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Abstract

Our approach to Subtask 1 integrates fine-tuned
multilingual transformer models with two
complementary robustness-oriented strategies:
Walking Embeddings and Content-Debiasing.
With the first, we tried to understand the change
in embeddings when various manipulation tech-
niques were applied. The latter leverages a
supervised contrastive objective over semanti-
cally equivalent yet stylistically divergent text
pairs, generated via GPT-4. We conduct ex-
tensive experiments, including 5-fold cross-
validation and out-of-domain evaluation, and
explore the impact of contrastive loss weight-
ing.

1 Introduction

This paper presents our solution to Subtask 1 of the
Shared Task on the Detection and Classification
of Persuasion Techniques in Texts for Slavic Lan-
guages. The task focuses on identifying whether
specified text fragments contain any persuasive
techniques, according to a predefined taxonomy.
Training data was available in four Slavic lan-
guages—Polish, Slovenian, Bulgarian, and Rus-
sian—while the test set also included Croatian. A
detailed overview of the datasets is provided in
Piskorski et al. (2025).

Our approach combines standard fine-tuning of
transformer-based models with two complementary
techniques designed to improve robustness. The
first, Walking Embeddings, analyzes how sentence
representations evolve as words are incrementally
added. The second, Content-Debiasing, introduces
a multitask setup with a contrastive learning ob-
jective, leveraging pairs of semantically equivalent
texts—one with and one without persuasive lan-
guage—to help the model disentangle content from
stylistic features.

2 Related Work

Persuasion detection has gained significant at-
tention in NLP, particularly in connection with
the fine-grained identification of rhetorical strate-
gies and propaganda techniques. SemEval-2020
Task 11 (Da San Martino et al., 2020) formalized
the task as both binary classification (persuasive
vs. non-persuasive) and span-level classification
into specific techniques, such as Appeal to Fear,
Loaded Language, or Name Calling. Transformer-
based models, especially RoBERTa and BERT vari-
ants, have been widely adopted for this task, of-
ten enhanced with additional features or ensem-
ble methods. For example, the top-ranked sys-
tems in SemEval-2020 and 2021 used ensembles
of RoBERTa and domain-adapted BERT models,
sometimes combined with task-specific layers or
external lexicons to improve detection of subtle
rhetorical signals (Dimitrov et al., 2021). Simi-
larly, in the CLEF-2024 CheckThat! Lab Task 3,
participating teams applied fine-tuning of BERT-
based models, including techniques such as data
augmentation with word alignment to project labels
from source texts onto machine-translated target
texts (Piskorski et al., 2024).

Model debiasing aim to improve model robust-
ness by reducing reliance on spurious correlations
or stylistic artifacts in the input. In the context of
NLP, debiasing has been applied to mitigate among
others gender, racial, and stylistic biases in repre-
sentations and predictions (Zhao et al., 2018; Liang
et al., 2020). A common strategy is to introduce
auxiliary objectives that penalize the model when
it relies on confounding factors rather than seman-
tically meaningful content. One possible method
is contrastive learning, which encourages similar
representations for semantically equivalent inputs
while pushing apart dissimilar ones (Gunel et al.,
2021). In NLP, contrastive objectives are often
applied over paraphrase pairs, style-transferred sen-
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tences, or counterfactual augmentations, helping
models to align content representations across su-
perficial differences. This has proven especially
effective in tasks like sentiment analysis, sarcasm
detection (Jia et al., 2024), and social bias mitiga-
tion, where the boundary between content and tone
is particularly subtle.

Multitask learning is a training paradigm in
which a model learns to perform multiple related
tasks simultaneously, often leading to better gener-
alization and robustness across domains (Caruana,
1997). By sharing representations between tasks,
the model can leverage auxiliary signals to improve
the performance of the main objective.

