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Abstract

We analyze the influence of utterance-level
construction distributions in German child-
directed/child-available speech on the resulting
word-level, syntactic and semantic competence
(and their underlying learning trajectories) in
small LMs, which we train on a novel collec-
tion of developmentally plausible language data
for German. We find that trajectories are sur-
prisingly robust for markedly different distri-
butions of constructions in the training data,
which have little effect on final accuracies and
almost no effect on global learning trajecto-
ries. While syntax learning benefits from more
complex utterances, word-level learning culmi-
nates in better scores with more fragmentary
utterances. We argue that LMs trained on de-
velopmentally plausible data can contribute to
debates on how conducive different kinds of
linguistic stimuli are to language learning.

1 Introduction

One of the most contentious issues in language ac-
quisition is the relationship between the input that
learners receive and the resulting linguistic system
(Pullum and Scholz, 2002; Clark and Lappin, 2011).
Child-directed speech (or CDS) is structurally sim-
ple: Especially in the first three years of life, it
abounds with questions, imperatives, and fragmen-
tary utterances, but features fewer SV(X) and very
few complex sentences, which instantiate “canon-
ical” word order (Cameron-Faulkner et al., 2003).
This distribution of utterance-level constructions is
conducive to the functional side of language acqui-
sition: caregivers talk in this way to elicit responses,
steer behavior, or establish joint attention. But how
do children acquire full-fledged, formal grammati-
cal knowledge from such supposedly skewed input?
While its advantages for aspects like speech seg-
mentation or word learning are somewhat accepted
(Yurovsky et al., 2012; Cristia et al., 2019), its in-
fluence on syntax remains debated: whereas some

Project Gutenberg: Complex sentences

Aber sie war in Angst, dass wir die Larven beschidi-
gen wiirden, die zu Arbeiterinnen heranwachsen soll-
ten. (But she was afraid that we would damage the
larvae which were supposed to grow into workers.)

Der Grafiker entwirft das Bild vorne auf dem Buch.
(The graphic designer designs the picture on the
cover of the book.)

Der Friseur schneidet die Haare. (The hairdresser
cuts the hair.)

noch mehr! (even more!)

ja. (yes.)

mit dem Flugzeug. (with the airplane.)

Figure 1: Examples for most frequent construction types
from different portions of our German BabyLM corpus

generativist approaches see any kind of input as
too impoverished to learn a full-fledged syntactic
system (cf. Chomsky, 1965; Crain and Pietroski,
2001; Guasti, 2002; Thomas, 2002; Berwick et al.,
2011), constructionist and usage-based scholars ar-
gue that this supposedly skewed input actually aids
syntax learning (MacWhinney, 2004; Tomasello,
2005; Bunzeck and Diessel, 2024).

The connectionist “renaissance”, fueled by deep
learning and Transformer language models, has
opened up new avenues of investigating the rela-
tionship between an artificial learner’s acquired
linguistic system and the nature of its training
data, more recently also from a constructionist/non-
generativist viewpoint (Weissweiler et al., 2023;
Piantadosi, 2024). LLMs, pretrained on raw lan-
guage data only, and instruction-finetuned chatbots
based on them, generate text without grammati-
cal errors, and perform well in controlled syntactic
test suites. Unfortunately, though, their massive
parameter size does not preclude the possibility
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that their linguistic capabilities result from memo-
rization rather than generalization (Milliere, 2024).
Furthermore, the sheer amount of their pretrain-
ing data exceeds human learner’s input by many
orders of magnitude, putting their relevance for lin-
guistic modeling into question. Work within the
BabyLM community (Warstadt et al., 2023; Hu
et al., 2024; Charpentier et al., 2025) has demon-
strated that Transformer LMs, trained on cogni-
tively plausible amounts of data, can often acquire
fairly complex syntactic structures, even without
instruction-finetuning. They can also learn accu-
rate word-level representations when trained with
character-level tokenization (Bunzeck and Zarrief3,
2025; Goriely and Buttery, 2025a). This makes
them ideal testbeds for the aforementioned issue:
does the construction distribution found in CDS,
which features a high proportion of questions and
syntactic fragments, affect the acquisition of for-
mal linguistic capabilities? In other words, does
robust linguistic knowledge at the word and syntax
level emerge when the training data is closer to the
fragmented, “messy” input of human learners?
The goals of this paper, then, are twofold: (1) we
compile a novel German BabyLLM training set, for
which we conduct the first utterance-level construc-
tion analysis for German. We find that distributions
align with findings for English and other languages.
We then (2) create three SM-token subsets with dis-
tinct constructional profiles, varying, e.g., the pro-
portion of fragmentary and complex utterances, and
train small, character-based and subword Llama
models on them. We evaluate them with lexical,
syntactic, and semantic minimal pairs (Bunzeck
et al., 2025; Mueller et al., 2020; He et al., 2025) to
gauge the influence of different construction distri-
butions on these levels of linguistic knowledge, and
find that differences between grammatically com-
plex training data and a developmentally plausible
constructional distribution are fairly small. While
certain syntactic phenomena are learned somewhat
better from more complex sentences, lexical learn-
ing improves with more fragments and questions
in the input. Most interestingly, input complexity
only modulates the steepness of the resulting learn-
ing trajectories, but has no principal effect on the
amount of input needed to kickstart learning.

