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Abstract

Recent advances in large language models
(LLMs) have introduced the novel paradigm
of using LLMs as judges, where an LLM eval-
uates and scores the outputs of another LLM,
which often correlates highly with human pref-
erences. However, the use of LLM-as-a-judge
has been primarily studied in English. In this
paper, we evaluate this framework in Russian
by introducing the Russian Error tyPes Annota-
tion dataset (REPA1), a dataset of 1k user queries
and 2k LLM-generated responses. Human an-
notators labeled each response pair expressing
their preferences across ten specific error types,
as well as selecting an overall preference. We
rank six generative LLMs across the error types
using three rating systems based on human pref-
erences. We also evaluate responses using eight
LLM judges in zero-shot and few-shot settings.
We describe the results of analyzing the judges
and position and length biases. Our findings
reveal a notable gap between LLM judge per-
formance in Russian and English. However,
rankings based on human and LLM preferences
show partial alignment, suggesting that while
current LLM judges struggle with fine-grained
evaluation in Russian, there is potential for im-
provement.

1 Introduction

Large language models (LLMs) have gained sig-
nificant attention due to their capabilities to assist
expert and non-expert users in a wide range of writ-
ing tasks. However, reliable evaluation of such
LLMs remains an open question, especially in the
context of non-English languages. Recent research
has explored methods to automatically evaluate the
LLMs using “judge” models that perform pairwise
model comparisons and highly correlate with hu-
man preferences (Zheng et al., 2023; Lambert et al.,
2024). While the LLM-as-a-judge approach miti-
gates the cost of collecting human-based preference

1Repa (ru) — turnip (en). Logo source: flaticon.com

data and performing the evaluation at scale, it over-
looks the need for a more fine-grained evaluation
with respect to quality criteria relevant to the end
user.

This paper extends the LLM-as-a-judge ap-
proach to a fine-grained pairwise comparison that
relies on common issues in language generation
well-studied in earlier research (Mao et al., 2023;
Hackl et al., 2023). We introduce the Russian Error
tyPes Annotation dataset (REPA), which consists
of 1k user queries spanning various cases, along
with responses from six open-source instruction-
finetuned Russian LLMs. REPA comprises fine-
grained pairwise human preferences across ten
error types, ranging from request following and
factuality to the overall impression. We conduct
pairwise comparisons on human-annotated data
using three rating systems and evaluate five open-
source and three proprietary LLMs as judges in
several scenarios, including position and length bi-
ases. Finally, we analyze how rankings from the
best-performing judge align with human annota-
tions across all error types.

Our key findings reveal partial alignment be-
tween rankings based on human and LLM pref-
erences, suggesting that while LLM judges do
not fully replicate human judgment, they can
still serve as valuable evaluators. We find that
LLaMA-2-based (Touvron et al., 2023) models out-
perform other models in text generation and iden-
tify a noticeable performance gap between LLM
judges in Russian and English.

Our main contributions are: (i) REPA, one of the
first human-labeled non-English benchmarks for
evaluating text generation based on fine-grained cri-
teria and overall preference; (ii) assessing the per-
formance of eight LLM judges and compare their
ranking scores to human judgments; (iii) releasing
REPA, annotation and experimental materials.2

2hf.co/datasets/RussianNLP/repa
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Category # Queries Avg. # tokens
in query

Avg # tokens
in response Example

Generation 213 14.49 ± 9.61 193.31 ± 137.35
Rasskazhi istoriyu o tom, kak vazhno byt’ dobrym i otzyvchivym.
Tell a story about the importance of being kind and compassionate.

Open QA 205 9.79 ± 6.36 197.30 ± 150.83
Opredelite i ob’yasnite znachenie muzykal’nogo termina allegro.
Define and explain the meaning of the musical term allegro.

Brainstorm 163 13.09 ± 9.45 209.12 ± 137.91
Sostav’ spisok preimushchestv ispol’zovaniya solnechnykh paneley.
Make a list of the advantages of using solar panels.

Classify 120 30.63 ± 18.98 158.46 ± 136.50
Opredelite: ironiya, sarkazm ili yumor – Ty vsegda takoy umnyy, kogda spish’!
Determine: irony, sarcasm, or humor – You’re so smart when you sleep!.

Rewrite 104 28.75 ± 29.80 161.45 ± 143.17
Perefraziruy s sinonimami: Vladelets magazina khochet bol’she pribyli i rosta!
Rephrase using synonyms: The store owner wants more profit and growth.

Extract 59 41.20 ± 30.20 162.31 ± 131.82
Razberite ukazannuyu datu na sootvetstvuyushchiye komponenty. <...>
Break down the given date into its corresponding components. <...>

Closed QA 49 91.16 ± 67.80 145.48 ± 152.08
O kakom vazhnom sobytii idet rech’ v tekste? <...>
What important event is being discussed in the text? <...>

Chat 46 41.36 ± 20.84 199.53 ± 203.39
Predstav’ chto ty otvechayesh’ pyatiletnemu rebenku. Rasskazhi pro muzyku Shopena.
Imagine you’re answering a five-year-old. Tell them about Chopin’s music.

Summarize 44 58.54 ± 32.79 177.72 ± 124.77
Naydite glavnuyu ideyu sleduyushchego teksta.
Find the main idea of the following text.

Overall Queries 1003 25.19 ± 30.12 184.66 ± 145.72

Data Sources ru_instruct_gpt4: 517 (51.5%), Veles–2.5 337 (33.6%), Tagengo: 121 (12.1%), Aya: 24 (2.4%), Chatbot Arena Conversations: 4 (0.4%)

Table 1: REPA dataset statistics and examples. Data sources distribution is provided for the entire dataset.

Figure 1: REPA design: (a) collecting user queries from
public datasets, (b) generating LLM responses, (c) hu-
man annotation of error types.

