Bridging the Gap with RedSQL: A Russian Text-to-SQL Benchmark for
Domain-Specific Applications

Brodskaia Irina
MIPT
brodskaiairina@gmail.com

Abstract

We present the first domain-specific text-
to-SQL benchmark in Russian, targeting
fields with high operational load where rapid
decision-making is critical. The benchmark
spans across 9 domains, including healthcare,
aviation, and others, and comprises 409 cu-
rated query pairs. It is designed to test model
generalization under domain shift, introducing
challenges such as specialized terminology and
complex schema structures. Evaluation of state-
of-the-art large language models (LLM) reveals
significant performance drop in comparison
to open-domain academic benchmarks, high-
lighting the need for domain-aware approaches
in text-to-SQL. The benchmark is available
at: https://github.com/Brodskaialrina/
functional-text2sqgl-subsets

1 Introduction

Text-to-SQL parsing—the task of translating natu-
ral language questions into executable SQL queries
over relational databases—has emerged as a core
component of database question answering sys-
tems. These systems promise intuitive, NL-based
interfaces for interacting with structured data, pow-
ering applications in customer support, business
analytics, healthcare, and beyond (Abbas et al.,
2022). This vision has fueled rapid progress in
the field, driven by large-scale datasets such as
Spider (Yu et al., 2018), WikiSQL (Zhong et al.,
2017), and BIRD (Li et al., 2024), and advances in
LLMs and semantic parsing techniques (Pourreza
and Rafiei, 2023; Li et al., 2023; Gao et al., 2023;
Somov and Tutubalina, 2023, 2025; Somov et al.,
2024; Somov, 2025).

However, despite strong performance on aca-
demic benchmarks, state-of-the-art text-to-SQL
models remain brittle when deployed in real-world
domains. Practical applications often involve
domain-specific terminology (e.g., ICD codes in
healthcare, technical abbreviations in aviation),

Tutubalina Elena
AIRI, HSE University
tutubalina@airi.net

76

Somov Oleg
AIRI, MIPT
somov@airi.net

complex legacy schemas, and queries that arise un-
der strict time and accuracy constraints. In such set-
tings, even small misinterpretations—such as con-
fusing “cycle time” with “lead time”—can lead to
costly errors. Unfortunately, existing benchmarks
prioritize breadth over depth, and typically exclude
the very characteristics that make real-world de-
ployment challenging: domain shift, schema ambi-
guity, and naturally occurring language.

Benchmarks like EHRSQL (Lee et al., 2021) and
KaggleDBQA (Lee et al., 2022) has highlighted
the mismatch between academic datasets and indus-
trial environments. Real-world databases often con-
tain opaque column names, sparse documentation,
and organically evolving schema structures, none
of which are well represented in academic bench-
marks Spider or WikiSQL. Moreover, NL queries
in practice are less schema-aware and more linguis-
tically varied than those in curated datasets. As a
result, models trained on general-domain bench-
marks struggle to generalize to the distributions
seen in production.

Currently, the only available Russian-language
benchmark for the text-to-SQL task is PAUQ (Bak-
shandaeva et al., 2022), which focuses on academic,
general-purpose queries. To bridge the gap be-
tween academic settings and domain-specific, real-
world applications, we introduce RedSQL—the
first Russian-language benchmark tailored to
domain-specific text-to-SQL tasks. RedSQL com-
prises 409 carefully curated natural language—SQL
query pairs spanning nine high-impact domains,
including healthcare, logistics, and aviation. Each
example is grounded in realistic schema structures,
incorporates domain-specific terminology, and cap-
tures multi-step reasoning typical of operational
environments. Our evaluation demonstrates a sub-
stantial decline in performance for general-purpose
LLMs when applied to these domain-specific sce-
narios. By focusing on Russian-language us-
age and real-world complexity, RedSQL comple-

Proceedings of the 10th Workshop on Slavic Natural Language Processing (Slavic NLP 2025), pages 76—83
July 31, 2025 ©2025 Association for Computational Linguistics

https://github.com/BrodskaiaIrina/functional-text2sql-subsets
https://github.com/BrodskaiaIrina/functional-text2sql-subsets

Dataset # Examples # DB # Tables/DB # Rows/Table # Tables/Query
EHRSQL 24000 2 13.5 108000 2.4
KaggleDBQA 300 8 2.3 280000 1.2
RedSQL 409 9 15.4 338 4.6

Table 1: RedSQL statistics comparison with EHRSQL and KaggleDBQA.