2 Constructions in children’s input

Child-directed speech can be seen as a separate
linguistic register and is the primary input that chil-

dren encounter in their first years. On the pho-
netic level, it features slower speech and exagger-
ated intonation patterns, which infants prefer lis-
tening to (Zangl and Mills, 2007), while its vo-
cabulary is mostly restricted to everyday topics
and children’s immediate surroundings (Snow and
Ferguson, 1977). Structurally, child-directed utter-
ances are usually shorter and simpler than adult-
directed ones (Genovese et al., 2020) and feature
high amounts of structural and lexical repetition
(Tal et al., 2024). Statistical properties of the input
directly influence the children’s order of acquisition
for syntactic patterns (Huttenlocher et al., 2002;
Ambridge et al., 2015), e.g., for relative clauses
(Diessel and Tomasello, 2000; Brandt et al., 2008;
Chen and Shirai, 2015).

Early studies were mostly concerned with map-
ping out how much CDS is ungrammatical or oth-
erwise “wrong” (in the sense of hesitations, false
starts, etc., cf. Pine, 1994), but the quantitative turn
in linguistics (Janda, 2013) has enabled more holis-
tic analyses. In a seminal study, Cameron-Faulkner
et al. (2003) analyze utterance-level constructions
in child-directed English via corpora of toyplay ses-
sions featuring children and caregivers. They show
that CDS features only few “canonical” SV(X)-
utterances but abounds with questions, lexical frag-
ments, or copula constructions. The reported con-
struction distributions also hold for typologically
different languages, e.g., Irish (Cameron-Faulkner
and Hickey, 2011). These constructions and their
real-world functions help children to quickly un-
derstand the functional side of language. However,
the most common and repetitive utterances that
English-speaking children hear represent a rather
skewed sample of the presumed, underlying formal
language system. Generativist approaches would
argue that certain formal processes, like question
formation from relative clauses, are not attainable
from this kind of language, as the input never con-
tains specific examples (Chomsky, 1980) (although
Pullum and Scholz, 2002 find that the input fre-
quently contains exactly such specific examples).
They also partly emphasize the importance of sta-
tistical learning, e.g. for providing hypotheses
about competing possible mental grammars con-
strained by innate, language-specific mechanisms
(cf. Yang, 2004, also Ambridge and Lieven, 2011,
121f.). Constructivist approaches do not view lan-
guage learning as such a re-construction of the tar-
get language’s abstract grammar, but rather as the
re-construction of the target language’s inventory
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of form-meaning pairings (Behrens, 2021). They
argue that this kind of input is actually conducive
to formal aspects of acquisition, by providing an-
chor points for first words and their semantic links
to real-world reference, which then serve as build-
ing blocks for a gradual development into larger
schemas (like questions with relative clauses).

Although CDS features such a skewed construc-
tion distribution, written language aimed at chil-
dren, e.g., in children’s books, is characterized by a
much higher rate of canonical SV (X)-constructions
than CDS (Cameron-Faulkner and Noble, 2013).
Questions rarely occur in books. CDS produced in
shared book reading presents a middle-ground —
it contains more complex and SV (X)-constructions
than regular CDS, but less than book text alone
(Noble et al., 2018). They argue that shared read-
ing therefore, plays an important role in moving
children from early, isolated traces of linguistic
knowledge to a rich mental language system. This
also aligns with the findings by Bunzeck and Dies-
sel (2024), who show that the distribution of con-
structions in CDS varies with situation type (toy-
play features most questions, meal sessions beget
more imperatives, shared book reading features
more complex constructions) and child age (ques-
tions and imperatives become less frequent with
age). They suggest that CDS is therefore adapted
to support children’s cognitive and linguistic de-
velopment. Yet, as corpus studies are necessarily
descriptive and cannot establish causal/mechanistic
connections on their own (e.g. what would happen
if a child never hears CDS), it remains questionable
if this is actually true. Here, the potential of LMs
trained on little data becomes apparent for construc-
tionist approaches: they allow controlled experi-
ments with different kinds of input data, which can
serve as additional evidence for effects hypothe-
sized from corpus data.

3 Input in developmentally plausible LMs

Authentic data Early approaches to modeling
language acquisition with neural networks used
hand-picked, manually ordered data points (Rumel-
hart and McClelland, 1986) or synthetic data gen-
erated with hand-crafted grammars (Elman, 1993;
Christiansen and Chater, 1999; Chang et al., 2006).
Both lack developmental plausibility. Since then,
data availability has improved with the establish-
ment of developmental corpora. Frequently, CDS
from CHILDES (MacWhinney, 2000) is used to

train developmentally plausible LMs (cf. Pannitto
and Herbelot, 2020; Huebner et al., 2021). While
CHILDES-based models have the advantage of
learning from authentic data only, they have the
disadvantage of not accessing the full breadth of
the linguistic input children receive. Children are
exposed to many more different registers of lan-
guage throughout their linguistic development, like
shared (or solitary) book reading, or television
shows (Montag, 2019; Gowenlock et al., 2024).
In response to this, the BabyLLM corpora propose
a data mix of varied spoken and written sources,
from CDS over adult-adult conversations to Open-
Subtitles (Lison and Tiedemann, 2016), but also
children’s (Hill et al., 2015) and adults’ books (Ger-
lach and Font-Clos, 2020). All data included in
them could be plausibly encountered by children,
which provides opportunities to ablate the influence
of architecture/training on the learned linguistic
knowledge.