2 REPA

Figure 1 outlines our process for creating REPA:
collecting Russian user queries from public sources
(§2.1); generating responses using six LLMs (§2.2);
human annotation based on ten error types (§2.3).
REPA’s general statistics are in §2.4.

2.1 Query Collection

We extract Russian-language user queries from five
public datasets, which cover a diverse range of
queries created by both humans and LLMs:

• Chatbot Arena Conversations (Zheng et al.,
2023) — conversations with pairwise human
preference annotations;

• ru_instruct_gpt43 — GPT-4-generated in-
structions in Russian;

• Veles–2.54 — OpenHermes–2.55 instructions
translated using GPT-3.5 and GPT-4;

• Tagengo (Devine, 2024) — single-turn con-
versations between humans and GPT-4;

3hf.co/datasets/lsky/ru_instruct_gpt4
4hf.co/datasets/Vikhrmodels/Veles-2.5
5hf.co/datasets/teknium/OpenHermes-2.5

• Aya (Singh et al., 2024) — human-written
instructions.

Next, we categorize queries based on the taxon-
omy defined in the No Robots dataset (Rajani et al.,
2023). We translate the No Robots queries into Rus-
sian using the Google Translate API6 while preserv-
ing the original train-test split. We then fine-tune
the ruRoberta–large model (Zmitrovich et al.,
2024) on the translated training set for query clas-
sification. The fine-tuned model achieves an accu-
racy of 0.95 on the translated test set. It is used to
assign categories to the selected Russian-language
queries. We uniformly sample 1,003 queries from
all categories except Coding. See Table 1 for ex-
amples. The objective of this sampling is to ensure
the diversity of the REPA, capturing a broad range
of query types.

2.2 Response Generation

We generate a response to a query with one of
six open-source instruction-finetuned LLMs (see
Table 3). The LLMs are selected to represent
a range of model sizes (7B to 13B parameters)
and architectural approaches currently available
for the Russian language. This selection includes
both general-purpose LLMs (Llama-2-based) and
LLMs specifically fine-tuned for Russian (e.g.,
ruGPT-3.5-13B). We use the default chat tem-
plates and inference hyperparameters provided in
the standard configurations by HuggingFace (Wolf
et al., 2020). Finally, we randomly select responses
from two different LLMs for each queries to com-
pare the responses in a pairwise fashion further.

6cloud.google.com/translate
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Error Type Example

Request Following User query: Ob"yasni, pochemu lesa vazhny dlya zhizni na Zemle. LLM response: Original zapisi i kommentarii na LiveInternet.
User query: Explain why forests are important for life on Earth. LLM response: The original entry and comments on LiveInternet

Factuality Lazan’ya - eto tradicionnoe blyudo russkoj kuhni, kotoroe gotovitsya iz grechnevoj muki, nachinennoj myasnym farshem, ovoshchami i fruktami.
Lasagna is a traditional dish of Russian cuisine, which is made from buckwheat flour, stuffed with minced meat, vegetables and fruits.

Repetition Vy otkroete dveri i daete klyuch Dzheku. Dzheku daete klyuch. Dzheku daete klyuch. Dzheku daete klyuch.
You will open the doors and give the key to Jack. You give Jack the key. You give Jack the key. You give Jack the key.

Code-Switching Tokio - eto stolica YAponii i one of the most populous cities in the world.
Tokyo is the capital of Japan and one of the most populous cities in the world.

Relevance Iz Moskvy v Habarovsk mozhno dobrat’sya na samolete za 8 chasov. Chto obshchego u karandasha i akvariuma? Nichego.
You can get from Moscow to Khabarovsk by plane in 8 hours. What do a pencil and an aquarium have in common? Nothing.

Harmfulness Ty beznadezhnyj chelovek.
You’re a hopeless person.

Fluency My kupili novyj televizor, no on ne rabotaet, potomu chto on slomannyj.
We bought a new TV, but it doesn’t work because it’s breaking.

Contradiction Da, v glavnoj roli byl Morgan Frimen. Net, v glavnoj roli byl Tim Robbins.
Yes, Morgan Freeman was in the title role. No, Tim Robbins was in the title role.

Sudden Interruption Populyaciya N’yu-Jorka sostavlyaet 8,45 millio
The population of New York is 8.45 millio

Refusal Mne ochen’ zhal’, no ya nichem ne mogu vam pomoch’.
I’m sorry, but I can’t help you.

Table 2: Illustrative examples of error types in LLM responses.

Model License Source

LLMs used to generate responses

Llama2-7b
Llama Touvron et al. (2023)Llama2-7b-chat

Llama2-13b-chat

Mistral-7B Apache-2.0 Jiang et al. (2023)
Mistral-7B-Saiga CC-BY-4.0 N/A
ruGPT-3.5-13B MIT N/A

LLMs used as judges

Qwen2.5-3B-Instruct
Apache-2.0 Yang et al. (2024)Qwen2.5-7B-Instruct

Qwen2.5-14B-Instruct

T-Lite-it-1.0 Apache-2.0 N/A
T-Pro-it-1.0

GigaChat Lite
Private N/AGigaChat Pro

GigaChat Max

Table 3: The LLMs used for generating responses (top)
and for evaluation as judges (bottom).

2.3 Error Annotation

Error Types Each response pair is labeled ac-
cording to ten potential error types and an aggre-
gated overall criterion. The selection of these types
is loosely inspired by the prior work of Dou et al.
(2022); Hosking et al. (2024); Ye et al. (2024) and
reflects common undesirable behaviors in LLM
outputs. The error types are designed to assess
LMs from multiple angles. They address practical
issues such as Request Following, avoiding Rep-
etition, maintaining language Fluency, and pre-
venting Code-Switching to languages other than
Russian. They also cover broader concerns like
potential Harmfulness and ensuring Factuality.
Additionally, they focus on typical AI-generated
text issues such as logical Contradictions, irrele-
vant information (Relevance), unexpected Refusal

to provide an answer, and Sudden Interruptions.
Additionally, we include a more subjective Over-
all criterion, where annotators select the response
they prefer the most. This is most similar to the
standard coarse pairwise judgment. The illustrative
examples of each error type are shown in Table 2;
the full list of error types and their descriptions can
be found in Table 4.

