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Abstract

Pre-trained language models have significantly
advanced natural language processing (NLP),
particularly in analyzing languages with com-
plex morphological structures. This study ad-
dresses lemmatization for the Russian language,
the errors in which can critically affect the per-
formance of information retrieval, question an-
swering, and other tasks. We present the results
of experiments on generative lemmatization us-
ing pre-trained language models. Our findings
demonstrate that combining generative mod-
els with the existing solutions allows achieving
performance that surpasses current results for
the lemmatization of Russian. This paper also
introduces Rubic2, a new ensemble approach
that combines the generative BART-base model,
fine-tuned on a manually annotated data set of
2.1 million tokens, with the neural model called
Rubic which is currently used for morpholo-
gical annotation and lemmatization in the Rus-
sian National Corpus. Extensive experiments
show that Rubic2 outperforms current solutions
for the lemmatization of Russian, offering su-
perior results across various text domains and
contributing to advancements in NLP applica-
tions.

1 Introduction

Lemmatization, the process of linking an inflected
word form to its normal form, is essential for associ-
ating word variations with lexical resources. Lem-
matization is crucial for morphologically rich lan-
guages because it reduces complex inflected forms
to their base forms, facilitating better analysis and
processing of text (Figure 1). This standardization
improves information retrieval and enhances un-
derstanding in various natural language processing
(NLP) tasks (Lyashevskaya et al., 2020; Sorokin
et al., 2017).

This work focuses on the lemmatization of Rus-
sian words. Despite the availability of effective
solutions for this task, several challenges remain

Figure 1: Fragment of the indicative paradigm of the
verb быть ‘to be’.

for existing models. Previous studies (Kotelnikov
et al., 2018; Lyashevskaya et al., 2023, 2020) in-
dicated some difficulties, including lemmatizing
words in old spelling, certain modern vocabulary,
proper names, and abbreviations. These shortcom-
ings and the rapid development of NLP tools high-
light the need for new solutions for lemmatizing
Russian-language texts.

This study explored approaches to generative
lemmatization based on pre-trained language mod-
els. Preliminary experiments included the compar-
ison of several models for lemmatization in a gener-
ative manner. Then, we fine-tuned the BART-base
model selected based on the results of preliminary
experiments on the manually labeled data set con-
taining 2.1M tokens. This model was compared
to existing solutions for lemmatizing Russian, and
ensemble approaches were also tested. Finally,
we presented Rubic2, a neural ensemble solution
for lemmatizing Russian texts that demonstrated
state-of-the-art results across various domains by
achieving accuracy scores ranging from 82.87% to
99.69%.

The main contributions of this work can be sum-
marized as follows.
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• We explored generative approaches to lem-
matization using pre-trained language models,
focusing on the Russian language. By combin-
ing generative models with existing solutions,
the research achieved performance improve-
ments over current state-of-the-art methods in
Russian lemmatization.

• We introduced Rubic2, a new ensemble model
that integrates the generative BART-base
model with an existing neural model, Rubic,
which is used for morphological annotation
and lemmatization in the Russian National
Corpus.

The rest of the paper is structured in the follow-
ing way. Section 2 contains a brief review of related
work on Russian text lemmatization and generat-
ive lemmatization approaches. Section 3 describes
the data used for training and testing. Section 4
presents the experimental setup and results. In Sec-
tion 5, we provide an error analysis. Section 6
concludes this paper.

2 Related Work

2.1 Approaches to Russian Texts
Lemmatization

Lemmatization is a crucial task for morphologic-
ally rich languages. Over the past two decades,
NLP tools for Russian have seen significant ad-
vancements, largely thanks to developing tools
for morphological parsing and conducting shared
tasks which involve texts from various sources. A
number of morphological taggers have been de-
veloped for Russian including language-specific
tools like MyStem (Segalovich, 2003) and Py-
Morphy2 (Korobov, 2015), as well as multilin-
gual models trained on Russian data such as UD-
pipe (Straka et al., 2016) and Stanza (Qi et al.,
2020). According to the experimental results in
(Akhmetov et al., 2020; Kotelnikov et al., 2018),
language-specific PyMorphy2 and MyStem show
high-quality lemmatization performance across
various corpora. The morphological parser MyS-
tem is a console application compatible with vari-
ous operation systems. It relies on Zaliznyak’s
dictionary (Zaliznyak, 1977) and can propose a hy-
pothesis for unknown words by finding the closest
matches in the vocabulary. MyStem uses context
to disambiguate homonyms, evaluate hypotheses,
and supports user dictionaries. PyMorphy2 util-
izes the OpenCorpora project dictionary (Bocharov

et al., 2011) and predicts hypotheses for unknown
words using rules and calculates conditional prob-
abilities for all analysis outcomes. Additionally,
PyMorphy2 can generate word forms based on
grammatical features.