For languages other than English, data availabil-
ity is the greatest problem for the construction of
developmentally plausible datasets. Salhan et al.
(2024) and Padovani et al. (2025) use only data
available from CHILDES for models in different
languages, whereas Prévot et al. (2024) compare
models trained on spoken data (child-directed +
adult-adult conversations) with models trained on
the French Wikipedia. As such, these first forays
into more polyglot BabyL.Ms are still constrained
to the child-directed input found in CHILDES and
do not extend to the aforementioned variety of in-
puts (Soderstrom, 2007; Gowenlock et al., 2024).
Notably, Suozzi et al. (2025) introduce an Italian
BabyLM but do not elaborate on their data sources
beyond CHILDES.

Linguistic properties The linguistic make-up of
pre-training data and its influence on linguistic per-
formance have only recently begun to receive in-
creased scrutiny. Focusing on the lexical level,
Yam and Paek (2024) measure sentence-level tex-
tual complexity with readability metrics based on
text-wide word/syllable—sentence ratios for differ-
ent corpora (CHILDES, BabyLM corpus, synthetic
data, Project Gutenberg). They find that models
trained on more complex text perform better at syn-
tactic benchmarks, but simpler data (CHILDES)
is learned better in terms of perplexity and loss
convergence. Muckatira et al. (2024) filter English
pre-training corpora for text spans that only con-
tain vocabulary also found in English CHILDES
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Dataset Description # Words

. Child-directed speech 3,626,301
CHILDES (MacWhinney, 2000) Child speech P 1511144
OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 1,543,094
CallHome (Karins et al., 1997) Phone conversations 176,313
Klexikon Children’s online encyclopedia 1,384,891
MiniKlexikon Simplified online encyclopedia 272,886
Wikibooks Wikijunior Educational books 226,773
Fluter German youth magazine 2,862,278
Project Gutenberg Literature (children’s and young adult) 2,476,133
Dreambank (Domhoff and Schneider, 2008) Dream reports 939,197
Leipzig corpus news texts (Goldhahn et al., 2012) ~ Short news texts 1,541,803
Total 16,560,813

Table 1: Lexical token counts for all subcorpora of our corpus

data and find that simplified models generate more
coherent text than models trained on more com-
plex data, and also succeed in syntactic tests if the
test data is filtered accordingly. In contrast, Ed-
man et al. (2024) change the semantic content of
the pre-training data and use datasets that approxi-
mate the linguistic input second-language learners
get, e.g., dictionary entries, grammar books, and
paraphrases. While grammar books moderately
improve syntactic evaluation, there is no positive
effect for the addition of the other text types.

Filtered corpora While actual research on the
syntactic properties of the input is rather rare, train-
ing on filtered corpora has been used in pilot stud-
ies. Patil et al. (2024) and Misra and Mahowald
(2024) filter out specific grammatical constructions
from the BabyLM corpora and then probe the re-
sulting models for knowledge of these grammatical
constructions (which might also be analogically
learned from related constructions or constructed
from their parts). Patil et al. (2024) show that
their models succeed on the BLiMP benchmark
(Warstadt et al., 2020), even if sentences contain-
ing structures targeted in BLiMP’s minimal pair
sets are removed. Similarly, Misra and Mahowald
(2024) show that acceptability scores for the En-
glish AANN construction can be reliably estimated
from models that have never seen it. In sum, then,
models appear to be able to generalize from indi-
rect evidence and learn language in a somewhat
constructivist, bottom-up fashion.

The structural composition of child-directed data
has (so far) not been scrutinized. Most studies fo-
cus on lexical or semantic properties, emphasizing
content over structure; child-directed data is usu-
ally equated with a somewhat fitting vocabulary or
with just being authentic data. However, findings
from usage-based linguistics suggest that structural

properties, like utterance-level construction distri-
butions, play a crucial role in language acquisi-
tion. Whereas Patil et al. (2024) and Misra and
Mahowald (2024) remove specific constructions
from their data, we aim to explore whether differ-
ent global distributions of constructions influence
the resulting linguistic knowledge and learning tra-
jectories.

4 A German BabyLLM dataset

To construct a German dataset, we use a variety
of developmentally plausible sources, similar to
the English BabyLLM data (Warstadt et al., 2023;
Choshen et al., 2024). We use (1) all data from
German CHILDES corpora (MacWhinney, 2000),
including frog stories from TalkBank (Berman and
Slobin, 1994) and math lessons from ClassBank
(Stigler et al., 2000), (2) subtitles from OpenSub-
titles (Lison and Tiedemann, 2016), (3) adult con-
versations from the CallHome corpus (Karins et al.,
1997), and (4) written data from Project Gutenberg,
from which we downloaded a manually curated
sample of children’s books, young adult literature
and literature commonly read in German schools.
We supply this data with two corpora, the Dream-
Bank database of self-reported dreams (Domhoff
and Schneider, 2008) and short news texts from the
Leipzig corpus (Goldhahn et al., 2012); although
they are not child-directed per se, these sources are
child-available in everyday language.