Annotation Process Three in-house annotators
who are native speakers of Russian are responsi-
ble for labeling the data. Each annotator is pre-
sented with a query and two responses from differ-
ent LLMs and is tasked with determining which
response performs better for a specific error type,
as well as which response is better overall. To mit-
igate potential bias, annotators are not informed
about which LLM generated each response. Anno-
tators are warned about potentially upseting infor-
mation in LLM generated responses. The average
pay rate is $8/hour, which exceeds the minimum
hourly wage in Russia.

For each query and its two LLM responses, an-
notators must evaluate the responses for each error
type and select one of the four labels: (i) Response
A is better; (ii) Response B is better; (iii) Both are
good; (iv) Both are bad. Each dataset instance is
annotated independently by all annotators. The fi-
nal label is determined by majority vote, meaning
the label assigned by two or more annotators is
chosen. If all annotators provide different labels,
those instances are excluded from further experi-
ments. Annotation consistency, based on majority
voting, is achieved in 95% or more of cases across
the ten error types and the Overall evaluation cri-
teria. Table 4 shows majority vote ratios per error
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Error Type Description MV

Request Following Which response better follows the user’s request? 91.5
Factuality Which response is more truthful? 89.3
Repetition Which response contains fewer repetitions (e.g., same phrases or ideas)? 96.5
Code-Switching Which response contains less code-switching? 95.6
Relevance Which response has less redundant information? 90.4
Harmfulness Which response is less harmful or less likely to cause offense? 100
Fluency Which response is more natural and fluent? 96.2
Contradiction Which response contradicts itself less? 100
Sudden Interruption Is a response suddenly interrupted? 98.9
Refusal If the request is reasonable, which response does not refuse to answer? 100

Overall Which response is best? 89.0

Table 4: Error types and their descriptions. MV stands for the percentage of cases where a majority vote label is
assigned (e.g. at least two of the annotators agreed on the same label).

category. Appendix A presents annotation guide-
lines. The screenshot of the annotation interface is
in Appendix B.

2.4 General Statistics

We summarize the REPA’s general statistics by cat-
egory, source, query, and response length in Ta-
ble 1. Queries vary significantly in length across
categories from as few as approx. 9–15 tokens in
categories like Generation and Open QA, to over
90 tokens in Closed QA. Responses also vary, with
average lengths ranging from approx. 145 tokens
in Closed QA to over 209 tokens in Brainstorm.

3 Experimental Evaluation

Error Type Elo Bradley–Terry Glicko2 Borda Rule

Request Following Llama2-13b-chat Llama2-7b-chat Llama2-13b-chat Llama2-13b-chat
Factuality Llama2-13b-chat Llama2-7b-chat Llama2-13b-chat Llama2-13b-chat
Repetition Llama2-7b-chat Llama2-7b-chat Llama2-7b-chat Llama2-7b-chat
Code-Switching Mistral-7B ruGPT-3.5-13B Mistral-7B-Saiga Mistral-7B-Saiga
Relevance Mistral-7B Llama2-7b-chat Mistral-7B-Saiga Mistral-7B-Saiga
Harmfulness Mistral-7B-Saiga Mistral-7B Mistral-7B Mistral-7B-Saiga
Fluency Mistral-7B-Saiga ruGPT-3.5-13B ruGPT-3.5-13B ruGPT-3.5-13B
Contradiction Mistral-7B-Saiga Mistral-7B-Saiga Mistral-7B-Saiga Mistral-7B-Saiga
Sudden Interruption Llama2-13b-chat Llama2-7b-chat Llama2-13b-chat Llama2-13b-chat
Refusal Mistral-7B-Saiga ruGPT-3.5-13B ruGPT-3.5-13B ruGPT-3.5-13B

Overall Llama2-13b-chat Llama2-7b-chat Llama2-7b-chat Llama2-7b-chat

Table 5: Top-performing models per error type across
different ranking methods.

First, we rank text generation LLMs using three
scoring metrics based on human preference (§3.1).
Next, we evaluate the LLMs in side-by-side com-
parisons within the LLM-as-a-judge framework
and investigate the presence of length and posi-
tion biases (§3.2). Finally, we select the best-
performing judge LLM and use it to rank models
based on its preference (§3.3).

3.1 LLM Ranking from Human Preferences

Method Following ChatBotArena (Chiang et al.,
2024), we construct an LLM ranking using pair-
wise comparison approaches based on Elo (Elo,
1966), Bradley-Terry (Bradley and Terry, 1952),
and Glicko-2 (Glickman, 2012) ranking scores.
The initial Elo rating is set to 1000. The Bradley-
Terry algorithm is run for 50 iterations. The pa-
rameters µ and ϕ for the Glicko-2 algorithm are set
to 1500 and 350, respectively. Each ranking score
is computed and averaged over 1000 bootstrapped
samples to mitigate bias from the order of pairwise
comparisons following the implementation in Chat-
BotArena. We exclusively use human-labeled data
for this experiment, where the samples are anno-
tated using a majority vote rule. We use Borda
rule (Colombo et al., 2022; Rofin et al., 2023) to
aggregate the three rankings obtained.

Results Table 5 presents the model with the
highest rank for each error type based on three
ranking approaches. Llama2-13b-chat and
Llama2-7b-chat dominate most error types across
all rating systems, consistently outperforming other
models. Mistral-7B-Saiga and Mistral-7B
achieve top rankings specifically for Contradic-
tion and Harmfulness, while ruGPT-3.5-13B ex-
cels in Fluency and Code-switching. Overall,
Llama-2-based LLMs achieve the highest ratings,
with larger models generally showing stronger per-
formance across various error types. The differ-
ences across ranking methods (Elo, Bradley-Terry,
Glicko2) further highlight how different evaluation
criteria can favor different LLMs. The aggregated
ranking according to the Borda rule is dominated
by Mistral-7B-Saiga in four out of ten error cat-
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egories, while Llama2-7b-chat is selected as the
overall best model.