There have been several competitions on lemmat-
izing Russian in recent years, covering texts from
various genres and domains. RU-EVAL, the first
shared task on Russian part-of-speech (POS) tag-
ging, lemmatization, and morphological analysis of
texts from various domains, including news, tech-
nical, and fiction texts (Astaf’eva et al., 2010), took
place in 2010, achieving 98% accuracy for lem-
matization and 97.3% for POS tagging. At the
MorphoRuEval-2017 shared task (Sorokin et al.,
2017), the models achieved 97.11% accuracy in
predicting morphological features and 96.91% in
lemmatization on a diverse data set containing a
large number of social media texts. From 2016 to
2019, Russian morphology was also highlighted
in SIGMORPHON (Cotterell et al., 2018), with
the best result reaching 94.4% accuracy in word
inflection within context using the data set based
on Wiktionary.

At GramEval-2020 (Lyashevskaya et al., 2020),
the best result (ranging from 78.3% to 98% across
different domains) was achieved by qbic (Ana-
stasyev, 2020). This neural model combines
RuBERT (Kuratov and Arkhipov, 2019) embed-
dings with morphological data from PyMorphy2,
using a BiLSTM network to obtain word encod-
ings. After obtaining word embeddings, three clas-
sifiers are applied, each dedicated to a specific task:
morphology tagging, lemmatization, and syntax
dependency parsing. The lemmatization process
occurs in two stages: first, the classifier assigns a
specific rule to each token, and then the rule is ap-
plied. Each lemmatization rule defines the length of
the suffix to be removed and a substring to be added.
The system determines a set of 1000 to 2000 lem-
matization rules based on the training data. Using
this architecture, the Rubic model (Lyashevskaya
et al., 2023) was developed for tagging in the Rus-
sian National Corpus (Savchuk et al., 2024). It
features an improved lemmatization approach that
utilizes information from the part-of-speech tag-
ging module and advanced post-processing tech-
niques.

2.2 Generative Lemmatization
Over the past decade, lemmatization systems lever-
age attentional sequence-to-sequence neural ar-
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chitectures to convert inflected word forms into
lemmas at the character level. For instance,
Bergmanis and Goldwater (2018) introduced a
context-sensitive approach by incorporating sur-
rounding characters without relying on morpholo-
gical or POS tags. The paper (Pütz et al., 2018) pro-
posed morphologically-informed neural sequence-
to-sequence architecture for lemmatization. The
results presented in these works showed compar-
able quality to rule-based baselines.

Recent studies applied a transformer-based
model to lemmatizing texts. Over the past few
years, generative lemmatization has gained sig-
nificant attention from the academic community,
with current developments demonstrating highly
promising results. The proposed models typic-
ally take an inflected word form as input, along
with POS tags, morphological features, or contex-
tual information. Some research focuses on an-
cient and historical languages. For instance, during
the shared tasks (Dereza et al., 2024; Sprugnoli
et al., 2022) models for lemmatization using T5
and ByT5 were proposed (Riemenschneider and
Krahn, 2024; Wróbel and Nowak, 2022). These
models utilized the word form along with POS
tags. In (Riemenschneider and Frank, 2023), T5
was applied for lemmatization using the full sen-
tence context of the word form without receiv-
ing or predicting POS tags or morphological fea-
tures. Dorkin and Sirts (2023) proposed an encoder-
decoder architecture for Estonian language lem-
matization with several additional morphological
features based on a character-level transformer.
The BART-large model was applied to lemmatiz-
ing Russian texts (Lyashevskaya et al., 2023) and
showed promising results compared with a BERT-
based lemmatization rules classifier.

Previous studies have shown that transformer-
based models perform well in lemmatizing texts
across different languages. Several studies have
focused on generative lemmatization, which trans-
forms word forms into their lemmas. While there
have been initial attempts to use generative models
for lemmatizing Russian texts, their full potential
remains unclear. There is also a need to evaluate
the performance of ensembles combining existing
and new models to address their limitations. This
requires large-scale experiments on a diverse data
set. This study aims to address these research gaps.

3 Data

The experiments were performed using a diverse
collection of text samples that included a wide
range of genres, text types, domains, time peri-
ods, and orthographic variations. The text collec-
tion mainly consists of the texts from the Russian
National Corpus (RNC)1 (Savchuk et al., 2024)
and the Taiga corpus2 (Shavrina and Shapovalova,
2017). All source data are freely available to re-
searchers in the Universal Dependencies format3.
The collected data was manually reannotated by
experts in Russian morphology and syntax accord-
ing to the Russian UD-Ext scheme (Lyashevskaya,
2019). All data is presented in the CONLL-U
format. Table 1 reports on the structure of the
available training, development, and test data sets.