Domain Avg. Question Avg. Query Avg. Tables Avg. Columns Avg. Values Avg. Rows % Executed
Length Length per DB per Table per Query per Table Queries (non-null)

banking 43 93 16 10 3 378 91
aviation 11 44 15 10 1 387 98
medicine 38 88 16 11 2 336 100
logistic 30 85 15 10 1 376 89
jurisprudence 20 69 15 9 1 366 73
architecture 27 88 17 9 2 336 93
energy 22 117 15 12 1 301 82
science 45 116 15 12 2 281 87
engineering 49 95 15 13 2 278 89

Table 2: Summary statistics of RedSQL across domains.

ments existing benchmarks and provides a valuable
testbed for studying model robustness under do-
main shift—particularly in low-resource and non-
English contexts.

2 RedSQL Benchmark Construction

We construct the RedSQL benchmark, a collection
of domain-specific text-to-SQL datasets in Rus-
sian spanning nine high-impact domains: bank-
ing, aviation, medicine, logistics, jurisprudence, ar-
chitecture, energy, science and engineering. These
domains were selected due to their complex schema
structures, specialized terminology, and high op-
erational demands in real-world settings, where
Text-To-SQL application would be really usefull.
Despite the growing interest in text-to-SQL mod-
eling, there remains a significant lack of domain-
specific evaluation datasets in the Russian language.
RedSQL addresses this gap by providing realistic,
executable SQL queries paired with Russian natu-
ral language questions grounded in domain-aware
relational databases.

Table 1 compares RedSQL with two widely
used relevant domain-specific Text-To-SQL bench-
marks: EHRSQL and KaggleDBQA. While
EHRSQL provides a large number of examples, it
is limited to only two databases, reducing schema
diversity. KaggleDBQA includes more databases
but operates over simplified schemas with fewer
tables per query. In contrast, RedSQL strikes a
balance between size and complexity: it spans nine
distinct domains, features the highest average num-

77

ber of tables per database (15.4), and requires more
complex queries involving an average of 4.6 ta-
bles per query (most queries refer to 3-6 tables -
see Appendix B). These characteristics make Red-
SQL more reflective of real-world complexity in
domain-specific applications and better suited for
evaluating generalization under schema and linguis-
tic shift.

The dataset construction pipeline generates nat-
ural language—SQL pairs and corresponding rela-
tional databases for query execution. The process
has four major steps:

1. Domain-Specific Schema Design: For each
domain, a database schema was manually con-
structed based on an analysis of key entities
and their relationships. For example, the med-
ical domain includes interlinked entities such
as doctors, patients, diagnoses, and prescrip-
tions, while the aviation domain connects air-
ports, pilots, flights, and aircraft. These con-
ceptual mappings were encoded into SQL us-
ing domain-representative DDL (Data Defini-
tion Language). LLMs were also prompted to
assist in schema generation where appropri-
ate.

. Data Population: The constructed schemas
were instantiated as SQLite databases and pop-
ulated with synthetic data. For generic fields
(e.g., names, addresses, transaction logs), we
used the Python Faker! library. Domain-

1https: //pypi.org/project/Faker/

https://pypi.org/project/Faker/

specific content (e.g., clinical diagnoses or
flight plans in aviation domain) was generated
using LLMs such as GPT-4o0 and DeepSeek
(Liu et al., 2024), producing realistic, context-
aware data entries.