3.2 LLM-as-a-Judge

Method We explore the ability of LLMs to per-
form side-by-side comparisons focusing on ten er-
ror types and overall judgment. Our test bed con-
sists of 20 highly consistent queries per error type.
Consistent queries are those that received unani-
mous annotation across all error types, meaning all
three human annotators assigned identical labels.

For the experiment, we design three distinct
prompts incorporating detailed annotation guide-
lines (see Figure 4, Figure 5 in Appendix C). These
prompts instruct the LLM to perform annotations
in a way that is aligned with human annotations.
Given data instances consisting of a query, response
A, and response B, the LLM assigns one of four
labels: (i) Response A is better; (ii) Response B is
better; (iii) Both are good; (iv) Both are bad. The
LLM is prompted in a chain-of-thought fashion
(Wei et al., 2022): first, it is asked to reason and
compare the two responses and then to assign a la-
bel. We conduct experiments in both zero-shot and
few-shot settings; in the few-shot setting, one anno-
tated example is provided in the prompt, whereas
the zero-shot setting includes no demonstration ex-
ample. Each error type is labeled independently.
The primary evaluation metric is the Macro F1
score. Table 3 lists the LLMs used as judges. The
selection of LLM judges combines open-source
and proprietary LLMs that support Russian and do
not overlap with the selection of the text generation
LLMs.

Results In the zero-shot setting (Table 6),
T-Pro-it-1.0 and GigaChat Max demonstrate
the highest performance across most error types.
T-Pro-it-1.0 performs best in Request Follow-
ing and Relevance, while GigaChat Max leads in
Factuality and Repetition. The Qwen2.5 series gen-
erally performs less than other LLM judges across
most error types. The Contradiction error type
is the most challenging for all LLM judges. F1
Macro scores for Contradiction remain extremely
low across the board, with even the best-performing
model, GigaChat Max, achieving only 5.5%. The
low standard deviation values across metrics in-
dicate that performance is stable and consistent
across different prompts.

In the few-shot setting (Table 6), the perfor-
mance of all LLM judges improves across most

error types compared to the zero-shot setting.
The most significant gains are observed in Re-
quest Following, Factuality, and Relevance, where
T-Pro-it-1.0 and GigaChat Max continue to out-
perform other LLM judges. The Qwen2.5 series
exhibits noticeable improvements, especially in Re-
quest Following and Factuality, though it still lags
behind the top-performing models. The results
show low F1 Macro scores on such error types as
Harmfulness, Fluency, Contradiction, and Refusal
for all LLM judges. This may be due to the lack
of detail in the prompt. Given the description of
the types of errors provided, the models fail to per-
form well. Evaluating judge LLM performance in
Russian reveals significant disparities compared to
prior results in English. Low scores in Fluency and
Harmfulness across all evaluations— with the best
F1 Macro scores reaching only 13.6 and 10.2 re-
spectively, fall far behind similar evaluations in En-
glish, where LLM judges demonstrate near-perfect
performance (Ye et al., 2024).

Biases in LLM Judges Recent studies have dis-
covered several sources of bias that hinder LLM
judge performance, including position bias and
length bias (Zheng et al., 2023; Shi et al., 2024) as
well as self-preference bias (Wataoka et al., 2024).
Position Bias An LLM judge is considered posi-
tion consistent if it consistently prefers the same
response, even when the positions of the responses
are swapped. If the LLM changes its prefer-
ence based on the positions, it exhibits a posi-
tion bias. To evaluate this, we measure how
often each LLM changes its prediction when
the answers are swapped in the zero-shot set-
ting across all error types. Table 7 shows that
different LLMs exhibit varying levels of posi-
tion bias. T-Pro-it-1.0 and GigaChat Max
generally show lower position bias when com-
pared to other LLM judges. Smaller LLMs such
as Qwen2.5-3B-Instruct, T-Lite-it-1.0, and
GigaChat Lite exhibit higher sensitivity to input
order; the fraction of predictions that change often
approaches chance levels, averaging around 50%.

Position bias varies across error types. For in-
stance, Code-Switching and Fluency exhibit higher
sensitivity in most LLM judges (up to 61% and 56%
by T-Lite-it-1.0, respectively). At the same
time, Request Following and Contradiction are rel-
atively less affected (with the lowest scores of 27%
and 25% by T-Pro-it-1.0, respectively). This
suggests that certain error types are inherently more
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Qwen2.5-3B-
Instruct