3 System Description

3.1 Model debiasing
To enhance robustness and reduce overfitting to
superficial persuasive cues, we implemented a
content-debiasing mechanism based on multitask
learning with supervised contrastive loss. The goal
was to help the model disentangle semantic content
from stylistic elements associated with persuasion.
Our method is an adaptation of the approach pro-
posed by Jia et al. (2024), who applied topic de-
biasing via contrastive learning in the context of
multimodal sarcasm detection, combining textual
and visual signals.

For each training example, we automatically gen-
erated a pair of texts using the GPT-4o API with a
temperature setting of 0.2 to ensure controlled out-
puts (OpenAI, 2025). The original text contained
annotated spans of persuasive language, while the
rewritten version preserved the meaning but neu-
tralized the style within those spans. To guide gen-
eration, we used the following prompt:

You will be given a text that contains one or more
marked spans. Each span is marked like this:
[start span=TECHNIQUE]... [end span]. Your
task is to rewrite only the text inside each span to
make it neutral and objective, removing the
influence of the persuasive technique given in the
tag. Keep the language and structure of the
original text outside the span untouched.

Example:

Original: Ludzie [start
span=AppealToFear]umrą, jeśli nie zrobimy tego
teraz![end span] To nasza jedyna szansa.

Neutralized: Ludzie [start
span=AppealToFear]są zaniepokojeni możliwymi
konsekwencjami dalszego zwlekania.[end span]
To nasza jedyna szansa.

Span annotations were sourced from Subtask 2
and directly referenced in the prompt.

The resulting pairs were used in a multitask
setup: the primary task was binary classification
(detecting the presence of any persuasive tech-
nique), and the auxiliary task employed a super-
vised contrastive objective. For auxiliary task: both
original and neutralized texts were encoded using
a shared XLM-RoBERTa-base model (Conneau
et al., 2020), and their [CLS] embeddings were
used to compute Supervised Contrastive Loss (Sup-
ConLoss), which encourages representations of
similar (e.g., semantically aligned) inputs to be
pulled closer while pushing apart dissimilar ones
within a supervised setup (Khosla et al., 2020). De-
spite semantic equivalence, the pairs were labeled
as negatives, as they differed stylistically. Pairwise
similarities between embeddings were computed
using cosine similarity over normalized vectors,
scaled by a temperature parameter. The result-
ing similarity matrix served as the foundation for
the contrastive loss, which penalized the model
when stylistically divergent pairs were embedded
too closely.

The total loss combined cross-entropy (for clas-
sification) and contrastive loss, weighted by a tun-
able hyperparameter λ. We set λ = 0.3 in our
submission experiments, balancing the influence of
both objectives. We trained three model variants
on distinct training splits, each selected using a dif-
ferent random seed. All models were fine-tuned
with a learning rate of 1e−5, batch size of 16, and a
maximum of 10,000 steps. Early stopping was ap-
plied with a patience of 2. Further analysis of these
choices is presented in the Experiments section.

3.2 Walking embeddings
In this approach the final classification method is
based on logistic regression applied to sentence
embeddings, optionally extended with embeddings
of sentence halves to better capture rhetorical struc-
ture. We employed multilingual embedding mod-
els (Jina (Sturua et al., 2024) and E5 (Wang et al.,
2024)) to generate vector representations of text
fragments. This approach enables the model to dif-
ferentiate between neutral and persuasive content
by capturing semantic trajectories within sentences.
All sentences were encoded individually, and their
embeddings were used directly for classification.
Further implementation details and evaluation re-
sults are presented in Experiments Section.

Our choice of logistic regression (LR) was
motivated by its close functional similarity
to the softmax classification head commonly
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used in transformer-based models such as
BERTForSequenceClassification. Both meth-
ods operate on top of fixed-length embedding vec-
tors and serve as simple, interpretable models for
binary or multiclass classification. In our case, LR
serves as a lightweight yet effective classifier that
allows us to focus on the properties of the embed-
dings themselves, rather than the complexity of the
classification model. This aligns with our study’s
goal of analyzing how well rhetorical anomalies
can be captured through embedding space charac-
teristics.