To approximate child-available input even better,
we tap into freely available child/learner-directed
sources and compile four additional subcorpora for
our dataset. The Wikibooks Wikijunior shelve fea-
tures educational resources aimed at children, fo-
cusing on a diverse array of topics such as technol-
ogy or nature. The Klexikon is a children’s wiki in
German, featuring more than 3,000 articles aimed
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Figure 2: Proportions of utterance-level constructions for all subcorpora in our corpus

at children between 5-15. A simplified version of
it is the MiniKlexikon, which features over 1,500
articles aimed at beginning readers. Finally, we
also scrape the complete archives of Fluter, a mag-
azine aimed at young adults published by the Fed-
eral Agency for Civic Education, which contains
a large body of non-fiction. All resources are CC-
licensed. Table 1 shows the raw token numbers for
all corpora (16.5M overall). We extensively clean
and normalize our data (details in Appendix B) and
make our dataset available on Hugging Face.!

S Construction distribution analysis

As there are no findings on the distribution of
utterance-level construction in German, we con-
duct our own analysis using spacy (Honnibal et al.,
2020). We first split larger paragraphs into indi-
vidual sentences with the included senter and then
annotate these with POS and dependency informa-
tion. This information serves as the base of our con-
struction annotation procedure. We devise standard
construction categories in line with comparable ef-
forts for English (Cameron-Faulkner et al., 2003;
Cameron-Faulkner and Noble, 2013; Bunzeck and
Diessel, 2024), and assign one of the following
categories to each utterance:

* FRA — utterances that do not contain a verb

* QWH - wh-question (introduced by interrog-
ative pronouns)

1https://huggingface.co/datasets/bbunzeck/
babylm-german

* QYN - yes/no-question (introduced by
verbs/auxiliaries)

* COP - subject-predicate utterance where the
predicate is a copula verb (a form of sein or
werden)

e IMP - utterances introduced by verbs in im-
perative mood

» SPI - standard subject-predicate utterance (in-
transitive verb with no direct/accusative ob-
ject)

* SPT - standard subject-predicate utterance
(transitive verb with direct/accusative object)

* COM - utterances with two or more lexical
verbs

This holistic taxonomy is applicable to every
utterance in our corpus. For a balanced, manually
annotated sample of 1,000 sentences our classifier
reaches an accuracy of approx. 95%.

Figure 2 visualizes the results of this annotation
process, exact proportions are reproduced in Ap-
pendix C. Generally, our results confirm earlier
findings (Cameron-Faulkner et al., 2003; Cameron-
Faulkner and Hickey, 2011; Cameron-Faulkner and
Noble, 2013; Bunzeck and Diessel, 2024): Just like
English CDS, German CDS features more ques-
tions than any other corpus, abounds with frag-
ments, and contains comparatively few complex
utterances. The Project Gutenberg data, on the
other hand, is characterized by over 60% complex
sentences. Interestingly, the construction distribu-
tion forms a continuum across our subcorpora. The
MiniKlexikon, for example, contains considerably
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less complex sentences than the other written gen-
res, but over half of its utterances are (in)transitive,
canonical SV-sentences. This shows that even these
particular sub-genres of child-directed linguistic in-
put feature highly varied and specific constructional
profiles that differ from each other.

6 Training data composition

We compose three different corpora of SM words:
(1) one corpus maximally resembling the construc-
tion composition of child-directed speech (cds), (2)
one corpus containing a drastically higher amount
of complex sentences, mirroring the distribution
in the Project Gutenberg data (pjg), and (3) a cor-
pus that is averaged between these two (mix). The
relative distributions of construction types can be
found in Table 2.

Construction | cds mix  pjg
FRA 25% 16.5% 8%
QWH 9% 5.5% 2%
QYN 21%  12.5% 4%
COP 8% 6.5% 5%
IMP 5% 3.5% 2%
SPI 10% 9% 8%
SPT 12% 11% 10%
COM 10% 355% 61%

Table 2: Construction proportions of our training sets

Crucially, we sample the individual utterances
for our training sets from all subcorpora in our
German BabyLLM dataset. By doing so, we approx-
imate a similar (if not completely equal) mixture
of sources and, therefore also a similar mixture of
registers, semantic content, etc. This enables us
to isolate the effect of construction distributions in
our model’s training data, without any interference
from the possible differences between the subcor-
pora.

7 Model training and evaluation

We train small Llama models (Touvron et al., 2023)
with transformers (Wolf et al., 2020). To ac-
count for the effect of subword tokenization, we
compare character-level (3.7M parameters) and
subword models (7.7M parameters) for the three
datasets. We train all models for one epoch (loss
curves and hyperparameters are in Appendix D)
and share them on Hugging Face.”> To test the
effect of different random initializations and our

2https ://huggingface.co/collections/bbunzeck/
german-babylm-67b868e08ff8782a9814ceaf

sampling strategy, we reproduce pre-training for
the cds models (see Appendix E).