. SQL Query Generation: Given the popu-
lated databases, SQL queries of varying com-
plexity were generated. Basic queries were
synthesized using GPT models, while more
complex queries requiring multi-table joins,
nested subqueries, or temporal reasoning were
created using Cursor Al, leveraging models
such as Claude and Gemini 2.5. Queries were
manually reviewed to ensure they are exe-
cutable and semantically valid.

Natural Language Question Formulation:
For each SQL query, a corresponding natu-
ral language question was generated in Rus-
sian. This step employed a mix of GPT mod-
els and Cursor Al to ensure fluency, domain
specificity, and alignment with realistic user
queries.

The full pipeline was manually reviewed by grad-
uate computer science student to validate database
structure, SQL correctness, and natural language
alignment. The resulting benchmark includes di-
verse domains with varying schema complexity,
query types, and linguistic patterns. Dataset statis-
tics are provided in Table 2.

3 Experiments

To assess the complexity of the RedSQL bench-
mark, we conducted an evaluation using several
popular LLMs under a few-shot prompting setting.
For each domain, the prompt included the corre-
sponding database schema, a small sample of repre-
sentative data, and five reference text-to-SQL pairs.
Each query from the benchmark was evaluated us-
ing two separate prompts: one in English and one
in Russian. This evaluation aims to address the
following research questions:

1. How well do modern LLMs generalize to un-
seen domain-specific text-to-SQL tasks?

2. What is the impact of prompt language (Rus-
sian vs. English) on model performance?

We adopt the execution match metric for evalua-
tion. A prediction is considered correct if the result

78

Text-to-SQL Performance by Domain

Gemini Flash -Ju8 0.04 0.14 0.16 0.11 0.24 021 O. -0.5

Deepseek V3 JiB [T 0.29 0.32 043 0.26 0.2 0.25 O.

0.4

LLama 3.3-70B -JoM 0.24 0.36 0.39 | 0.27 0.21 | 0.

0.3

0.56 JUCERNEIE] 0.35|0.33 0.25

0.2

0.1

Figure 1: Performance of LLMs across RedSQL do-
mains. The performance is measured via Execution
Match between generated query and gold query.

returned by executing the predicted SQL query is
identical to that of the gold (reference) query. We
further extend the metric to tolerate predictions
that include superfluous attributes, as long as the re-
quired answer can be unambiguously inferred from
the returned result set. It has been found that mod-
els often fail to display all required columns. If at
least one column is missing after the execution of
the predicted query, the metric value becomes zero.
As a result, the overall metric values were quite
low with an average accuracy of 28% across all
spheres and models. To address this issue, we have
also calculated an additional soft execution match
metric that measures the proportion of correctly
displayed columns in the predicted query output,
which reports the average accuracy of 41%.

The following LLMs were included in the eval-
uation — Gemini Flash, DeepSeek V3 (Liu et al.,
2024), Meta LLaMA 3.3 70B Instruct (Grattafiori
et al., 2024), OpenAl GPT-40, GigaChat Max (Rus-
sian LLM)?. All models were prompted under the
same configuration, with temperature fixed at O
to ensure deterministic outputs. The result, with
English prompting, is presented in Figure 1. Full
Execution Match results are available at Table 3.
The same table encompasses the performance met-
rics of identical models on the PAUQ dataset. The
table demonstrates the divergence in the model’s
performance on the existing academic dataset and
on a domain-specific benchmark, highlighting the
gap between the existing datasets and our newly
introduced one.

