and derived LM prompts for two subsequent steps in a verbal fluency
sequence (1st step/left, 2nd step/right column), as input for autoregressive prompting. For T5, we use identical
prompts to BERT but replace [MASK] with the sentinel token.

Original Sequence Hund (dog), Katze (cat), Maus (mouse)

Target token Katze in the 1st step Maus in the 2nd step

(Animals: Dog, [MASK] )
Prompt-0 Tiere: Hund, [MASK]* Tiere: Hund, Katze, [MASK]*

(Animals I know are dog and [MASK].)
Prompt-1 Tiere, die ich kenne, sind Hund und [MASK]* Tiere, die ich kenne, sind Hund, Katze und [MASK]*

(Examples of animals are dog, [MASK])
Prompt-2 Beispiele für Tiere sind Hund und [MASK]*. Beispiele für Tiere sind Hund, Katze, und [MASK]*.

(The first animals that come to my mind are dog, [MASK], mouse.)
Prompt-3 Die ersten Tiere, die mir einfallen, sind Hund und [MASK]*. Die ersten Tiere, die mir einfallen, sind Hund, Katze und [MASK]*.

(Animals one can know are dog and [MASK].)
Prompt-4 Tiere, die man kennt, sind Hund und [MASK]* Tiere, die ich kenne, sind Hund, Katze und [MASK]*

(When I think of animals, I think of dog and [MASK].)
Prompt-5 Wenn ich an Tiere denke, dann denke ich an Hund und [MASK]* Wenn ich an Tiere denke, dann denke ich an Hund, Katze und [MASK]*

B.3 Hard Switches

Table 6 summarizes the results for the hard switch
modeling when the LM metrics are added to m3,
m4 and m5 models.

Unlike soft-switch modeling, the contribution
of various metrics in this specific case of switches
varies significantly, without exhibiting a consistent
pattern across all conditions. A closer examination
reveals that among the probability-based metrics,
RANK and SURPRISAL are the most influential, of-
ten performing on par with AH-JSD or even surpass-
ing it in modeling hard-switch cases. It is important
to note that a hard switch occurs when a previously
unmentioned subcategory appears in the enumera-
tion. This necessitates metrics that are sensitive to
a broader contextual lookback.

Overall, for detecting hard-switches, probability-
based metrics demonstrate greater predictive power
in decoder-only models, whereas models with en-
coders benefit substantially from AH-JSD. Fur-
ther details on these results are provided in Ap-
pendix B.3.

Psycholinguistic parameters. In the hard switch
condition, adding the retrieval order parameter
(TEMP) improves model fit (χ2(1) = 11.58, p <
.001). The task demand also significantly im-
proves the model (χ2(2) = 6.97.87, p < .0001).
The main effects of typicality (TYP) (χ2(1) =
19.76, p < .001) and the inter-response similar-
ity parameter (IRS) also significantly contributed to
explaining the data (χ2(1) = 2990.75, p < .0001)
as well as the retrival latency.

m3 + LM predictors. It is obvious that A closer
look reveals that among the probability-based met-
rics, Rank and Surprisal are the most prominent

ones except the GPT-2, Bloom1b5 and Bloom1b7
models. Furthermore, all attention-based metrics
contribute significantly to the model fit to a differ-
ing extent. Despite not having the highest contribu-
tion, almost all metrics derived from XGLM adds
explanatory power.

m4 + LM predictors . When we look at the ef-
fect of LM metrics for the model with IRS, it is
also difficult to see one distinct pattern. Again,
Rank and Surprisal parameters are generally more
informative than probability or entropy metrics.
Bloom1b7 seems to have no contribution on top of
basic psycholinguistic parameters. Entropy only
contributes to the fitness for Bloom350m.

m5 + LM predictors. In addition to the de facto
psycholinguistic parameters, we investigate the
effect of a less common parameter in verbal flu-
ency analysis – the retrieval latency – as an indi-
cator of lexical computation in explaining switch-
ing /clustering behavior. Then we also examine
the alignment between retrieval latency with the
LM predictors. To do that, we add the retrieval
latency to the m4 model. In the both hard and
soft switch conditions, we find that the retrieval
latency RL further improves the model fitness
significantly: (χ2(1) = 344.88, p < .001) and
(χ2(1) = 265.17, p < .001) respectively.