In line with current best practices to linguistic
probing, we use minimal pair datasets to evaluate
our LMs’ linguistic knowledge in German. The
datasets always consist of a correct/grammatical
and a matched incorrect/ungrammatical string. We
use minicons (Misra, 2022) to score the sentences
and evaluate 19 model checkpoints per model (10
for the first 10% of training, 9 for the remaining
90%). As an additional ablation, we also evalu-
ate the multilingual Llama 3.2 1B on all prob-
ing paradigms. Currently, no monolingual Ger-
man Llama models exist. Therefore, the medium-
sized 1B-parameter version of Llama 3.2, which
is trained on a considerable amount of German
language data, is a useful baseline for expected
benchmark scores enabled through a higher model
capacity and more training data.

Word-level probing Language acquisition first
involves learning what words are, i.e. which
(sound) sequences map to word-level items in the
mental lexicon, before learning how they combine.
To gauge this most basic learning step, we adapt
the experimental setup from Bunzeck et al. (2025):
We use wuggy (Keuleers and Brysbaert, 2010) to
generate 1,000 nonce words (e.g. promsen) from
existing words (e.g. bremsen) and then evaluate
how surprised the models are by (1) the words with
the context of a prepended white space (lexical
decision, Le Godais et al., 2017), (2) the words
in a plausible context sequence (surprisal, Hale,
2001), and (3) the words randomly inserted into
implausible contexts (antisurprisal, Shafiabadi and
Wisniewski, 2025). If the model is less surprised
by the existing word, we count this as a correct
choice in our paradigm. We calculate accuracies
over the whole dataset.

Syntactic probing For syntactic probing, we
use the CLAMS dataset (Mueller et al., 2020),
which contains syntactic minimal pairs (grammati-
cal/ungrammatical) for German (e.g. Die Autoren
lachen/*lacht.). The included seven phenomena
all revolve around subject-verb agreement in dif-
ferent contexts (across PPs, relative clauses, with
coordination, etc.), resulting in different degrees of
difficulty. We score the sentences for their likeli-
hood. We calculate accuracies for correctly rated

3https: //huggingface.co/meta-1lama/Llama-3.
2-1B
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| Character | Subword | Llama 3.2 1B
| cds mix pjg | cds mix pig | -
Lexical decision 974% 97.6% 97.4% | 84.6% 819%  80.8% 69.6%
Word-level ~ Surprisal 99.8% 99.8% 999% | 91.5% 903%  90.1% 98%
AntiSurprisal 99.3% 989% 99.7% | 76.5% 154% 75.4% 87.4%
Simple Agreement 90% 90% 95.7% | 80% 84.3%  92.1% 95.71%
Across a Prepositional Phrase 61.5% 655% 61.8% | 74.8% 73.5% 75.5% 83%
Across a Subject Relative Clause | 67.1% 66% 62.4% | 784% 13.7% 97.9% 99.7%
Syntax Short Verb Phrase Coordination | 69.8% 68.8% 67.9% | 82.6% 93.5% 99.5% 99.9%
Long Verb Phrase Coordination 53.6% 60.6% 63% 60.6% 78.8% 78% 90.5%
Across Object Relative Clause 58.6% 54.2% 53% 64% 66.7% 81.6% 86.1%
Within Object Relative Clause 59.8% 56.4% 72.5% | 55.8% 55.7%  49.9% 61.4%
Semantics ~ XCOMPS | 51.5% 49.1% 49.1% | 51.4% 52%  523% | 58.9%

Table 3: Final evaluation results (accuracies) for all benchmarks

pairs (grammatical sentence more likely) over the
whole dataset.

Semantic probing To evaluate our models’ se-
mantic knowledge, we use the XCOMPS dataset
(He et al., 2025). It contains conceptual minimal
pairs (e.g. Garnele hat einen Kopf./*Ein Bikini
hat einen Kopf)* that test whether LMs have
acquired knowledge about conceptual properties
of real-world entities. Again, we score the sen-
tences for likelihood and calculate accuracy over
the whole dataset.

8 Results
8.1 MP probing

Table 3 shows model-wise accuracies for all mini-
mal pair sets after training for one epoch. For the
word-level evaluations, accuracy scores are gener-
ally high. Across all tasks, the character models
perform with almost perfect accuracy. No effect of
the constructional composition of the training data
is identifiable here. For the subword models, this
is not true. Here, the model trained on more ques-
tions/fragments and less complex utterances (cds)
outperforms the model that approximates written
language on the construction level (pjg). The im-
provements range from 1% for anti-surprisal to
2-3% on lexical decision. Interestingly, the very
large ablation model (Llama 3.2 1B) performs the
worst on isolated lexical decision, but reaches high
scores in the surprisal setting.

For the syntactic tests, the picture is more nu-
anced. Generally speaking, all our models learn
to distinguish most types of grammatical and un-

“We sample 1,000 MPs with randomized replacement, as
the other conditions contain implausible/wrong minimal pairs.
Furthermore, the quality of translation is not optimal, as ex-
emplified by the missing determiner in front of Garnele.

grammatical sentences involving agreement phe-
nomena. The best scores are achieved on more
simplistic phenomena like simple agreement or co-
ordination with short verb phrases. Agreement
phenomena that involve longer dependencies and
distracting nouns, e.g. within and across relative
clauses, are the hardest to learn. For the charac-
ter models, the cds model outperforms the others
on three out of seven tests, including both “across
subj./obj. relative clause” conditions. For three
other tests, the pjg model wins out, whereas the
mix model achieves the highest scores on only one
test (agreement across prepositional phrases). It
should be noted, that for most phenomena, the
character models do perform well above chance
(by a margin of 10-20%), but still frequently make
errors. The subword models show a somewhat dif-
ferent picture, with scores being generally higher
and approximating perfect performance on 3/7 phe-
nomena. Regarding construction distributions, the
pjg model wins in five categories, whereas cds
and mix only achieve best scores in one each. Here,
the 1B-parameter Llama model outperforms our
BabyLMs on 5/7 phenomena.