To answer our first research question—how well
do modern LLMs generalize to unseen domain-
specific text-to-SQL tasks ?>—we find that general-
purpose LLMs experience significant performance
degradation in domains with specialized terminol-

2ht’cps: //giga.chat/

https://giga.chat/

EN vs RU Prompting Difference on Key Domains

[Model
—®- Gemini Flash
0.154 —X%— Deepseek V3
—m— Llama 3.3-70B
GPT-40

8 —&— GigaChat Max

c 0.104

g >
[L] %)
= / ©
fa X ./‘ 5
2 4

< 005 he * “\ g

0.00 % -
L4
-0.05 °
O & <& N @
& N) & &
S RN S ~ RS
AY) 3 & N Qk
&
&
N
Domain

Distribution of Text-to-SQL Performance Across Domains

0.6

o
o

0.5

I
IS

o
W

©
N}

0.1

Model

Figure 2: Comparison of prompt language sensitivity (left) and domain-wise model variability (right). (Left) Points
above 0 mean English version outperforms Russian, points below 0 mean Russian version outperforms English,
dashed line at 0 marks parity. (Right) The box plots are based on experiments using English prompts, which
generally yielded higher performance compared to Russian prompts.

ogy and complex schema structures. In particu-
lar, the medicine, science, and banking domains
consistently yielded the lowest execution accuracy
across all models, with Gemini Flash performing
notably poorly (e.g., 0.044 in medicine with En-
glish prompts). In contrast, domains such as avia-
tion and jurisprudence proved easier, achieving
higher scores, especially for Meta LLaMA and
DeepSeek, likely due to more regular schema struc-
tures and training-aligned terminology.

Comparing the hard execution match metrics
(Table 3) and soft execution match (Table 4), we see
that it is difficult for the models to identify all the
required columns. In cases such as our benchmark,
where each query requires the return of a large
number of columns, and they are not always clearly
stated in the question, the soft execution match
metric may provide better understanding of models
performance.

We also conducted an analysis of the errors com-
mitted by the models when generating queries. The
error rates were computed for each component of
the SQL query (Appendix A.1), and precision and
recall metrics of tables and columns prediction
were determined across all evaluated models (Ap-
pendix A.2).

The results indicate that the models have the
worst performance in predicting complex logic,
with the error rate for operations such as SUB-
QUERIES and HAVING being the highest. On the
other hand, simple components such as LIMIT and

79

ORDER BY were predicted with the best accuracy.

The precision and recall metrics analysis demon-
strated that models generally perform better at
column identification than table identification
across most domains. This pattern suggests that
once the relevant tables are identified, models are
more successful at selecting appropriate columns
within those tables. The gap between table and col-
umn performance is most pronounced in complex
domains like medicine and engineering, indicating
that schema understanding remains a bottleneck.

Addressing our second research question—what
is the impact of prompt language (Russian vs. En-
glish) on model performance ?—we observe that
prompt language can significantly influence results,
particularly in complex domains. As shown in Fig-
ure 2 (left), performance gaps between English and
Russian prompts vary by model and domain. Gem-
ini Flash and GPT-40 perform better with English
prompts, while DeepSeek V3 shows more balanced
results, and GigaChat Max appears better tuned to
Russian-language instructions.

Figure 2 (right) further illustrates that model ro-
bustness also varies: GPT-40 exhibits the most
stable and consistently high performance, while
models such as Gemini Flash and GigaChat Max
show greater variability and underperformance in
challenging domains.

Domain Gemini Flash Deepseek V3 Llama 3.3-70B GPT-40 GigaChat Max
EN RU EN RU EN RU EN RU EN RU
banking 0.149 0.149 0.234 0.170 0.234 0.191 0.213 0.213 0.128 0.085
aviation 0.457 0.283 0.543 0.565 0.587 0.587 0.565 0.522 0.478 0.457
medicine 0.044 0.089 0.289 0.267 0.244 0.200 0.333 0.289 0.111 0.133
logistic 0.136 0.068 0.318 0.318 0.364 0318 0.386 0.341 0.205 0.250
jurisprudence 0.162 0.081 0.432 0.459 0.541 0514 0459 0405 0.243 0.243
architecture ~ 0.109 0.152 0.261 0.261 0.391 0348 0348 0.304 0.283 0.261
energy 0.244 0.267 0.200 0.244 0.267 0.289 0.333 0.378 0.133 0.222
science 0.212 0.192 0.250 0.231 0.212 0.250 0.250 0.269 0.192 0.173
engineering 0.244 0.178 0.333 0.333 0.378 0.222 0.289 0.244 0.156 0.156
PAUQ 0.785 0.772 0.747 0.759 0.715 0.719 0.737 0.747 0.700 0.711

Table 3: Model Execution Accuracy on Functional Subsets and PAUQ dataset (English vs. Russian Prompts).