As summarized in Table 6, the Bloom350 model
continues to exhibit a significant effect for its
probability-based metrics, followed by Bloom 1b5.
Attention-based metrics continue to contribute to
the model fitness only for the BERT model, on top
of retrieval latency.
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Table 6: Hard Switch: the individual contribution of LM-predictors on top of m3, m4 and m5 models (Chi-Square)

BERT T5 GPT-2 Bloom350 Bloom1b5 Bloom1b7 XGLM560 XGLM1b7

m
3

Prob 49.67 *** 9.95 ** 1.72 0.32 0.37 2.06 19.69 *** 27.02***
Rank 12.75 ** 57.89*** 1.67 44.32 ** 0.52 7.65** 94.86*** 66.05***
Surprisal 107.08*** 0.06 9.86** 66.82 ** 31.30*** 2.07 76.61 ** 27.25***
Entropy 5.24* 0.61 2.05 24.61*** 0.89 0.33 21.87** 2.32

AHE 37.12** 24.97*** 18.17** 16.40** 16.40** 16.36** 24.64*** 24.64***
AH-JSD 73.34*** 54.89*** 43.45*** 40.03*** 37.96** 45.91** 53.31*** 48.43***

m
4

Prob 0.10 23.33 *** 18.62 *** 49.31 *** 41.76*** 0.01 0.87 28.64***
Rank 7.14 ** 11.76 *** 21.49 *** 32.58 *** 26.23*** 19.05** 32.53*** 23.52***
Surprisal 39.25 *** 9.73 ** 0.52 78.20*** 89.56*** 0.8 14.11*** 10.71**
Entropy 1.50 0.04 2.37 30.98 *** 1.09 0.14 22.05*** 4.87*

AHE 24.40 *** 13.69 *** 8.49 ** 7.40 ** 7.40** 5.14* 11.65** 11.65***
AH-JSD 43.37 *** 28.45 *** 16.12 *** 16.22 *** 14.09** 16.58** 21.68*** 18.13***

m
5

Prob 0.04 24.80 *** 20.04 *** 48.93 *** 43.01*** 0.003 0.48 31.65***
Rank 7.25 ** 9.77 ** 23.08 *** 29.23 *** 21.22*** 15.87*** 34.57*** 22.44***
Surprisal 35.21 *** 8.62 ** 1.55 75.08 *** 88.46*** 1.15 17.65*** 11.8**
Entropy 2.67 0.03 3.57 24.31 *** 1.77 0.07 20.69*** 38.9*

AHE 2.28 *** 0.15 0.06 0.37 0.37 1.26 0.00 0.001
AH-JSD 6.41 * 1.67 0.00 0.01 0.17 0.04 0.11 0.02

B.4 Effect of Vocabulary size on the Rank
Parameter

Among the explored metrics, the rank score is
highly dependent on the vocabulary size of the
language model. Figure 2 plots the predictive
power (Chi2) of the RANK parameter when added
to the to m3, m4 and m5 models. On the left, the
graph shows models with smaller vocabulary sizes
(BERT, T5); in the center, models with (relatively)
moderate vocabulary sizes (GPT-2, Bloom350m,
Bloom1b5); and on the right side, multilingual
models with substantially larger vocabulary sizes
(Bloom1b7 and XGLM models). This graphs re-
veals that when the rank is added to m3 model, no
clear pattern is observed with respect to vocabu-
lary size. On the other hand, when the rank score is
added to the m4 and m5 models, there is a slight up-
ward, suggesting a possible relation between rank
score and the vocabulary size. However, this trend
is still not consistent across models with similar
vocabulary sizes.

B.5 AIC Based Ranking

Complementary results for the Section 5.2. While
the sub-figures positioned next to each other show
the same data, they highlight the different aspects:
for example, Figure B.5 (a) is color-coded with
respect to the LM type, and Figure B.5 (b) for the
effect of the metric. The lowest AIC corresponds
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Figure 2: LMs architectures ordered w.r.t their vocabu-
lary size. Y-axes denotes the Chi2 Scores for the rank
parameter added to m3, m4 and m5 models.

to the lowest rank (1st rank/best model).
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(c) m4 : Model-based color coded
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(d) m4: Metric-based color coded
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(e) m5 : Model-based color coded
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(f) m5: Metric-based color coded

Figure 3: Individual Models’ fitness (based on AIC scores
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