The scores on XCOMPS reveal that our small
models do not reliably learn the conceptual knowl-
edge underlying the included minimal pairs. Scores
revolve around the chance baseline, with subword
models performing slightly better than character
models for 2/3 data mixtures. Nonetheless, these
scores are also not considerably worse than the
performance of our ablation model (58.9%).

8.2 Learning trajectories

Figure 3 shows the learning trajectories of our mod-
els across one training epoch. As there are no inter-
mediate checkpoints available for the 1B-parameter
ablation model, we only report trajectories for our
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Figure 3: Learning trajectories for all minimal pair benchmarks

self-trained models. In line with best practices in
ML (Viering and Loog, 2023), we log-scale the x-
axis in our plots. This allows us to also trace early
learning in more detail.

For our character models, word-level learning
happens rapidly in an S-shaped curve. No dif-
ferences are visible between the datasets, perfor-
mance improvements align almost perfectly. For
the subword models, the learning processes are
not as nicely monotonically improving. Rather,
the learning trajectories show a dip early in train-
ing, which then later on recovers to fairly good
accuracy scores. Interestingly, despite differences
in final scores, the improvements across models
trained on quite different datasets still align with
regard to turning and takeoff points.

This pattern is also confirmed by the learning
trajectories for the syntactic phenomena. While the
pjg models trained on more complex utterances fre-
quently reach the highest final scores, it is remark-
able to see how the improvements for all models
seem to happen in parallel. The global shape of the

trajectory is the same for all syntactic tests, regard-
less of the construction distribution. For example,
the learning curve for simple agreement is steeper
for the pjg models once learning has started, but
take-off points are neatly aligned. These take-off
points are pushed back by the individual paradigms’
complexities — simple agreement and short VP co-
ordination begin to improve earlier than MPs con-
taining RCs. Finally, it is interesting to note that for
the character models, word-level learning consis-
tently stabilizes before syntactic learning, whereas
both processes seem to happen concurrently in sub-
word models (mirroring findings for English, cf.
Bunzeck and Zarrie3, 2025). As our models do
not learn to distinguish the semantic minimal pairs,
the corresponding learning curves remain flat and
performance differences are likely due to chance.

9 Discussion

This paper set out to investigate whether the con-
structional profile of CDS, which is shaped in a way
to support the acquisition of functional language
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competence, actually influences LMs’ formal lan-
guage learning, and whether its relative lack of
complex sentences and canonical SV (X) utterances
makes it less useful training data, or too “impover-
ished” for meaningful formal learning to happen.
The results of our utterance-level corpus analysis
for German align with earlier findings on CDS
and book language for English (Cameron-Faulkner
et al., 2003; Cameron-Faulkner and Noble, 2013;
Bunzeck and Diessel, 2024) and Irish (Cameron-
Faulkner and Hickey, 2011), adding to the growing
evidence that this linguistic distribution is fairly
universal, at least in WEIRD societies (Henrich,
2024).

From a language modeling perspective, the con-
structional profile of training data is not overly
important for the resulting performance on linguis-
tic benchmarks. Rather, starting/turning points of
the resulting learning trajectories are mostly deter-
mined by the respective amount of training steps.
Despite models trained with more complex input
resulting in slightly better performance, they do not
begin to learn earlier. Global learning trajectories
are extremely similar, only the local magnitude dif-
fers between different constructional setups. This
provides further evidence that LMs based on the
Transformer architecture (Vaswani et al., 2017) not
only memorize language from their training data,
but generalize to the underlying patterns. The same
holds true or word-level learning processes such
as lexical decision or (anti)surprisal tests, where
data with more fragments and questions even seems
to be rather beneficial. Furthermore, the compar-
ison of our results to the Llama 3.2 1B model
shows that rather high scores are already attain-
able with small models and little data (only on long
VP-coordination do our models underperform).