4 Conclusion

This study introduces RedSQL, the first benchmark
for evaluating Text-To-SQL systems in domain-
specific settings using the Russian language. Cov-
ering nine high-impact domains, RedSQL provides
a realistic and linguistically diverse evaluation en-
vironment that exposes important limitations in
modern LLMs.

Through systematic evaluation across English
and Russian prompts, we observe that model per-
formance varies significantly depending on both
the domain and prompt language. Domains such
as medicine, science, and banking emerge as par-
ticularly challenging due to their complex schema
structures and domain-specific terminology. In con-
trast, aviation and jurisprudence show relatively
higher performance, likely due to more regular
schemas and simpler question patterns.

We also find that prompt language plays a non-
trivial role: certain models, particularly Gemini
Flash and GigaChat Max, exhibit higher sensitivity
to Russian prompting, while models like GPT-40
demonstrate more consistent cross-lingual perfor-
mance. Box plot analysis further reveals that mod-
els differ not only in average accuracy but also in
robustness across domains, with GPT-40 showing
the most stable results.

These findings highlight the need for stronger
domain adaptation, more effective multilingual
prompting strategies, and robust evaluation bench-
marks in non-English and domain-specific scenar-
i0s. RedSQL offers a foundation for advancing
these goals and improving the reliability of text-to-
SQL systems in realistic deployments.

80

5 Limitations

While RedSQL supports evaluation in domain-
specific and Russian-language settings, it has sev-
eral limitations. First, despite covering nine do-
mains, the datasets are synthetically generated and
may not reflect the full complexity or noise of real-
world databases and queries. All tables and con-
tents are Al-generated and, though human-verified,
may lack real-world diversity. Second, our evalua-
tion uses few-shot prompting without fine-tuning
or retrieval, potentially underestimating the perfor-
mance achievable with specialized adaptation. We
leave these improvements for future work.

Acknowledgments

This research was supported in part through com-
putational resources of HPC facilities at HSE Uni-
versity (Kostenetskiy et al., 2021).

References

Shanza Abbas, Muhammad Umair Khan, Scott Uk-Jin
Lee, Asad Abbas, and Ali Kashif Bashir. 2022. A re-
view of nlidb with deep learning: findings, challenges
and open issues. IEEE Access, 10:14927-14945.

Daria Bakshandaeva, Oleg Somov, Ekaterina Dmitrieva,
Vera Davydova, and Elena Tutubalina. 2022. Pauq:
Text-to-sql in russian. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
2355-2376.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. CoRR, abs/2308.15363.

Domain Gemini Flash Deepseek V3 Llama 3.3-70B GPT-40 GigaChat Max
EN RU EN RU EN RU EN RU EN RU
banking 0.231 0.212 0387 0336 0368 0.272 0.334 0.330 0.251 0.214
aviation 0.529 0467 0.609 0.609 0.620 0.634 0.601 0.591 0.514 0.504
medicine 0.170 0.143 0.434 0449 0446 0402 0499 0472 0.244 0.256
logistic 0.224 0.195 0344 0.329 0366 0305 0404 0342 0.257 0.323
jurisprudence 0.402 0.356 0.614 0.604 0.622 0.631 0.629 0.618 0.392 0.405
architecture ~ 0.285 0.318 0.428 0414 0470 0486 0486 0.461 0.361 0.420
energy 0.350 0411 0367 0470 0371 0465 0.529 0.520 0.310 0.394
science 0.444 0422 0497 0468 0406 0421 0472 0500 0.365 0.353
engineering 0.380 0.377 0541 056 0533 0508 0457 0425 0347 0.321

Table 4: Model Soft Execution Accuracy on Functional Subsets (English vs. Russian Prompts).