Qwen2.5-7B-
Instruct

Qwen2.5-14B-
Instruct T-Lite-it-1.0 T-Pro-it-1.0 GigaChat

Lite
GigaChat

Pro
GigaChat

Max

Zero-shot Evaluation
Request Following 23.1 ± 3.2 24.6 ± 1.5 37.7 ± 4.2 27.6 ± 0.7 47.9 ± 3.1 27.0 ± 2.4 29.9 ± 7.6 44.6 ± 1.9
Factuality 29.8 ± 2.3 37.3 ± 1.0 36.6 ± 3.6 38.1 ± 1.2 51.6 ± 0.7 34.3 ± 8.5 41.9 ± 5.7 52.3 ± 5.6
Repetition 16.8 ± 2.8 14.4 ± 2.2 20.7 ± 1.1 14.1 ± 1.3 31.8 ± 5.0 17.4 ± 4.2 19.3 ± 3.5 41.0 ± 1.8
Code-Switching 9.4 ± 0.4 10.0 ± 1.3 12.3 ± 2.0 11.5 ± 3.3 19.6 ± 4.3 11.8 ± 0.7 12.8 ± 2.3 20.1 ± 1.8
Relevance 27.2 ± 2.1 25.9 ± 6.0 30.6 ± 4.5 28.1 ± 3.6 45.3 ± 2.2 28.0 ± 6.5 37.5 ± 4.5 43.9 ± 1.1
Harmfulness 3.1 ± 0.4 1.2 ± 0.6 5.4 ± 1.8 0.7 ± 0.2 7.2 ± 0.6 5.2 ± 1.5 6.2 ± 0.8 9.5 ± 2.6
Fluency 7.5 ± 0.8 4.2 ± 1.1 7.6 ± 1.4 3.8 ± 1.6 8.7 ± 1.5 7.7 ± 4.0 8.5 ± 3.6 11.2 ± 1.8
Contradiction 1.2 ± 1.1 1.5 ± 0.9 1.2 ± 0.4 0.8 ± 0.3 1.6 ± 0.6 3.4 ± 1.0 3.9 ± 1.8 5.5 ± 0.6
Sudden Interruption 23.0 ± 4.5 24.2 ± 3.5 28.5 ± 2.0 23.7 ± 3.7 40.7 ± 3.9 22.2 ± 6.7 28.1 ± 7.1 35.4 ± 3.5
Refusal 0.9 ± 0.4 1.5 ± 0.4 1.6 ± 0.7 0.2 ± 0.2 2.3 ± 0.5 5.9 ± 1.7 3.0 ± 0.9 4.9 ± 0.9

Overall 30.9 ± 3.2 37.5 ± 4.9 33.2 ± 3.4 39.6 ± 1.9 42.2 ± 0.9 33.7 ± 1.9 47.5 ± 1.7 43.8 ± 2.2

Few-shot Evaluation, # shots = 1
Request Following 19.0 ± 5.7 25.0 ± 0.6 36.5 ± 5.8 28.5 ± 5.0 45.2 ± 2.0 22.1 ± 3.3 29.1 ± 7.8 49.2 ± 6.7
Factuality 20.4 ± 4.1 31.1 ± 3.8 45.6 ± 2.6 40.1 ± 5.2 55.5 ± 1.3 29.8 ± 2.1 43.8 ± 7.8 56.3 ± 4.1
Repetition 13.5 ± 4.5 10.2 ± 2.9 20.6 ± 1.3 14.6 ± 0.8 25.7 ± 1.8 6.7 ± 0.8 20.3 ± 5.2 34.6 ± 6.4
Code-Switching 11.1 ± 3.6 9.0 ± 2.5 11.1 ± 1.8 9.7 ± 0.3 18.5 ± 3.0 11.2 ± 1.7 10.8 ± 3.5 19.7 ± 1.9
Relevance 19.1 ± 5.6 20.4 ± 1.5 29.1 ± 2.9 26.2 ± 2.0 46.8 ± 4.2 24.7 ± 1.0 35.6 ± 5.1 49.0 ± 4.9
Harmfulness 1.2 ± 0.3 3.0 ± 2.1 2.4 ± 0.9 0.6 ± 0.6 3.3 ± 1.5 7.6 ± 2.9 4.7 ± 1.1 10.2 ± 2.5
Fluency 5.7 ± 2.4 5.2 ± 2.8 10.2 ± 1.7 6.1 ± 0.8 8.7 ± 0.5 9.4 ± 2.4 8.8 ± 1.6 13.6 ± 1.1
Contradiction 1.6 ± 1.7 1.3 ± 0.5 1.8 ± 0.7 1.0 ± 0.3 2.0 ± 0.9 4.7 ± 0.8 8.5 ± 6.0 5.2 ± 1.3
Sudden Interruption 16.1 ± 3.2 19.0 ± 1.4 34.1 ± 4.7 21.2 ± 1.8 46.1 ± 4.1 22.1 ± 3.4 26.6 ± 1.9 42.5 ± 2.1
Refusal 1.1 ± 0.7 0.8 ± 1.2 1.0 ± 0.4 1.8 ± 0.7 1.9 ± 0.2 4.0 ± 1.1 3.9 ± 0.4 4.4 ± 1.1

Overall 16.3 ± 2.7 24.9 ± 11.2 35.3 ± 2.4 35.8 ± 3.0 47.1 ± 0.6 27.6 ± 3.0 43.9 ± 11.2 48.8 ± 1.4

Table 6: The average F1 Macro metric for zero-shot and few-shot experiments. The best score for each error type is
bolded.

challenging for models to evaluate consistently. Ad-
ditionally, the Overall scores are much lower, indi-
cating that LLM judges perform more consistently
when comparing responses from a generic perspec-
tive but become less consistent when evaluating
fine-grained differences.

Length Bias LLM judges often prefer longer re-
sponses, perceiving them as more detailed or com-
prehensive even if their quality is inferior. We
examine how frequently LLMs select the longer
response from the two provided options. Ta-
ble 7 shows that GigaChat Lite exhibits the
strongest length bias, consistently favoring longer
answers across almost all error types in both zero-
shot and few-shot configurations. In contrast, the
T-Lite-it-1.0 and GigaChat Max models dis-
play a relatively lower length bias, with scores con-
sistently below 40%.

The results also vary depending on the error type.
For Request Following, most models show a moder-
ate length bias, with values ranging from 34.71% to
53.23%. The Relevance error type shows the high-
est length bias overall, with the GigaChat Lite
model reaching up to 56.82%. According to the
Overall scores, the GigaChat Lite model demon-
strated the highest length bias, while the GigaChat
Max and T-Lite-it-1.0 models show the lowest
bias. Once again, we observe that in the Overall
evaluation, the scores tend to be lower than in the

fine-grained evaluations.

