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Abstract

Filled pauses are among the most common
paralinguistic features of speech, yet they are
mainly omitted from transcripts. We propose a
transformer-based approach for detecting filled
pauses directly from the speech signal, fine-
tuned on Slovenian and evaluated across South
and West Slavic languages. Our results show
that speech transformers achieve excellent per-
formance in detecting filled pauses when eval-
uated in the in-language scenario. We further
evaluate cross-lingual capabilities of the model
on two closely related South Slavic languages
(Croatian and Serbian) and two less closely re-
lated West Slavic languages (Czech and Polish).
Our results reveal strong cross-lingual general-
ization capabilities of the model, with only mi-
nor performance drops. Moreover, error analy-
sis reveals that the model outperforms human
annotators in recall and F1 score, while trailing
slightly in precision. In addition to evaluating
the capabilities of speech transformers for filled
pause detection across Slavic languages, we re-
lease new multilingual test datasets and make
our fine-tuned model publicly available to sup-
port further research and applications in spoken
language processing.

1 Introduction

Most of the research in the discipline of compu-
tational linguistics was traditionally focused on
the textual modality of language, while the spoken
modality was only occasionally covered (Rohatgi
et al., 2023). The main reason for this focus on text
was the complexity of the speech signal compared
to the textual modality.

With the advent of neural language representa-
tions (Goldberg, 2017), and especially pre-trained
language models that allowed for embedding of
speech in a manner comparable to text (Schneider
et al., 2019), this trend started to change.

This paper is part of this change, investigating
the possibility of identifying directly in the spoken

Figure 1: Predicting filled pauses (FP) from speech in
Slovenian, Croatian, Serbian, Czech and Polish with a
speech transformer fine-tuned on Slovenian data.

modality one of the most common paralinguistic
features in speech – filled pauses (Lea et al., 2021;
Bayerl et al., 2022a; Romana et al., 2024). The
main motivation to focus on this feature is that it
is most often not present in the transcript of the
spoken signal (Romana et al., 2023), although it
is a very frequent phenomenon that serves impor-
tant communicative and cognitive functions, for
instance, turn-taking management (Gósy, 2023).

This paper presents an automated approach to
identify filled pauses directly from the speech sig-
nal by fine-tuning a transformer-based speech en-
coder (Barrault et al., 2023) to perform identifi-
cation of the phenomenon on 20ms audio frame
level.

Our model fine-tuning data are in Slovenian, a
South Slavic language. Besides investigating the
capacity to perform filled pause identification in-
side the Slovenian language on dedicated test data,
we investigate the capacity of this technology to
perform the same task on two other South Slavic
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languages, Croatian and Serbian, as well as on two
West Slavic languages, Czech and Polish (see Fig-
ure 1).

Our main findings are these: (1) speech trans-
formers are highly capable of identifying filled
pauses inside the language of the fine-tuning data
(F1 above 0.95), (2) this technology is very much
portable to related languages, with visible drops
in performance, but an output that is still very use-
ful (F1 between 0.87 and 0.94), (3) when compar-
ing human and machine performance on the task,
machines actually outperform humans in terms of
recall as well as F1, but they fall slightly behind
humans in terms of precision.

The contributions of this paper are the following.
We (1) investigate the capacity of speech trans-
formers to perform filled pause detection in Slavic
languages, (2) prepare new test data in two South
Slavic and two West Slavic languages, (3) investi-
gate the capacity of the model to perform the task
across more and less related Slavic languages, and
(4) release the final model for downstream applica-
tions on spoken corpora.

The remainder of this paper is structured as fol-
lows. In the next section, we summarise the related
work. In Section 3 we introduce fine-tuning data, as
well as the five test datasets. Section 4 describes our
fine-tuning and evaluation setup, while Section 5
presents quantitative results and its error analysis,
followed by a qualitative and acoustic analysis. We
wrap up with a conclusion, covering also data and
model availability, as well as the path forward.