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

P. S. Kostenetskiy, R. A. Chulkevich, and V. I. Kozyrev.
2021. HPC Resources of the Higher School of Eco-
nomics. Journal of Physics: Conference Series,
1740(1):012050.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2261-2273, Online. As-
sociation for Computational Linguistics.

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu
Kwon, Woncheol Shin, Seongjun Yang, Minjoon Seo,
Jong-Yeup Kim, and Edward Choi. 2022. Ehrsql: A
practical text-to-sql benchmark for electronic health
records. Advances in Neural Information Processing
Systems, 35:15589-15601.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 13067-13075.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36:36339-36348.

Oleg Somov. 2025. The generalization and error de-
tection in llm-based text-to-sql systems. In Proceed-
ings of the Eighteenth ACM International Conference
on Web Search and Data Mining, WSDM ’25, page
1077-1079, New York, NY, USA. Association for
Computing Machinery.

Oleg Somov, Alexey Dontsov, and Elena Tutubalina.
2024. AIRI NLP team at EHRSQL 2024 shared
task: TS5 and logistic regression to the rescue. In
Proceedings of the 6th Clinical Natural Language
Processing Workshop, pages 431-438, Mexico City,
Mexico. Association for Computational Linguistics.

Oleg Somov and Elena Tutubalina. 2023. Shifted
PAUQ: Distribution shift in text-to-SQL. In Proceed-
ings of the 1st GenBench Workshop on (Benchmark-
ing) Generalisation in NLP, pages 214-220, Singa-
pore. Association for Computational Linguistics.

Oleg Somov and Elena Tutubalina. 2025. Confidence
estimation for error detection in text-to-sql systems.
Proceedings of the AAAI Conference on Artificial
Intelligence, 39(23):25137-25145.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

https://doi.org/10.1088/1742-6596/1740/1/012050
https://doi.org/10.1088/1742-6596/1740/1/012050
https://aclanthology.org/2021.acl-long.176
https://aclanthology.org/2021.acl-long.176
https://doi.org/10.1145/3701551.3707416
https://doi.org/10.1145/3701551.3707416
https://doi.org/10.18653/v1/2024.clinicalnlp-1.43
https://doi.org/10.18653/v1/2024.clinicalnlp-1.43
https://doi.org/10.18653/v1/2023.genbench-1.18
https://doi.org/10.18653/v1/2023.genbench-1.18
https://doi.org/10.1609/aaai.v39i23.34699
https://doi.org/10.1609/aaai.v39i23.34699
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

Gemini Flash Deepseek V3 Llama 3.3-70B GPT-40 GigaChat Max

Error type

EN RU EN RU EN RU EN RU EN RU
SELECT 0.172 0.175 0.151 0.159 0.162 0.152 0.156 0.146 0.212 0.181
FROM 0.175 0.177 0.155 0.160 0.159 0.150 0.154 0.144 0220 0.187
WHERE 0.250 0.261 0.196 0.208 0.237 0.228 0.215 0.212 0.263 0.235
JOIN 0.129 0.121 0.113 0.110 0.115 0.114 0.104 0.108 0.138 0.132

ORDER BY 0.079 0.062 0.055 0.045 0.086 0.086 0.051 0.055 0.123 0.099
JOIN_TYPES 0.170 0.162 0.143 0.143 0.135 0.134 0.134 0.136 0.178 0.189
GROUP BY 0.141 0.136 0.157 0.156 0.163 0.150 0.132 0.129 0.212 0.183
AGGREGATE 0.138 0.141 0.107 0.107 0.105 0.106 0.102 0.115 0.117 0.122

LIMIT 0.059 0.036 0.024 0.032 0.059 0.059 0.016 0.016 0.059 0.059
SUBQUERY 0.347 0.347 0.340 0.386 0.317 0.301 0.336 0324 0.351 0.359
HAVING 0.299 0.280 0.309 0315 0375 0379 0303 0307 0395 0.352

DISTINCT 0.236 0.232 0.227 0.217 0.205 0.192 0.229 0.236 0.278 0.280

Table 5: Error rates by model and SQL component (English vs. Russian prompts).