As for the embedding models, we selected Jina
and E5 based on recent benchmark results. Both
have demonstrated strong results on a variety of
sentence-level tasks while maintaining relatively
low computational requirements. This made them
well-suited for local execution, which was a prac-
tical consideration for our study. We prioritized
models that enabled rapid experimentation and in-
terpretability without relying on large-scale infras-
tructure.

4 Results on test

Table 1 presents the results obtained using the de-
scribed methods on the test set. For Croatian, the
highest performance was achieved with walking
embeddings method, while for all other languages,
the content debiasing approach yielded superior re-
sults. According to the official ranking, our system
achieved first place for Croatian and Bulgarian, sec-
ond place for Slovenian, third place for Polish and
fourth place for Russian. Detailed analysis and ad-
ditional findings are provided in the accompanying
report (Piskorski et al., 2025).

Lang. BG HR PL RU SI

Acc. 86.11 95.95 86.97 75.76 89.32
Prec. 83.37 96.97 86.48 83.67 77.20
Rec. 92.79 94.12 94.16 84.23 94.90
F1 87.83 95.52 90.16 83.95 85.14

Table 1: Performance of the FactUE team per language
and run on Subtask 1. For Croatian (HR), the results
correspond to a logistic regression model using JinaEm-
beddings as described in 5.2. For all other languages,
results are obtained using the debiasing approach with
λ = 0.3 as described in 5.1.

5 Experiments

5.1 Model debiasing

In the first step, to establish a baseline, we
fine-tuned two multilingual transformer models:
mDeBERTa-v3-base (Microsoft, 2023) and XLM-
RoBERTa (Conneau et al., 2020). To explore opti-
mal training dynamics, we experimented with sev-
eral learning rates: 5e-6, 2e-6, 1e-5, 2e-5, and 3e-5.
Each configuration was trained three times using
different random seeds (42, 100, 1111). Based
on overall performance across these runs, we se-
lected a fixed learning rate of 1e-5 for subsequent
experiments. For the construction of the training,
validation, and test sets, we combined and shuffled
the datasets labeled as train and trial, which were
provided by the organizers.

To evaluate our proposed content-debiasing
method under limited data conditions, we con-
ducted 5-fold cross-validation, assessing results
separately for each language. Additionally, to mea-
sure the robustness of the model—our method’s
primary goal—we evaluated it on an out-of-domain
test set: a sample from the English binary persua-
sion classification dataset released as part of Se-
mEval 2020, which consisted of 3,186 annotated
examples. Due to time and resource constraints
prior to the submission deadline, we were only
able to test the model’s behavior for a limited set
of lambda values: 0.1, 0.2, and 0.3. Based on
these preliminary results, we selected lambda equal
0.3 for the final submission model. However, fol-
lowing the submission, we conducted additional
experiments exploring a broader range of lambda
values to better understand the method’s sensitiv-
ity and performance across different regularization
strengths.

Performance across different values of the con-
trastive loss weight (lambda) is summarized in Ta-
ble 2. The table reports the average F1 score for the
positive class (f1 pos), computed via 5-fold cross-
validation. The cross-validation was performed on
a dataset created by merging the train and trial
splits provided by the organizers. A lambda of 0
corresponds to the baseline (standard fine-tuning),
while lambda 1 assigns equal weight to the primary
and auxiliary tasks.

5.2 Walking embeddings

Walking embeddings is our original idea stemming
from our other works on representation of text frag-
ments. We observed that: change of order of words
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λ BG PL RU SI EN (OOD)

0.0 0.97 0.89 0.73 0.74 0.17
0.1 0.98 0.88 0.72 0.81 0.16
0.2 0.97 0.88 0.75 0.70 0.17
0.3 0.97 0.88 0.77 0.77 0.20
0.4 0.98 0.88 0.74 0.73 0.17
0.5 0.98 0.89 0.76 0.73 0.18
0.6 0.97 0.89 0.73 0.73 0.17
0.7 0.97 0.90 0.79 0.83 0.21
0.8 0.97 0.87 0.79 0.77 0.19
0.9 0.97 0.90 0.76 0.67 0.21
1.0 0.98 0.91 0.76 0.77 0.20

Table 2: Mean F1 scores per language for different
values of contrastive loss weight λ. EN refers to the
out-of-domain English test set.