2 Related Work

Early work on filled pause detection focuses on
acoustic features for classification such as the fun-
damental frequency (F0, pitch) and spectral sta-
bility (Goto et al., 1999), frame-level MFCCs
(Mel-frequency Cepstral Coefficients) (Stouten
and Martens, 2003), or vocal tract stability (for-
mants) (Audhkhasi et al., 2009) with performance
ranging between 0.3 and 0.7 in precision and re-
call. Medeiros et al. (2013) investigate the appli-
cation of prosodic features to detect filled pauses
in spontaneous speech, achieving an F1 score of
about 61%. Reichel et al. (2019) improve the pre-
vious approach, focusing on prosodic discontinuity
features, reaching an F1 score of 83%. More re-
cent studies have shifted toward transformer-based
models, demonstrating further advancements in de-
tection accuracy (Romana et al., 2023; Mohapatra

et al., 2022; Bayerl et al., 2022b).
Recent experiments predominantly focus on

atypical speech, mainly stuttering, with only one
study addressing typical speech. Specifically, Ro-
mana et al. (2023) investigate wav2vec2, HuBERT
and WavLM transformer models for frame-level
automatic disfluency detection and categorization
on the Switchboard corpus (Godfrey et al., 1992),
reaching a frame-level F1 score between 0.86 and
0.88, depending on the model.

Other recent experiments were performed on
datasets of atypical speech: the English SEP-28k
(Stuttering Events Podcasts) corpus (Lea et al.,
2021), the German disfluency stuttering corpus
KSoF (Kassel State of Fluency) (Bayerl et al.,
2022a) and finally, the FluencyBank Timestamped
corpus (Romana et al., 2024), which includes typ-
ically developing monolingual and bilingual chil-
dren, children and adults who stutter or who clutter,
as well as second language learners. Mohapatra
et al. (2022) propose a model based on wav2vec2
contextual embeddings followed by 2D convolu-
tion feedforward layers, which scores an F1 score
of 0.88 for filled pauses in the SEP-28k dataset.
Bayerl et al. (2022b) fine-tune their wav2vec2
model on SEP-28k corpus and a portion of the
FluencyBank corpus, before showing good trans-
ferability to the German KSoF corpus. Single-task
learning on filled pauses returned an F1 score – for
FluencyBank and KSoF respectively – of 0.83 and
0.71, while a multi-task learning model resulted in
F1 scores of 0.84 and 0.74. Important to stress is
that experiments on atypical speech are of limited
use for typical speech processing due to the more
complex nature of atypical speech, including more
disfluencies per word than typical speech (Lea et al.,
2021; Liu et al., 2023; Romana et al., 2024).

All of the mentioned approaches use the speech
modality for identifying filled pauses. In addition
to the speech modality, some approaches also use
automatic speech recognition (ASR) systems to
generate the transcripts and then exploit the text
modality (Chatziagapi et al., 2022; Romana et al.,
2023). However, the transcripts show to be use-
ful more for detecting repairs and repetitions rather
than filled pauses, for which transcripts show, as ex-
pected, to be much less informative than the speech
signal (Romana et al., 2023).

The work presented in this paper builds on the
set of experiments performed on typical English
speech (Romana et al., 2023), investigating the
applicability of the straightforward approach of
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fine-tuning a speech transformer model to a Slavic
language, namely Slovenian, with a shift from
the technical frame-level evaluation to the more
application-oriented event-level evaluation. In ad-
dition, it investigates the applicability of this model
to other Slavic languages, along the lines of an
experiment carried out on atypical speech (Bayerl
et al., 2022b), covering in this case four different
Slavic languages of different level of relatedness to
the Slovenian language.

3 Data

This section describes the data used in our experi-
ments. We first describe our Slovenian fine-tuning
and in-language test data, moving forward to de-
scribe the construction process of our four addi-
tional cross-lingual test datasets in Croatian, Ser-
bian, Czech, and Polish. A quantitative overview
of the fine-tuning and evaluation data is given in
Table 1.