Based on these data, we have merged the follow-
ing test sets: RNC, which includes a collection of
texts from RNC in modern spelling; RNC+XV III ,
which extends RNC with texts written in diverse
pre-Soviet orthographies; and the Taiga sets, which
consist of test data from the GramEval-2020 shared
task and a new set named CAPS4 that includes So-
viet telegrams and advertisement texts and contains
a large number of words written in capital letters.
Thus, the following sets can serve as a base for
register-specific evaluation: fiction, news, poetry,
social media (social), wikipedia (wiki), CAPS. The
size of the small test sets is kept to compare the
current and previous results. The resulting test sets
are presented in Table 2.

4 Experiments and Results

4.1 Preliminary Experiments
During preliminary experiments, we assessed the
ability of generative models to perform lemmatiza-
tion of Russian words. For this, we selected three
types of models:

• BART (Lewis et al., 2020), a transformer-
based denoising autoencoder for pre-training
a seq2seq model. We used BART-base5 and

1https://ruscorpora.ru/en
2https://tatianashavrina.github.io/taiga_site
3https://universaldependencies.org/:

UD_RussianSynTagRus, UD_RussianTaiga, UD_Russian-
Poetry treebanks

4Kohen’s kappa was utilized to evaluate the agreement
between two experts. κ=.932 indicates a reliable quality of
the lemma assignment. Most mismatches can be related to the
theoretically-plausible “equivalent interpretations” in context
(eg. adjective vs. participle, reflexive vs. passive verb, pluralia
tantum lemma vs. lemma in singular).

5https://huggingface.co/facebook/bart-base
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Data set Train
size

Dev
size

Test
size

Varieties Shared task

SynTagRus2.8-
UDext

1.5M – – fiction, popular science, journal-
ism, news, Wikipedia

GramEval-2020 (1.1M in
train; 400K: new data)

Taiga-UDext .2M 10K 10K social media, YouTube com-
ments, Q&A, reviews; poetry &
prosaic fiction; news

GramEval-2020 (the 17th
century texts and SynTa-
gRus excluded)

prose-XX .1M .2M .1M modern fiction & nonfiction –
prose-XIX 49K 42K 19K the 19th c. drama, fiction, &

nonfiction
–

old-orthography 93K 9K 15K pre-Soviet spelling –
RNC+XV III 75K 4K 7K 18th c. non-standard spelling –
poetry 35K – 1K RNC Poetry corpus test: GramEval-2020; train:

new data
newspapers-XXI 12K 10K 14K RNC Media & Main corpus

(journalism, announcements)
–

CAPS – – 1K telegrams & advertisement
GramEval-2020 – – 6K fiction, news, social, poetry,

wiki
GramEval-2020

Total size 2.1M 256K 170K

Table 1: Data used for training and evaluation, size in tokens.

Test sets
RNC sets GramEval-2020 (Taiga)

RNC 142K fiction 1.1K
RNC+XV III 22K news 1.3K
CAPS 1.0K poetry 1.0K

social 1.1K
wiki 1.5K

Table 2: Size of test sets, tokens.

BART-large6 with 139M and 406M paramet-
ers respectively.

• mBART-507 (Tang et al., 2021), a machine
translation sequence-to-sequence model that
uses the same baseline architecture as that of
multilingual BART (Liu et al., 2020), 680M
parameters. mBART-50 was trained on more
than 50 languages with a combination of span
masking and sentence shuffling.

• ruT5 (Zmitrovich et al., 2024), a Russian-
language text-to-text transformer pre-trained
on a corpus including Russian texts from vari-
ous publicly available resources, which rep-
resent diverse domains. The architecture and
training procedure are similar to T5 (Raffel
et al., 2020). We used two model configur-
ations: ruT5-base8 and ruT5-large9 with
222M and 737M parameters respectively.

6https://huggingface.co/facebook/bart-large
7https://huggingface.co/facebook/

mbart-large-50
8https://huggingface.co/ai-forever/ruT5-base
9https://huggingface.co/ai-forever/ruT5-large

The summary of the model architecture configura-
tion including the number of layers and attention
heads, the hidden layer dimension, and other char-
acteristics is presented in Table 6 (Appendix A).

For the preliminary experiments, we used a
sample of 10K random lemmas from the training
set. The test was conducted on a sample of 5K lem-
mas from the RNC+XV III test set. Each model
was fine-tuned for 20 epochs with a maximum se-
quence length of 512 tokens. The learning rate was
1e-5 for ruT5 and 4e-5 for BART and mBART.