(like for keywords) results in significant change of
embeddings; encoding longer fragments does not
allow to find a matching subsequence based only
on embeddings.

In this approach we study the changes in the
embeddings while new words are added. The as-
sumption was that final classification of the sen-
tence depends not only on the embedding of the
whole sentence but it is also important what where
the embeddings ‘on the way’. Several experiments
have been conducted.

In the first experiment we studied the change in
distance, when new word was added to a sentence.
Considering the example sentence from the training
dataset: “Przypomnę pani kilka faktów, bo widzę,
że faktycznie w wielu obszarach jest pani zielona”,
we built the following fragments: “Przypomnę”,
“Przypomnę pani”, “Przypomnę pani kilka” and so
on. Figure 1 presents the cosine distances between
embeddings of consecutive growing fragments of
a sentence. For the sample sentence, we were par-
ticularly interested in the distance between the last
two fragments, because the last word, “zielona”,
was tagged as Name_Calling-Labeling. The end
of the sentence “you are green” can be interpreted
in different ways: label for somebody who know
little or nothing, or referring to an ecologist. The
sentence could end with phrase “you are an expert”,
and that should not be annotated by the system.

Unfortunately, we did not observe any specific
change in embeddings where different end words
were attempted, e.g., “green”, “red”, “expert”, etc.
Green seemed just as good as some other desig-
nations of a person. We also repeated the same
chart for all sentences in the training dataset (fig-
ure 2). Green lines represent sentences labeled as
‘false’, and red – sentences with persuasion tech-
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Figure 1: Cosine distances between E5 embeddings of
the growing fragments of a sample sentence

niques. Here, we can observe that neutral sentences
are positioned a little bit higher regarding semantic
distance between fragments.
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Figure 2: Manhattan distances between E5 embeddings
of the growing fragments of all sentences in a training
dataset

While reducing embeddings to pairwise dis-
tances offers an easy-to-understand perspective, it
may overlook important structural nuances. To gain
deeper insight, we also analyzed the trajectories
of embeddings in their original high-dimensional
space. For visualization purposes, we projected the
embeddings onto two dimensions using Principal
Component Analysis (PCA).

Figure 3 demonstrates our walking embeddings.
The green arrow denotes the beginning of a sen-
tence (i.e., the embedding of the first word). The
red square represents the embedding of a manipu-
lated sentences, while the blue square corresponds
to a neutral sentences. Due to the standardized na-
ture of public speaking, many sentences begin in
similar regions of the embedding space.

Notably, the embeddings of manipulated (“red”)
sentences tend to be distinguishable from those of
neutral (“blue”) ones, which motivated their use
in our classification task. However, we need to be
careful in interpreting these visualizations, as di-
mensionality reduction techniques like PCA do not
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fully preserve the complex relationships present in
the original high-dimensional space. These visual-
izations serve only as a simplified aid to understand-
ing the underlying patterns. Indeed, PCA applied
to dense embedding vectors typically captures only
a limited portion of the total variance.

Figure 3: Traces of walking embeddings (E5) for all
sentences with true/false classification

The final classification was performed using lo-
gistic regression applied to stacked two embed-
dings: those derived from the entire input text
fragments and those obtained from their respec-
tive halves, to account for rhetorical structure. Our
experiments involved analysis of complete rhetori-
cal trajectories. However, due to time constraints,
we did not develop a method to exploit the insights
illustrated in Figure 2, leaving this as a direction
for future work.