Self-Preference Bias Another critical bias ob-
served in LLM judges is self-preference bias,
where models tend to favor their own generated
responses over others. The quantitative analy-
sis of Llama2-13b-chat used as a judge demon-
strates this phenomenon with particular clarity: the
model selected its own responses in 41.6% of pair-
wise comparisons, exceeding chance-level expec-
tations. Notably, only 23.5% of these self-selected
responses aligned with human judgment bench-
marks, while the majority (76.5%) represented er-
roneous preferences for objectively inferior outputs.
These results emphasize the necessity of control-
ling for self-preference effects when employing
LLM judges, particularly when assessing models
architecturally similar to the judge itself.

3.3 LLM Ranking from LLM Preferences

Method Based on experimental results (§3.2),
we identify GigaChat Max as the best-performing
LLM judge. We use it to rank text generation mod-
els, following the setup in §3.1. Pairwise compar-
isons are conducted on all queries and response
pairs in REPA using three different prompts, intro-
duced above. The final rankings are derived from
Elo, Bradley-Terry, and Glicko-2 scores and aggre-
gated using Borda rule.
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Qwen2.5-3B-
Instruct

Qwen2.5-7B-
Instruct

Qwen2.5-14B-
Instruct T-lite-it-1.0 T-pro-it-1.0 GigaChat

Lite
GigaChat

Pro
GigaChat

Max

Position Bias
Request Following 39.6 38.9 43.3 49.3 27.2 51.9 46.3 29.4
Factuality 45.2 35.0 42.0 48.2 35.7 48.5 45.7 35.2
Repetition 41.9 47.6 42.6 53.9 25.7 46.5 44.6 29.6
Code-Switching 44.4 48.3 41.7 61.1 23.5 50.4 42.6 32.4
Relevance 42.6 48.3 36.9 52.8 27.8 49.3 41.5 29.1
Harmfulness 41.1 48.7 33.3 54.1 24.4 53.9 43.3 33.3
Fluency 46.9 44.6 38.2 55.7 31.3 53.2 42.0 26.5
Contradiction 46.3 43.0 42.0 47.2 25.4 51.7 39.1 33.0
Sudden Interruption 39.4 47.4 42.8 53.5 28.3 51.3 40.7 28.0
Refusal 44.4 40.7 42.8 47.0 28.2 53.3 39.6 33.3

Overall 36.9 26.5 28.9 32.8 19.4 50.0 38.7 22.0

Length Bias
Request Following 45.8 43.4 41.8 43.7 34.7 53.2 46.5 37.6
Factuality 48.1 36.9 41.9 44.9 29.2 53.8 44.1 29.6
Repetition 48.0 48.3 53.3 43.0 30.6 54.4 40.6 26.5
Code-Switching 43.2 45.4 47.2 46.7 28.9 56.2 42.7 32.4
Relevance 45.1 40.5 47.3 42.1 26.4 56.8 44.6 30.7
Harmfulness 52.6 41.5 42.0 42.2 29.2 56.3 46.3 35.6
Fluency 45.1 43.7 46.8 44.0 32.6 53.5 46.1 30.6
Contradiction 50.5 39.6 50.7 40.8 26.0 53.1 43.9 27.1
Sudden Interruption 39.3 40.7 46.8 40.6 32.4 50.8 47.6 34.4
Refusal 45.3 42.8 45.7 44.5 37.4 51.0 49.0 37.8

Overall 40.4 34.2 37.5 37.9 34.2 51.5 51.1 35.5

Table 7: Position and length biases in LLM judges for zero-shot setting. For position bias: percentage of cases
where prediction changed after swapping response positions. For length bias: percentage of cases in which the
longer response is preferred. The best value for each error type is bolded.

Results The rankings based on predictions of
GigaChat Max are presented in Table 8. The fi-
nal prediction was determined by majority vote
across three different prompts are consistent. The
results show that Llama2-13b-chat is selected as
the top LM in all error categories except Relevance,
in Relevance, the GigaChat Max model favors
Mistral-7B-Saiga. These results are partially
in line with the ranking based on human prefer-
ence in Table 5, where Llama2-13b-chat achieves
top positions in 3 out of 10 error categories ac-
cording to Elo and Glicko-2, and ranks Overall
in the top position according to Elo. Similarly,
Mistral-7B-Saiga is favored for Relevance by
Glicko-2. This indicates that, although GigaChat
Max does not achieve perfect scores as an LLM
judge, its performance is not entirely without merit.
The model ranking based on its preference exhibits
similarity to the ranking based on human prefer-
ence, making it a practical tool for evaluating text
generation models.

Both rankings from human and LLM prefer-
ences favor general Llama-2-based models over
language-specific LLMs, showing that there is still
room for improvement in the context of Russian
language generation evaluation.

Error Type Elo Bradley–Terry Glicko2 Borda Rule

Request Following Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat
Factuality Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat
Repetition Llama2-13b-chat Llama2-7b-chat Llama2-13b-chat Llama2-13b-chat
Code-Switching Llama2-13b-chat Llama2-13b-chat Mistral-7B-Saiga Llama2-13b-chat
Relevance Mistral-7B-Saiga Mistral-7B-Saiga Mistral-7B-Saiga Mistral-7B-Saiga
Harmfulness Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat
Fluency Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat
Contradiction Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat
Sudden Interruption Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat
Refusal Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat

Overall Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat Llama2-13b-chat

Table 8: Top-performing models per error type across
different ranking methods based on GigaChat Max pref-
erences.

4 Related Work

Fine-grained Evaluation of Machine-generated
Texts Recent work demonstrates a shift towards
nuanced methods for more reliable LLM perfor-
mance assessment, moving beyond aggregate pair-
wise judgments. Scarecrow (Dou et al., 2022) and
TGEA (Ge et al., 2022) provide error-annotated
datasets for the diagnostic evaluation of generated
text, covering a diverse range of linguistic and
knowledge-based error types. These datasets reveal
nuanced quality gaps in generative LM outputs, in-
cluding issues with commonsense reasoning and
coherence. MISMATCH (Murugesan et al., 2023)
models human judgments based on 13 fine-grained
mismatch error types, building on prior approaches
to error detection.
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Hosking et al. (2024) critically analyzes the use
of high-level human preference scores for evalu-
ating LLMs, showing that these scores can under-
represent crucial aspects such as factuality and may
be influenced by biases, including the assertive-
ness of the generated output. Their work highlights
that surface-level factors may contribute more to
human preference than is desirable. FLASK (Ye
et al., 2024) defines 12 skills relevant to LLM align-
ment and examines the ability of LLM judges to
evaluate these skills, finding that fine-grained eval-
uation correlates better with human judgment.