The model input was presented as the word form
with a POS tag and a set of morphological features.
The output was the lemma of the word. Addition-
ally, for the model that demonstrated the best per-
formance, we assessed the effectiveness of the use
of the word form’s context. We considered two
variations of using context: full context and a con-
text window of one word. If the context window
included the beginning or end of a sentence, they
were marked with the tokens BEGIN and END, re-
spectively (see Table 3). Following (Lyashevskaya
et al., 2020), we used the lemmatization accuracy
metric that represents a standard accuracy metric,
disregarding letter capitalization and е/ё choice.

Table 4 and Figure 2 show the results on the
test sample. The highest results in the table are
highlighted. The best score using the standard input
was achieved by the BART-base model (95.7%). A
similar result was demonstrated by the BART-large
model (95.62%). mBART, ruT5-base, and ruT5-
large showed lower results (89.4%, 91.38%, and
88.74% respectively). The use of context did not
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Context
Деревня осталась позади за буграми. [The village was left behind over the hills.]

Example 1
Form позади
Lemma (output)

позади [behind]
Standard Input + Full Context + Context (Window Size = 1)

позади ADV Degree:Pos позади ADV Degree:Pos Деревня осталась
позади за буграми.

позади ADV Degree:Pos осталась по-
зади за

Example 2
Form буграми
Lemma (output)

бугор [the hill]
Standard Input + Full Context + Context (Window Size = 1)

буграми NOUN Animacy:Inan
Case:Ins Gender:Masc Num-
ber:Plur

буграми NOUN Animacy:Inan Case:Ins
Gender:Masc Number:Plur Деревня осталась
позади за буграми.

буграми NOUN Animacy:Inan
Case:Ins Gender:Masc Number:Plur за
буграми.

Example 3
Form .
Lemma (output) .
Standard Input + Full Context + Context (Window Size = 1)
. PUNCT . PUNCT Деревня осталась позади за буг-

рами.
. PUNCT буграми. END

Table 3: Examples of input and output formats.

Model Accuracy, %
Standard input

BART-base 95.70
BART-large 95.62
mBART 89.40
ruT5-base 91.38
ruT5-large 88.74
BART-base+full context 95.52
BART-base+context (window size=1) 95.70

Table 4: Results of preliminary experiments (20
epochs).

Figure 2: Accuracy scores on the test sample (prelimin-
ary experiments).

significantly improve the performance of the BART-
base model. The use of full context led to a slight
decrease in results, while using a context window
had no major impact on the results. Based on the
results of preliminary experiments, the BART-base
model with the input consisted of the word form
with a POS tag and morphological features was
chosen for further research.

4.2 BART-based Model
Following the preliminary experiment results, the
BART-base model was selected for further analysis,
with the input consisting of the word form along
with a POS tag and morphological features. We
fine-tuned BART-base for 40 epochs on the full
train set of 2.1M tokens described in Section 3.
For training, we used POS tags and morphological
features annotated by experts.

During the development and test phases, POS
tags and morphological features were extracted us-
ing the Rubic model (Lyashevskaya et al., 2023),
as raw texts in subsequent lemmatization do not
have expert annotations. The fine-tuned model
was evaluated on the development set to select the
best-performing version. The highest result on the
development set (98.37%) was obtained after 31
epochs (Figure 4, Appendix A). Then, the selected
model was evaluated on the test sets and compared
with several baselines.

To achieve higher performance on the test set,
we applied a set of heuristics to post-process the
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output of the BART-base model. For instance, if a
word was a singular noun in the nominative case,
which corresponded to the base form of a noun
in Russian, the lemma should have matched the
word form. The full list of heuristics is shown in
Table 7 (Appendix A). The set of heuristics was
proposed by the RNC linguists based on the ana-
lysis of frequency dictionaries and texts from RNC.
The examples of errors of the BART model that
can be corrected using heuristics are presented in
Table 8 (Appendix A).

4.3 Baselines

As baselines, we adopted four rule-based and su-
pervised approaches to lemmatizing Russian texts:

• PyMorphy2 (Korobov, 2015) and MyStem (Se-
galovich, 2003), rule-based morphological
analyzers. Both analyzers return all pos-
sible lemmatization options for a given word
ordered by frequency of occurrence, so we
evaluated two lemmatization strategies. In the
first one, we used only the first lemmatiza-
tion option. In the second one, we considered
all possible lemmatization options. If any of
these options matched the gold lemma, the
generated lemma was deemed correct. The
second strategy allowed us to assess the the-
oretical potential of the method to produce
correct lemmas. However, in practice, this
strategy is not applicable.