What does this now mean for theories of lan-
guage acquisition? This study was inspired by
findings of construction-based corpus analyses
(Cameron-Faulkner et al., 2003; Cameron-Faulkner
and Hickey, 2011; Bunzeck and Diessel, 2024),
which argue that the specific constructional profile
of CDS is beneficial to acquisition. Of course, LMs
and minimal pair evaluations do not directly cor-
respond to the learning processes in humans and
we cannot make causal claims about them. Yet,
our methodology can provide evidence as to what
kinds of input data is beneficial to a purely statis-
tical learner (that does not even tap into the func-
tional side of language, cf. Mahowald et al., 2024),
an abstraction that is highly relevant to usage-based

theories (Ambridge et al., 2015). On a formal level,
there seem to be comparatively little disadvantages
for models trained on less “complex” or somewhat
impoverished data. Despite more complex data
leading to slightly better benchmark scores, the
learning trajectories remain largely unaffected (al-
though somewhat erratic, cf. Bunzeck and Zarriel3,
2024). What really shapes the learning process
in our LMs is the amount of input, not its formal
complexity (similar to findings for children by Hut-
tenlocher et al., 1991; Rowe, 2012). An increase
in appropriate construction types for child-rearing
(like questions, imperatives, or fragments) does not
hinder formal learning (if only reduce its magni-
tude slightly). As CLAMS only focuses on subject-
verb agreement in canonical SV(X)-sentences, it
is rather surprising that the much higher amount
of questions in the cds dataset does not negatively
affect performance, although the subjects’ and pred-
icates’ positions are switched in German yes/no-
questions. Conversely, the cds dataset even enables
word-level learning to converge to a better end state.
This also aligns with a broader trend found in lan-
guage acquisition studies — the complexity and
quality of input can indeed predict later language
skills (Noble et al., 2020; Alroqi et al., 2023), but
the ground level is always extremely high already:
being a competent user of the language itself. Fur-
thermore, quality varies with many more extralin-
guistic factors like the number of siblings (Laing
and Bergelson, 2024) or cultural factors (Bergelson
et al., 2023; Bunce et al., 2024).

10 Conclusion

Our findings add to the growing body of research
on BabyLMs (Warstadt et al., 2023; Hu et al,,
2024). Similarly to English models, our German
BabyLMs only need little data — the cds dataset
contains approx. 820,000 sentences, and given the
estimation by Cameron-Faulkner et al. (2003) that
children hear around 7,000 utterances per day, our
data approximates the number of utterances heard
over only 120 days — to learn a fair amount of
syntax and almost impeccable lexical knowledge,
with trajectories mirroring those of English models
(Bunzeck and Zarrie83, 2025). We hope that our
dataset enables other scholars to carry out experi-
ments with developmentally plausible LMs beyond
the dominating English LMs, and that our data
provides inspiration to those compiling BabyLM
corpora for other languages.
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Limitations

Our study is limited by data availability. Creating
a full-fledged 100M-token BabyLLM dataset with
only child-directed speech or other explicitly child-
directed materials is currently out of question, as
neither CHILDES nor other sources contain even
remotely enough data for languages other than En-
glish. To reach higher token counts, padding with
larger data sets, e.g. more tokens from the Open-
Subtitles dataset, would be necessary. Principally,
synthetic corpora like the TinyStories dataset (El-
dan and Li, 2023), which contains children’s stories
generated by GPT-3 or TinyDialogues by Feng et al.
(2024) would provide an unlimited source of train-
ing data. However, our inspection of their gener-
ated dialogues yielded that they drastically underes-
timate the high numbers of grammatical fragments,
questions and short SV (X)-utterances in real-world
data. Similarly, there are little to no evaluation sets
specifically aimed at German, beyond those that we
included/creates ourselves, especially on the syn-
tactic level. Only very recently, evaluation datasets
like the massively multilingual MultiBLiMP have
begun to fill this gap (Jumelet et al., 2025). Also,
such minimal pair datasets are principally at odds
with the usage-based, constructionist view on lan-
guage development, because they are grounded in
the Generativist notion of defining rules that can de-
termine whether an utterance belongs to a language
or not, whereas usage-based linguistics has adopted
a network-based, associative model of linguistic
knowledge (Diessel, 2019, 2023). As of late, these
developments have begun to make their way into
the broader LM evaluation landscape (Weissweiler
et al., 2025), and novel evaluation methods like
measuring affinities between lexical items and test-
ing if different constructions manifest from them
(Rozner et al., 2025a,b) provide promising future
research avenues.

Moreover, actual developmental plausibility also
hinges on the inclusion of other modalities. For au-
dio data, there are few CHILDES subcorpora and
other corpora that contain phonetic information
(Lavechin et al., 2023), but larger models need to
be trained on more data, e.g. audiobooks (Lavechin
etal., 2025). A middle ground is training on textual
phonetic transcriptions generated from raw text, e.g.
for the BabyLLM data (Goriely et al., 2024; Bunzeck
et al., 2025; Goriely and Buttery, 2025b). More re-
cently, also video recordings from infant-mounted
cameras have been used to train on combined vi-

sual and auditory input modalities (Wang et al.,
2023; Vong et al., 2024; Long et al., 2024). The
inclusion of such data could help to disentangle
learning processes further.

Ethical considerations

Given the nature of this work, there are no spe-
cific ethical concerns to address. However, we
would like to stress that, of course, BabyLMs are
not supposed to simulate real babies, but rather to
instantiate abstractions, or models in the original
scientific sense, of the distributional, frequency-
driven aspects of their learning capacity. All claims
regarding their implications for language develop-
ment in the real world should be understood in
this context, which we also attempted to explicate
by distinguishing functional and formal aspects of
learning.
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A Excluded corpora

Several corpora that are — in principal — available
for German were excluded from our analysis. The
Folk corpus (Reineke et al., 2023) and the Sim-
ple German corpus (Jach and Dietz, 2024) are not
available under any open licenses, while the data
in other German reference corpora (Kupietz et al.,
2010) are not available in their entirety but can
only be queried through web interfaces. Finally,
Homebank features day-long audio recordings of
children and their surroundings/inputs (VanDam
et al., 2016), but without any written transcriptions.