Beyond focusing on identifying broad categories
of errors or evaluation criteria, another line of re-
search focuses on designing instance-wise, individ-
ually tailored evaluation criteria. Prometheus (Kim
et al., 2023) and BiGGen Bench (Kim et al., 2024a)
start with a set of manually defined criteria for each
instance of the dataset, expanded further by GPT-4.
TICK (Cook et al., 2024) extends this approach
by generating all evaluation criteria through LLM
prompting. In this regard, REPA provides an an-
notated test bench for evaluating text generation
across diverse criteria, loosely inspired by Hosking
et al. (2024); Ye et al. (2024).
LLM-as-a-Judge Evaluation Using LLMs as
judges has emerged as a scalable and cost-effective
alternative to human evaluation for assessing AI
model outputs (Gu et al., 2025). This approach
leverages LLMs’ reasoning and judgment capabili-
ties to approximate human-like assessments, partic-
ularly in tasks such as text quality, relevance, and
alignment with user preferences. LLMs-as-judges
can be categorized into several types, including
generic LLM judges (Mao et al., 2023; Hackl et al.,
2023) (e.g., GPT-4), which are versatile but may
lack precision for domain-specific tasks; fine-tuned
LLM judges (Kim et al., 2024b; Lee et al., 2024;
Wang et al., 2023; Zhu et al., 2023) (e.g., PandaLM,
Prometheus, Judgelm etc.), which are specifically
adapted to evaluation tasks or human preference
data for improved accuracy on general or specific
tasks. The open-source LLM judges offer trans-
parency and customization but may lag behind
proprietary models in performance. Gureja et al.
(2024) make one of the first attempts to evaluate
reward LLMs in multilingual settings, including
Russian, but do not explore fine-grained evalua-
tion criteria. Their findings reveal a significant
performance gap between English and non-English
languages. Our work builds on these findings by
providing a more detailed analysis for Russian.

Evaluating Russian LMs’ Russian LMs have ad-
vanced rapidly, with benchmarks developed to as-
sess their performance in general language under-
standing (Shavrina et al., 2020), zero-shot and few-
shot classification (Taktasheva et al., 2022), and
natural language generation (Fenogenova et al.,
2024). This work builds on these efforts, focusing
on the LLM-as-a-judge approach and its efficiency
in evaluating Russian LMs.

5 Conclusion

This work introduces REPA, one of the first non-
English benchmarks for evaluating LLM judge per-
formance according to ten diverse fine-grained cri-
teria. REPA includes 1k user queries, categorized
into nine types, and responses from six LLMs.
Each data instance consists of a query and two
LLM responses manually annotated to determine
which response is better according to the ten er-
ror types and the overall impression. We define
error types that range from language issues and typ-
ical problems found in LLM responses to broader
concerns, such as factuality and harmfulness. We
explore the ability of eight LLM judges to perform
similar annotations and their potential limitations,
such as position, length and self-preference biases.
Finally, we derive rankings for text-generation
LLMs based on human and LLM judge judgments.
Our key empirical results show that the perfor-
mance of LLM judges is far from perfect, leading
to model rankings that are only partially aligned
with human preferences.

Our future work directions include: (1) conduct-
ing ablation studies on the effect of query source
(human-written or LLM-generated) and query cate-
gory on LLM judge performance; (2) testing LLM
judges trained in English with REPA and explor-
ing their potential pitfalls; (3) exploring different
prompting strategies for LLM judges to enhance
performance; and (4) investigating the explanations
for choices provided by LLM judges.

Licensing Information The user queries from
five datasets are under the original datasets’ license.
The generated responses are subject to the under-
lying instruction-finetuned LLMs’ licensing terms
(Table 3). The human labels according are available
under the MIT license.
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Limitations

Error Types Classification The classification
based on error types has several limitations, as we
derived these error types based on the current state
of several open models — we can not be certain that
these errors will persist as these models evolve, nor
can we generalize that they will remain relevant for
other open and private models. Nevertheless, this
classification remains intuitive and interpretable,
providing a clear and structured understanding of
models’ challenges during generation. It can serve
as a form of sanity check and assess frequent fun-
damental problematic cases.

LLMs-as-a-Judges LLMs-as-a-judges, whether
proprietary or open-source, present numerous limi-
tations that must be carefully considered. These in-
clude issues of transparency, security, version con-
trol, cost (particularly for proprietary LLMs, such
as those in the GigaChat family or OpenAI models),
and alignment with evaluation tasks. The internal
mechanisms, decision-making processes, and train-
ing data of proprietary models are not transparent,
making it difficult to understand how judgments are
derived. Both proprietary and open-source judges
can inadvertently amplify biases present in their
training data and positional and length biases. For
example, a judge might penalize outputs that devi-
ate from mainstream norms or favor responses that
align with dominant cultural or social values. The
adoption of LLMs-as-a-judges is a promising di-
rection for AI evaluation, but challenges (e.g. bias,
transparency, and domain-specific performance)
underscore the necessity for ongoing research and
development to enhance their reliability and appli-
cability.

Ethical Consideration

Human Annotation Human votes often rely on
subjective judgments, which can lead to cognitive
biases or emotional strain during the annotation
process. To address this, our error classification
framework guides human evaluators to focus on
specific generation issues. This creates a more
structured, reliable, and objective evaluation pro-
cess than approaches used in the LMSYS arena,

where users rate entire generated texts without clear
criteria. Additionally, we establish clear annotation
guidelines, ensure fair compensation for annotators,
and encourage overlap among them to improve con-
sistency. By maintaining a high level of agreement
among annotators, we enhance the trustworthiness
of the evaluation process and the human assess-
ments involved.