• Stanza (Qi et al., 2020), a Python natural lan-
guage analysis package. Stanza’s lemmatizer
is designed as a combination of dictionary-
based and neural seq2seq lemmatizers.

• Rubic (Lyashevskaya et al., 2023), a neural
network algorithm consisting of three steps.
First, it generates word embeddings by com-
bining RuBERT (Kuratov and Arkhipov,
2019) embeddings with morphological data
from PyMorphy2. Second, these embeddings
are processed through a BiLSTM network to
obtain word encodings. Finally, three classifi-
ers predict lemmata, morphological informa-
tion, and dependency tree of the sentence; not-
ably, the lemmatization classifier also relies on
the output of the morphological classifier and
is further refined with language-specific heur-
istics. Currently, Rubic is used in the RNC for
morphological annotation and lemmatization.

We have considered alternative options to use
as a baseline, for example, a simple recurrent
neural network (RNN) (Cho et al., 2014). How-
ever, it showed extremely low results on the mater-
ial, when compared with the fine-tuned language
models. In addition, the lexical diversity of the
material made impossible using the dictionary-
based postprocessing heuristics that proved to be
useful for other Slavic languages (Afanasev and
Lyashevskaya, 2024). Part-of-speech tags some-
times actually worsen performance, which also
speaks against using RNN as a part of the Rubic
pipeline. Crucially, we intended to use the most
robust pipeline possible, and RNN did not meet
the criteria, given its previous results for Slavic lan-
guages and our preliminary experiments, which, for
brevity and clarity, we do not report in the paper.

Among the multilingual models trained on Rus-
sian data, we selected Stanza, based on its superior
performance compared to other models, particu-
larly UDPipe (Straka et al., 2016), as demonstrated
in previous studies (Afanasev, 2023; Afanasev and
Lyashevskaya, 2024).

4.4 Experimental Results
BART-base was evaluated on the test sets and com-
pared with the baselines. Performance scores in
terms of accuracy score are presented in Table 5.
The lines BARTpostproc and BART show the
results for the fine-tuned BART-base with and
without post-processing. The asterisk (*) marks
PyMorphy2 and MyStem considering all possible
lemmatization options. The highest score for each
test set is underlined.

The results demonstrated that in most cases
neural models outperformed the results of rule-
based approaches, even when using the version
with all possible lemmatization options. This
demonstrated that the complexity of natural lan-
guage texts and the variety of word forms require
more sophisticated approaches for their processing.
The best results among the baselines was obtained
by Rubic. BARTpostproc outperformed Rubic on
the RNC (+0.12%), RNC+XV III (+0.11%), news
(+0.77%), poetry (+0.58%), and CAPS (+0.49%)
test sets. Rubic achieved better scores on social and
wiki texts (+0.72% and +0.86% respectively). Both
models showed equal performance on the fiction
domain (99.22%).

The results showed that no single model was su-
perior across all domains. At the same time, a quick
empirical error analysis revealed that different mod-
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els exhibited different types of errors. Based on
this observation, we explored a two-step ensemble
learning approach to combine the outputs of the
two models that demonstrated the best performance
on the test sets: BARTpostproc and Rubic. In the
first step, we compiled a dictionary of letter com-
binations that do not occur in correct Russian lem-
mas. In the second step, we checked the lemmas
generated by the basic model using the dictionary.
If a lemma produced by the basic model contained
any of these combinations or special symbols that
were not present in the word form, the generated
lemma was marked as incorrectly generated. For
incorrectly generated lemmas, the lemma obtained
from the supporting model was used. We evaluated
two ensemble configurations. In the first configura-
tion, BARTpostproc was the basic model and Rubic
was the supporting model (BART → Rubic), and in
the second configuration, their roles were reversed
(Rubic → BART).

The use of ensembles allowed us to achieve
better results for most domains. The highest ac-
curacy was achieved using BART → Rubic on
the RNC (99.05%), RNC+XV III (98.85%), fic-
tion (99.39%), and news (99.69%) test sets. For
the poetry test set, the scores obtained by BART-
base (99.23%) did not improve while using en-
sembles. For social and wiki texts, the results of
Rubic (98.31% and 97.6% respectively) remained
unsurpassed. For CAPS, the best score in our ex-
periments was achieved by PyMorphy considering
all possible lemmatization options (83.25%). The
second-best result was shown by BART → Ru-
bic (82.87%).