Gemini Flash Deepseek V3 Llama 3.3-70B GPT-40 GigaChat Max

Tables Columns Tables Columns Tables Columns Tables Columns Tables Columns

bankin 051 0.55 0.52 0.55 051 0.58 0.50 0.55 0.47 0.43
s 0.54 0.61 051 057 050 0.60 052 0.58 0.46 0.48
edicine 0.41 0.75 0.48 0.77 050 0.79 051 0.83 0.29 0.55

0.45 071 0.53 0.72 0.54 0.77 0.55 0.80 0.32 0.55
wiation 0.79 0.92 0.87 0.94 0.84 0.92 0.83 0.92 071 0.89
0.81 0.92 0.87 0.94 0.86 0.95 0.84 0.95 0.74 0.94
cien 0.65 0.65 0.67 0.68 0.65 0.66 0.65 0.68 054 0.56
science 071 0.85 0.68 0.84 0.70 0.85 071 0.83 0.57 0.74
ensincerin 0.44 0.73 0.47 0.69 0.58 0.82 0.50 0.77 0.33 039
s S 039 0.67 0.45 0.62 0.56 0.78 0.45 0.76 0.32 0.41
sorud 0.65 0.80 0.72 0.81 0.77 0.84 0.76 0.81 054 0.61
JURISprudence g 9 0.90 0.75 0.84 0.77 0.90 0.79 0.87 0.54 0.73
osisii 0.63 0.74 071 0.68 0.67 0.67 0.69 0.68 051 052
ogishic 0.66 0.69 0.73 0.67 0.69 0.67 0.69 0.67 0.54 0.58
iteet 0.64 0.70 0.68 0.79 0.69 0.77 0.74 0.77 0.63 0.70
arcutecture 4 65 0.75 0.70 0.75 0.65 0.73 0.73 0.79 0.65 0.76
ener 0.41 0.40 0.55 0.55 0.48 0.46 0.52 0.52 0.45 0.46
8y 0.41 0.46 0.52 0.53 0.42 0.45 051 0,51 0.50 052

Table 6: Model Precision (left) and Recall (right) Metrics on Functional Subsets (Tables vs. Columns).

A Error Analysis struggle with nested logic and conditional ag-

tion.
A.1 SQL Component Error Analysis gregation

To gain deeper insights into model failures, we con-
ducted a detailed error analysis focusing on specific
SQL components, using the Python sqlparse? li-
brary. Table 5 presents error rates for different
SQL components across all evaluated models. The
analysis reveals several key patterns:

* WHERE clause challenges: WHERE
clauses show relatively high error rates (20-
26%), suggesting difficulties in correctly trans-
lating natural language conditions into SQL
predicates.

* Complex constructs are most problematic:
SUBQUERY and HAVING clauses consis-
tently show the highest error rates across
all models (30-39%), indicating that models

* Basic operations are more reliable: Simple
constructs like LIMIT and ORDER BY show
lower error rates (2-12%), indicating that mod-
els handle straightforward sorting and limiting

3https://pypi.org/project/sqlparse/ operations more successfully.

82

https://pypi.org/project/sqlparse/

A.2 Classification Metrics Analysis

To better understand model performance, we an-
alyzed precision and recall for table and column
identification across domains. True positives are
matches between gold and predicted queries; false
positives and other cases are defined accordingly.
Results are shown in Table 6.

B Distribution of the number of tables

Distribution of Tables Across All Queries

Frequency

4 6 8 10
Number of Tables per Query

Figure 3: Distribution of the number of tables among
all queries in the benchmark.

&3