Data Bias The dataset created for error anno-
tation is based on query data from various open-
source collections that aim to mitigate Russian bi-
ases in data. However, this data is from the Internet,
mainly including the most frequent types of con-
versations and intents between models and humans.
Despite efforts to filter and categorize this informa-
tion, as well as the introduction of the special error
type “Harmfulness”, we recognize that the dataset
may not cover all practical and ethical cases and
domains. The research primarily focused on anno-
tating error types and common generation issues in
models.

Use of AI-assistants We use Grammarly7 to cor-
rect grammar, spelling, phrasing, and style errors
in our paper. Therefore, specific text segments can
be detected as machine-generated, machine-edited,
or human-generated & machine-edited.
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A Annotation Guidelines

Which chatbot performed better?

Annotation Guidelines

As part of this task, you will be shown:

• A user query in Russian addressed to a chatbot

• The responses of two different chatbots to the corresponding query.

Chatbots may make various types of errors. The types of errors are listed in the table below. You
will be asked to indicate which chatbot performed better for each type of error. There are four
possible annotation options (you must choose exactly one):

• “A is better” — chatbot A performed better

• “B is better” — chatbot B performed better

• “Both are good” — both chatbots performed well

• “Both are bad” — both chatbots performed poorly

The number of errors does not matter; if at least one error is made, the chatbot is considered to
have performed poorly on the task.
You also need to indicate which response, in your opinion, was better based on overall impression.
This is a subjective assessment, without any strict rules; rely on your own preferences.
If you notice an error that is not listed in the table, leave a comment and describe the error you
noticed.

Figure 2: Annotation guidelines for response evaluation. The English translation is made for illustration purposes.
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B Annotation Interface

Figure 3: Screenshot of side-by-side human annotation. The English translation is made for illustration purposes.
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C Prompts for LLM Judges
1 prompt_1 = """
2 You will receive a user query and responses from two different language models.
3 The task is to determine which model performed better according to the specified

error type.
4 A description of the error type will be provided.
5 You can only choose one of four evaluation options:
6 'A is better ', 'B is better ', 'Both are good ', 'Both are bad '.
7 Any other evaluation option is not allowed.
8 Remember that the presence of at least one error means the model performed poorly

.
9 Provide a justification for your decision before selecting the label.

10 The response format should be: <Justification > Label: <label >.
11

12 Error type: {error_type_description[error_type ]}
13 Query: {query}
14 First model 's response: {model_output_1}
15 Second model 's response: {model_output_2}
16 """

1 prompt_2 = """
2 You will analyze the responses of two language models to a given user query.
3 The main goal is to determine which response performed better , considering the

specified error type.
4 A description of the error category will be provided.
5 For evaluation , you must choose one of the following options:
6 'A is better ', 'B is better ', 'Both are good ', 'Both are bad '.
7 The label must be unambiguous: only one of the proposed options.
8 Keep in mind: if a model makes at least one error in the specified category , it

receives a 'bad' rating.
9 Provide a short and clear justification for your choice.

10 The response should be structured as follows: <Justification > Label: <label >.
11

12 Recommendations:
13

14 1. When labeling , follow the provided error description.
15 2. Any identified inconsistencies , shortcomings , or flaws should be reflected in

the justification.
16

17 Error type: {error_type_description[error_type ]}
18 Query: {query}
19 First model 's response: {model_output_1}
20 Second model 's response: {model_output_2}
21 """

1 prompt_3 = """
2 You will be provided with a user query and responses from two chatbots.
3 The task is to determine which response performs better within the specified

error type , the description of which will be provided.
4 Choose one of the four possible evaluation options:
5

6 1. 'A is better ': the first response is better.
7 2. 'B is better ': the second response is better.
8 3. 'Both are good ': both responses are error -free.
9 4. 'Both are bad ': both responses contain errors.

10

11 Remember: the choice must strictly be one of the specified options.
12 Any presence of an error in response automatically lowers its rating to "bad".
13 Explain why you made your choice in a concise and clear manner.
14 Your result should be presented as: <Justification > Label: <label >.
15

16 Error type: {error_type_description[error_type ]}
17 Query: {query}
18 First model 's response: {model_output_1}
19 Second model 's response: {model_output_2}
20 """

Figure 4: Prompts used for LLM labeling. The English translation is made for illustration purposes.
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1 error_type_description = {
2 "request_following": "Request Following: The model's response is not related to

the query. If the model does not even attempt to answer the user's query , it
is marked as performing poorly on this error type.",

3 "factuality": "Factuality: The response contains inaccuracies , false facts , or
incorrect conclusions.",

4 "repetition": "Repetition: The bot's response contains repeated words , sentences ,
or paragraphs.",

5 "code_switching": "Code -Switching: The chatbot 's response contains unexpected
switching between languages.",

6 "relevance": "Relevance: The response contains redundant information (fluff).",
7 "harmfulness": "Harmfulness: The bot's response may offend the user , contains

harmful content , profanity , calls for illegal actions , suicide , instructions
for creating harmful substances , etc.",

8 "fluency": "Fluency: The response contains critical grammatical errors that may
hinder text comprehension.",

9 "contradiction": "Contradiction: One part of the chatbot 's response contradicts
another.",

10 "sudden_interruption": "Sudden Interruption: The chatbot 's response was abruptly
cut off.",

11 "refusal": "Refusal: The chatbot 's response contains an explicit refusal or
inability to fulfill the user's request.",

12 "overall": "Overall: Indicate which response was better based on overall
impression. This is a subjective evaluation without strict rules; rely on
personal preferences."

13 }

Figure 5: Error type descriptions used for LLM prompts. The English translation is made for illustration purposes.
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