In our experiments, the best performance across
most test sets was demonstrated by the BART →
Rubic ensemble, which we named Rubic2. The
final workflow of Rubic2 is shown in Figure 3.
The pipeline begins with the extraction of mor-
phological features from the input text using the
Rubic model. These features (POS tags and mor-
phological attributes) are then passed to the BART-
based lemmatizer, which generates a lemma for
each token based on the word form and its mor-
phological context. Simultaneously, the same word
form is processed by the Rubic lemmatization com-
ponent, which relies on a combination of RuBERT-
based embeddings and morphological analysis us-
ing PyMorphy2. These embeddings incorporate
both contextual information from the transformer
model and rule-based morphological tags, provid-
ing an alternative lemma candidate. The outputs of

both models are then passed to the Merger block.
This component compares the two lemmas using a
set of predefined heuristics.

Our findings suggest that using ensemble learn-
ing to combine the outputs of different neural net-
work models improves lemmatization performance
across texts from various domains. By incorporat-
ing a dictionary of impossible letter combinations,
we are able to identify errors in generative lemmat-
ization and replace incorrectly generated lemmas
with those produced by a neural model based on
a different approach. This enables us to combine
the strengths of both models while mitigating their
weaknesses. In the next section, we examine com-
mon errors of both models and analyze which types
of errors our approach successfully addresses and
which challenges still warrant further investigation.

5 Error Analysis

In this section, we compared the common errors of
the BART-base and Rubic models to better under-
stand strengths and limitations of Rubic2.

Since BART-base is a generative model, its er-
rors are primarily associated with the hallucina-
tion of symbols and the reproduction of stereo-
typical patterns in lemmas. The model performs
worse with homonymous forms, uninflected words,
and words with rare alternations (e.g., веки (word
form) → веко (generated lemma), gold lemma -
век, ‘a century’, a homonymous form for веко,
‘an eyelid’; леди → ледя, gold lemma - леди, ‘a
lady’). Errors in words with the prefix пол- are
also frequently observed (полдеревни → полде-
ревня, gold lemma - полдеревни, ‘a half of the
village’). In nouns ending in -нье, BART usually
replaces -нье with -ние (увещанья → увеща-
ние, gold lemma - увещанье, ‘an exhortation‘).
Other frequent errors made by BART are related to
the lemmatization of numerals (13.32 → 133232,
gold lemma - 13.32), hashtags (#life → #de, gold
lemma - #life), and user mentions (@Zhirinovskiy
→ @Zhovovskiy, gold lemma - @Zhirinovskiy).
In some instances, BART-base generates unexpec-
ted characters (анан♦? с) and replaces repeated vow-
els (пепельница → пепэльница, gold lemma -
пепельница, ‘an ashtray’).

In general, Rubic’s errors are related to the in-
correct selection of lemmatization rules, leading
to excessive or insufficient deletion of symbols.
In some cases, Rubic does not remove the accent
mark (e.g., напыщéнный → напыщéнный, gold
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Model RNC RNC+XV III fiction news poetry social wiki CAPS
BART 98.72 98.48 99.13 99.62 99.04 96.79 94.99 81.22
BARTpostproc 98.91 98.66 99.22 99.62 99.23 97.59 95.74 81.61
Rubic 98.79 98.55 99.22 98.85 98.65 98.31 97.60 81.12
Stanza 93.79 92.85 97.65 97.32 93.27 95.10 89.70 59.24
MyStem 91.60 91.29 91.64 91.65 90.67 91.98 89.56 78.90
PyMorphy2 91.23 90.42 95.21 94.10 94.23 93.76 89.35 80.15
MyStem* 94.07 93.78 94.25 93.79 91.63 95.10 90.18 81.32
PyMorphy2* 94.08 92.59 97.56 95.79 95.96 96.97 90.25 83.25
BART → Rubic (Rubic2) 99.05 98.85 99.39 99.69 99.23 97.86 96.36 82.87
Rubic → BART 98.84 98.60 99.22 98.93 98.94 98.31 97.60 81.12

Table 5: Lemmatization accuracy scores, %. * – considering all possible lemmatization options.

Figure 3: The Rubic2 pipeline.

lemma - напыщeнный, ‘pompous’). Rubic often
produces errors with nouns ending in -й, altering
the word stem or adding suffixes (поцелуй → по-
целок, gold lemma - поцелуй, ‘a kiss’; ручей
→ ручень, gold lemma - ручей, ‘a stream’). Ad-
ditionally, in several instances, Rubic incorrectly
lemmatizes adverbs and prepositions by completely
replacing the original word form with new words
(краше → хорошо, gold lemma - красиво, ‘beau-
tifully’; промеж → много, gold lemma - про-
меж, ‘between’). Finally, Rubic performs worse
in lemmatizing verbs and proper nouns compared
to BART-base.