3.1 In-language data

For fine-tuning the transformer model to the task of
filled pause identification, we exploited the ROG
dataset (Verdonik et al., 2024). The dataset con-
tains recordings of Slovenian speech and manual
annotations on multiple layers, including that of
disfluencies, which also covers filled pauses. To ex-
ploit the ROG training data to their maximum, the
recordings were split into 30 s chunks with 50%
overlap. As presented in Table 1, the fine-tuning
data contain 1314 filled pauses, while the evalua-
tion dataset contains 558 filled pauses.

3.2 Cross-lingual data

To test cross-lingual performance of our model, we
constructed test datasets in four languages present
in the ParlaSpeech collection1 of spoken parlia-
mentary corpora (Ljubešić et al., 2024). For each
of the available languages, namely Croatian, Ser-
bian, Czech, and Polish, we sampled 400 instances
(transcript sentences and the speech recordings)
with speech lengths between 6 and 20 s. While
sampling, two additional criteria were taken into
account. The first criterion was to ensure a 50-
50 gender balance. The second criterion required
pre-annotation of the data with the Slovenian fine-
tuned model, to sample half instances with auto-
matically identified filled pauses, and the other half

1https://huggingface.co/collections/classla/
parlaspeech-670923f23ab185f413d40795

of instances without automatically identified filled
pauses. With this final sampling criterion, we en-
sured a reasonable number of positive instances in
our test data regardless of the data coming from par-
liamentary proceedings, while sampling randomly
would require the test dataset to be very large to
include enough examples of filled pauses.

For the manual annotation campaign, we pre-
pared audio recordings and ELAN files with an
empty tier to be used by the annotators. The an-
notation guidelines were kept as short as possible.
Annotators were asked to mark the “schwa”-like
filled pauses wherever they noticed them. However,
the annotators were made aware that beginning and
endings of instances from the ParlaSpeech collec-
tion might include incomplete words due to the
instance separation based on ASR-based automatic
word alignment, and that incomplete words should
not be confused for filled pauses. With this man-
ual annotation process, between 288 and 394 filled
pauses were annotated inside the 400 test sentences.
Detailed statistics can be inspected in Table 1.

In cases of Croatian and Serbian test sets, we
introduced a second annotator who annotated 10%
of the data, which allowed us to estimate agree-
ment between annotators. The results of the inter-
annotator agreement are presented in Table 2 in
terms of observed F1 and Krippendorff α (Castro,
2017). While performing these calculations, we
followed the overall evaluation protocol of our ex-
periments, focusing on event-level evaluation, as
described in detail in Section 4.2. Important at this
point are two things: (1) the overall agreement is
rather high, with observed agreement around 0.9
and a very good Krippendorff score of around 0.8
(2) besides proving that we have high-quality an-
notations in our cross-lingual test datasets, we also
want to emphasize that the observed agreement can
be considered a ceiling of what can be measured in
quantitative analyses described in Section 5.1.

4 Experiments

In this section, we present the approach to fine-
tuning the transformer model, as well as the data
representation and evaluation setup that we follow
throughout our experiments.

4.1 Fine-tuning protocol

We fine-tune a Wav2Vec2Bert model (Barrault
et al., 2023) in its ‘Audio Frame Classification’
mode, which means the labels at input and output
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lang split words filled pauses
SL train+dev 38 881 1 314
SL test 9 440 558
HR test 10 525 289
SR test 10 762 288
CZ test 8 368 318
PL test 8 928 394

Table 1: The Slovenian (SL) fine-tuning and five evalua-
tion datasets in Slovenian, Croatian (HR), Serbian (SR),
Czech (CZ), and Polish (PL), presented through number
of words and number of filled pauses in each dataset.

lang F1 Krippendorff α
HR 0.932 0.791
SR 0.889 0.814

Table 2: Inter-annotator agreement in terms of F1 score
and Krippendorff α for test instances sampled in Croat-
ian (HR) and Serbian (SR), annotated by two annotators.

stages are binary vectors, with each element corre-
sponding to a 20ms frame and describing whether
a filled pause occurs in that frame. After preparing
all the training data labels into appropriate binary
vectors, we fine-tuned a Wav2Vec2Bert model with
some initial experiments on provisional training
data splits to determine the optimal hyperparame-
ters. We investigated learning rates of 3 × 10−5,
1 × 10−6, and 8 × 10−6, training duration of 10
and 20 epochs, and gradient accumulation steps of
1 and 4.