A key challenge is to identify rhetorical breaking
points – positions in the text where the rhetorical
flow deviates from expected patterns. For instance,
consider a text fragment consisting of two consec-
utive sentences. Typically, the second sentence
maintains coherence with the first, a property ex-
ploited by many training objectives such as next
sentence prediction (NSP). However, in some cases,
the second sentence may be unrelated, introduce
unsupported conclusions, or shift the topic unex-
pectedly. Our proposed simplification is as follows:
analyze the first sentence fragment, and if the subse-
quent sentence introduces an unexpected rhetorical
shift, the model should be able to detect this as an
anomaly.

We attempted two embedding models: Jina

(jinaai/jina-embeddings-v3) (Sturua et al., 2024)
and E5 (intfloat/multilingual-e5-large) (Wang et al.,
2024). For our separated test dataset, F1 macro
avg for Polish was 0.84 using Jina on single em-
beddings, and 0.85 on combined. For E5, we
achieved 0.87 in both variants. Logistic regres-
sion performed better than XGB, which achieved
0.77 compared to 0.84 on the same input. Final sub-
mission was prepared by logistic regression trained
on samples in all languages using extended em-
beddings. The models combining full and half-
sentence embeddings returned better results than
models using only full embeddings.

6 Conclusions

Our experiments confirm that contrastive content-
debiasing improves model robustness across Slavic
languages and leads to better generalization on
out-of-domain data, including English. Cross-
validation results show consistent gains in F1 score
when supervised contrastive loss is used alongside
standard fine-tuning. While the walking embed-
dings approach did not yield clearly discriminative
patterns in embedding space, preliminary analyses
suggest it may provide a useful lens for explor-
ing how rhetorical structure evolves within sen-
tences. Although our experiments did not reveal
consistent accumulation of persuasive cues, the
observed embedding trajectories highlight areas
for further investigation, particularly in identifying
rhetorical shift points. These findings suggest that
stylistic regularization and embedding dynamics
can be complementary tools for enhancing persua-
sion detection systems.
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A Appendix - Experimental Details for
model debiasing approach

To ensure clarity and reproducibility, we provide
the following detailed description of our experi-
mental setup.

A.1 Model and Tokenizer - model debiasing
approach

We used the xlm-roberta-base model along with
its associated tokenizer, loaded via Hugging Face’s.

A.2 Hyperparameters - model debiasing
approach

We used the following training configuration:

• Learning rate: 1e-5

• Weight decay: 0.05

• Batch size (train/eval): 16

• Maximum training steps: 10,000

• Evaluation frequency: every 100 steps

• Model saving frequency: every 100 steps (best
model retained)

• Early stopping: patience of 2 evaluations

• Mixed precision (FP16): enabled

• Maximum sequence length: 128

• Optimization objective: F1 score of the posi-
tive class (f1_pos)

A.3 Random Seed and Reproducibility

We fixed the random seed to 42 across all com-
ponents, including data splits and model ini-
tialization. The CUDA device was set via
CUDA_VISIBLE_DEVICES. All models were trained
using PyTorch and Hugging Face Transformers.

A.4 Out-of-Domain Evaluation Sample

For the out-of-domain evaluation, we used a dataset
released as part of the CLEF 2024 CheckThat!
Lab, specifically from the adversarial persuasion
detection subtask. The dataset consisted of 3,186
English-language examples and was originally
sourced from the SemEval 2020 Task 6 binary per-
suasion classification dataset, where it served as
the development split.

• Current usage: CLEF 2024 CheckThat! Lab
– adversarial persuasion detection task – dev
split.

• Original source: SemEval 2020 Task 6
(Zampieri et al., 2020).

• Language: English.

• Sample size: 3,186 examples.

• Annotation schema: Each instance is anno-
tated with a binary label indicating whether
the text is persuasive or non-persuasive.

• Evaluation role: This dataset was used
strictly for out-of-domain evaluation. It was
not used during training or model selection.
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