B Data cleaning

In line with best practices in language modeling,
we extensively clean and normalize our data.

All subcorpora We replaced all local variants
of single/double quotation marks with either ' '

or " ". We further reduced multiple superfluous
whitespace and newlines to singular whitespaces.

Talkbank data For the data sourced from talk-
bank (i.e. the CHILDES corpora and CallHome),
we remove all mark-up and additional info on false
starts, hesitations, implicit completions or other
explanations. Furthermore, we also remove all
empty utterances and those containing xxx or yyy,
placeholder symbols for personally identifiable in-
formation.

Project Gutenberg For the Project Gutenberg
data, we excluded all lines with more than 6 con-
secutive whitespaces, as these always turned out
to be title pages, index pages, etc., which contain
no useful language data. Additionally, we removed
all textual data in square brackets, which almost
always corresponded to pointers to pictures which
are not found in text-only version, or additional
explanations by the volunteers who digitized the
respective books.

OpenSubtitles For the OpenSubtitles data, we re-
moved all text in parentheses, which corresponds to
speaker information. Also, we removed sentence-
initial dashes (=) which were sometimes added. We
also amended OCR errors (like mangled uppercase
I and lowercase 1) as far as possible.

Fluter For the data sourced from the Fluter mag-
azine, we removed all lines containing additional
metatextual data, like author info and image credits,
before pre-training.
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C Exact construction proportions

Table 4 shows the exact construction proportions for all of our subcorpora. This data underlies the
visualization in Figure 2.

Construction \ Proj. Gut. Dreamb. Fluter News  Wikib. Klex. Mini-Klex. OpenSub.  CallHome  Child speech CDS

FRA 7.8% 6.3% 6.2% 4.0% 11.6% 6.3% 2.5% 24.1% 37.0% 551%  24.5%
QWH 1.9% 0.3% 2.6% 1.4% 0.5% 2.9% <0.1% 7.3% 2.1% 3.5% 8.8%
QYN 3.7% 0.7% 2.8% 1.6% 0.5% 0.4% <0.1% 10.9% 6.9% 47%  20.7%
COP 4.6% 7.1% 7.7% 7.4% 10.9% 13.2% 21.4% 9.7% 10.7% 5.7% 8.1%
IMP 1.5% 0.1% 0.2% 0.1% 03%  <0.1% <0.1% 4.6% 0.4% 2.0% 4.5%
SPI 7.5% 9.2% 9.7% 13.7% 9.5% 13.9% 19.9% 9.9% 8.8% 11.5% 10.1%
SPT 10.5% 14.5% 187%  25.7% 241%  28.1% 37.2% 18.0% 14.1% 11.9% 12.3%
COM 62.5% 61.8%  522%  46.1%  42.7% 35.2% 18.9% 15.4% 20.0% 5.7% 11.0%

Table 4: Exact proportions of constructions for all subcorpora

D Model hyperparameters and training details

Our models share a hidden/intermediate/embedding size of 256, 8 hidden layers and attentions heads,
and a context length of 128. For the character models, the vocabulary consists of all printable ASCII
characters and characters used in written German (1268 and their uppercase variants), amounting to a
vocab. size of 110 and 3,730,688 parameters. For the subword models, we train a BPE tokenizer (Gage,
1994) with a vocab. size of 8,000 and add two special tokens (BOS, EOS/PAD), resulting in 8,002 vocab.
tokens and 7,771,392 parameters. Model training takes approx. 2h on a MacBook Pro with an Apple M2
Pro CPU/GPU.

We reproduce the training and test loss curves for our models in Figure 4. For the test loss, we evaluated
perplexity on a held-out, randomly sampled portion of each individual training corpus. We find no
principal differences in loss development, although the character models and models trained on the cds
data seem to converge the fastest. As the similar curves for train and test loss indicate, all models succeed
in optimizing for their next-token prediction goal. It should be noted that due to longer/shorter sequences
in the different data mixtures and our choice of padding to the maximum sequence length, some models
are trained for more steps, although the number of lexical tokens remains the same.
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Figure 4: Loss curves for our self-trained character and subword models
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E Repeated training runs

A common criticism towards the BabyLLM paradigm is the purported effect of training noise on model
performance, which is hard to disentangle from real training data effects. While training and evaluating
multiple random seeds for all our models would be too costly, we repeated two additional training runs
for the character-level cds model with different random initializations (learning trajectories in Figure 5a)
and two additional training runs where we re-sampled the cds dataset from our whole corpus with the
exact same construction composition, but different content (learning curves in Figure 5b). In both cases,
the learning trajectories do not differ tremendously. For the word-level phenomena (LexDec, Surprisal,
AntiSurprisal), the curves overlap almost perfectly. For the syntax phenomena, we can see some variation
and oscillation in the curves, but the trajectories still remain extremely similar (and do not differ in
their steepness, the main effect that we see in Figure 3 between the datasets with different construction
compositions).
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Figure 5: Learning trajectories for our comparison models
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