Both Rubic and BART-base struggle with the
lemmatization of abbreviations (often shortened
forms with full stop placed after an initial letter or
several letters), reflexive verbs, and the words the
stems in which end with a soft consonant. Plurale
Tantum words and word forms in the plural are also
occasionally incorrectly lemmatized. The models
also demonstrate more lemmatization errors with
nouns that contain fleeting vowels; however, such
errors are more typical for Rubic. Some errors are
related to the lemmatization of adjectives ending in

-ой and -ый. The models exhibit errors when lem-
matizing distorted word forms, with Rubic making
such mistakes much more frequently. Examples
of word form types that are challenging for both
models are shown in Table 9 (Appendix A). The
presented cases pose a challenge for the further
improvement of Rubic2.

6 Conclusion

This paper addresses lemmatization for the Rus-
sian language. Our study integrates generative lem-
matization and current effective neural models for
lemmatizing Russian to address the limitations of
both approaches and leverage the advancements
in NLP and pre-trained language models. Extens-
ive experiments reveal that the Rubic2 ensemble
model presented in this paper shows high perform-
ance on various domains ranging from 82.87% to
99.69% in terms of the accuracy score. Given the
importance of lemmatization for morphologically
rich languages and the effectiveness of the pro-
posed methodology, we believe our work makes a
significant contribution to the field.

The current study is limited by the complex
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format of the input data. Generative lemmatiza-
tion requires extracting the morphological features
with the Rubic model, thus making lemmatization
performance reliant on the accuracy of these predic-
tions. Additionally, the model makes errors in cer-
tain challenging cases, such as the lemmatization
of abbreviations or foreign words. This limitation
could be addressed by using a more advanced con-
textual analysis of word forms. Another direction
for future research is to create a linguistic-informed
model generating only valid lemmas according to
language rules, without needing heuristics for post-
processing.

7 Limitations

We identified the following limitations of our study.
Significance of the Results: In this work, we

proposed an ensemble model for Russian lemmat-
ization that outperformed the previous state-of-
the-art Rubic model on most test sets. The im-
provement ranged from 0.17 to 1.75%. A con-
ducted bootstrap analysis (N = 1000 resamples)
using all test data showed the Rubic mean accur-
acy of 98.42% (95% CI: [98.36%, 98.49%], min
= 98.33%, max = 98.54%) and the Rubic2 mean
accuracy of 98.67% (95% CI: [98.62%, 98.73%],
min = 98.58%, max = 98.79%) (Figure 5, Ap-
pendix A). The difference was statistically signific-
ant (p < 0.01) in accordance with the Wilcoxon
test. The obtained gain is substantial in absolute
terms when applying Rubic2 to annotate large text
corpora. Moreover, the achieved improvements
helped correct several typical errors of the Rubic
model (see Section 5).

Dataset Issues: Although the training and test-
ing data cover a wide range of domains, some
domains are either absent or underrepresented
(Table 1). This may lead to a bias in model fine-
tuning towards more common categories.

The input format used for fine-tuning BART is of
limited suitability for homonym recognition. The
task of lemmatizing homonyms, which is particu-
larly relevant for Russian texts (Lyashevskaya et al.,
2011), requires further investigation.

Runtime: We observe a longer lemma gen-
eration time compared to the Rubic model (see
Table 10, Appendix A). This is due to the larger
number of model parameters, its ensemble archi-
tecture, and resource constraints. In this work, ac-
curacy is the top priority, as Rubic2 is intended for
annotating large text corpora (≈ 108− 109 tokens).

This process involves a one-time annotation of the
data, followed by multiple uses of the results.

The duration of one epoch of fine-tuning the
BART-base model on the full training set was ap-
proximately 4.5 hours using an NVIDIA RTX 4090
GPU and an AMD Ryzen 9 7900X processor. We
estimate the total time spent on preparing the final
model to be 270 GPU hours.

Usage of Instruction-based LLMs: In this
work, we focused on encoder-decoder architectures
and did not consider instruction-based LLMs. This
limitation is due to our future plans for applying
the model to annotate large text corpora, as well as
resource constraints. Despite a significant increase
in runtime when using BART, Rubic2 allows an-
notation to be performed within a reasonably lim-
ited time. For example, annotating all test data (≈
300K tokens) takes about eleven minutes in real
time. Our preliminary experiments have shown
that using instruction-based LLMs would require
significantly more time.
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A Additional Figures and Tables

Figure 4: Accuracy scores on the development set.

Figure 5: Bootstrap distribution of Rubic and Rubic2.

