PL-Guard: Benchmarking Language Model Safety for Polish
Aleksandra Krasnodebska, Karolina Seweryn, Szymon Łukasik, Wojciech Kusa
Abstract
We present a benchmark dataset for evaluating language model safety in Polish, addressing the underrepresentation of medium-resource languages in existing safety assessments. Our dataset includes both original and adversarially perturbed examples. We fine-tune and evaluate multiple models—LlamaGuard-3-8B, a HerBERT-based classifier, and PLLuM—and find that the HerBERT-based model outperforms others, especially under adversarial conditions.- Anthology ID:
- 2025.bsnlp-1.4
- Volume:
- Proceedings of the 10th Workshop on Slavic Natural Language Processing (Slavic NLP 2025)
- Month:
- July
- Year:
- 2025
- Address:
- Vienna, Austria
- Editors:
- Jakub Piskorski, Pavel Přibáň, Preslav Nakov, Roman Yangarber, Michal Marcinczuk
- Venues:
- BSNLP | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 25–37
- Language:
- URL:
- https://preview.aclanthology.org/acl25-workshop-ingestion/2025.bsnlp-1.4/
- DOI:
- Cite (ACL):
- Aleksandra Krasnodebska, Karolina Seweryn, Szymon Łukasik, and Wojciech Kusa. 2025. PL-Guard: Benchmarking Language Model Safety for Polish. In Proceedings of the 10th Workshop on Slavic Natural Language Processing (Slavic NLP 2025), pages 25–37, Vienna, Austria. Association for Computational Linguistics.
- Cite (Informal):
- PL-Guard: Benchmarking Language Model Safety for Polish (Krasnodebska et al., BSNLP 2025)
- PDF:
- https://preview.aclanthology.org/acl25-workshop-ingestion/2025.bsnlp-1.4.pdf