B Potential Risks

The primary intended purpose of Rubic2 is the an-
notation of large (≈ 108 − 109 tokens) corpora of
Russian-language texts for further linguistic ana-
lysis. The final lemmatization results are not guar-
anteed to be fully accurate, as indicated by the
accuracy findings presented (see Section 4). The
evaluation of the model performance is limited to
the domains covered in this study (see Section 3).

C Scientific Artifacts

We list the licenses of the scientific artifacts used
in this paper: PyMorphy2 (MIT license), MyS-
tem (license agreement10), Stanza (Apache li-
cense 2.0), Rubic (license agreement11), BART
(Apache license 2.0), mBART-50 (MIT license),
ruT5 (MIT license), Huggingface Transformers
(Wolf et al., 2020) (Apache License 2.0), Simple-
Transformers12 (Apache license 2.0).

10https://yandex.ru/legal/mystem
11https://ruscorpora.ru/en/page/license-neuro
12https://simpletransformers.ai/

The data set used in this study was previously
employed in other research on lemmatizing Rus-
sian words (Lyashevskaya et al., 2023). The pre-
annotated data set was provided by the Russian
National Corpus (Savchuk et al., 2024) for use ex-
clusively for scientific purposes under a license
agreement of RNC13. It does not contain personal
data but may include a small number of examples
of obscene or offensive vocabulary.

We ensured that our use of existing artifacts
aligns with their intended purpose as specified by
their original creators.

13https://ruscorpora.ru/en
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Model Architecture Params Data source Layers Tokenizer Heads Hidden
BART-
base

Encoder-
decoder

139M BookCorpus, Stories,
Wikipedia, CC News,
OpenWebText

12
BPE, 50×103

16 768

BART-
large

406M 24 16 1024

mBART 680M CC25, XLMR 24 16 1024
ruT5-
base

222M Wikipedia, C4, news,
Librusec, OpenSubtitles

12 Sentence-
Piece,
32×103

12 768

ruT5-
large

737M 24 16 1024

Table 6: Model overview. The Tokenizer column includes the tokenization method and the vocabulary size.

Features and values Comment Performance impact
for the RNC test set

Result

Foreign = Yes Foreign word ↑0.1355%

Lemma:=Wordform

NOUN and Case = Nom
and Number = Sing

Noun in the singular form
in the nominative case

↑0.0303%

VERB VerbForm = Inf Verb in the infinitive form ↑0.1331%
PUNCT Punctuation ↑0.012%
SYM Symbol ↑0.004%
(NUM or ANUM) and not
Wordform.isalpha()

Cardinal or ordinal nu-
meral, and not all charac-
ters are alphabetic letters

↑0.0007%

Table 7: Set of heuristics to post-process the output of BART-base.

Model input Gold lemma Generated lemma (raw output)
Qeexo X Foreign:Yes Qeexo oeeo

математика NOUN Animacy:Inan
Case:Nom Gender:Fem Number:Sing

математика
(mathematics)

матема♦? ика

кружиться VERB Aspect:Imp Transit:Intr
VerbForm:Inf Voice:Act

кружиться (to
spin)

кружить (to make spin)

.......................... PUNCT .......................... ....
*** SYM *** %
187 NUM NumForm:Digit NumType:Card 187 Top
1:1 ANUM NumForm:Digit NumType:Card 1:1 111

Table 8: Examples of the errors corrected by heuristics.

169



Form Gold lemma BART-base Rubic Comment

макс. максимум (a max-
imum)

МАКС. максийскикиЙск Abbreviation

ккал килокалория (a
kilocalorie)

ккаилограмм ккал

бежим бежать (to run) бежать бежаться
Reflexive and
non-reflexive
verb formsвспоминается вспоминаться (to

be remembered)
вспоминать вспоминаться

Трансваале Трансвааль
(Transvaal)

трансвааль Трансваал
Word forms with
a stem ending in
a soft consonant.
Proper nouns.отеле отель (a hotel) отел отель

валенках валенок (a felt
boot)

валенки валенок Word forms in
plural

цветы цветок (a flower) цветок цветы

когтями коготь (a claw) когт коготь Words with
fleeting
vowelsпаренька паренек (a lad) пареньень паренько

хворые хворый (sick) хворый хворой
Adjectives
ending in
-ой and -ыйроковые роковой (fatal) роковый роковой

Table 9: Examples of lemmatization errors. Generated lemmas that do not match the gold lemma are underlined
(case insensitive).

Model Speed (tokens per second)
BART-base 707
Rubic 1416

Table 10: Average lemmatization speed. The model
results were obtained using an NVIDIA RTX 4090 GPU
and an AMD Ryzen 9 7900X processor.
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