The optimal hyperparameters used in the final
fine-tuning were learning rate 3×10−5, training du-
ration 20 epochs, and gradient accumulation steps
set to 4.

4.2 Evaluation protocol

The output of our fine-tuned model is a series of
20ms frame-level predictions encoding whether
there is a filled pause present in each frame or
not. Given that it is not easy to state where ex-
actly a filled pause has started and ended, the hu-
man annotators often selecting additional silence
around a filled pause, for evaluation purposes, we
transformed our data representation from a binary
frame-based representation to a span-based repre-
sentation, each filled pause being represented by its
start and end time. This allows us to evaluate the
output of the model in terms of true positives, i.e.,
when the true and predicted filled pause overlap,
false positives, i.e., when there is a predicted filled

pause in an interval with no true filled pause, and
false negatives, i.e., when there is a true filled pause
annotated, but none predicted.

By having the output of a machine compared to
the human annotations in terms of true positives,
false positives and false negatives, we can report
precision, recall, and F1 for our quantitative evalu-
ation.

This event-level evaluation, measuring the per-
centage of filled pauses we managed to correctly
identify, and the percentage of those we missed,
is much more useful for informing downstream
applications than the 20ms frame-level overlap
between human and machine output, the evalua-
tion followed in most related work, including the
only experiment on applying transformers to typi-
cal speech data (Romana et al., 2023).

While quantitatively evaluating the model, we
also investigate a post-processing technique, espe-
cially aimed at the cross-lingual ParlaSpeech-based
test sets. These test sets consist of instances that
were segmented via imperfect ASR-based auto-
matic word alignment, each instance covering one
transcript sentence. Because of these segmentation
imperfections, the post-processing rule discards
predicted filled pauses at the beginning and ending
of an instance, as it is rather possible for incom-
plete words to be mistaken for filled pauses. The
post-processing technique also discards very short
predictions (less than 80ms long), as such brief
instances are unlikely to be reliably perceived by
humans.

5 Results

This section presents a quantitative analysis of the
results, followed by an error analysis to further clar-
ify the results of the quantitative analysis. These
are followed by a qualitative and an acoustic inter-
pretation of the output of our model.

5.1 Quantitative analysis

In Table 3 we report recall, precision, and F1 scores
of our model on each of the five test sets, both with
and without post-processing applied (column ‘post-
proc’).

The post-processing overall lowers recall while
improving precision, which is to be expected given
that it only discards specific filled pause predic-
tions. Also, as anticipated, post-processing im-
proves results on the ParlaSpeech-based cross-
lingual test sets because of the imperfect segmen-
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lang post-proc recall precision F1

SL
no 0.973 0.914 0.943
yes 0.959 0.922 0.940

HR
no 0.940 0.872 0.905
yes 0.940 0.887 0.913

SR
no 0.974 0.900 0.936
yes 0.966 0.915 0.940

CZ
no 0.905 0.814 0.857
yes 0.889 0.859 0.874

PL
no 0.910 0.924 0.917
yes 0.903 0.947 0.924

Table 3: Recall, precision, and F1 score of the positive
class on the test datasets, calculated on raw and post-
processed outputs.

tation of the original ParlaSpeech data. On the
Slovenian test data that were manually segmented,
post-processing does not have a global positive im-
pact.

The in-language results on Slovenian show to
be very strong, with recall, precision and F1 be-
ing above 0.9. If we compare these results to
the English-based Switchboard experiments achiev-
ing frame-level F1 of 0.86 to 0.88 (Romana et al.,
2023), our Slovenian results show to be roughly
comparable.

The cross-lingual evaluation of our models
shows a visible, but acceptable drop, with per-
formance of the post-processed output ranging
from 0.87 to 0.94 in F1.

The reported results sometimes go even above
the observed agreement between two human anno-
tators achieved on Croatian and Serbian data, as
discussed in Section 3.2. For this reason, an er-
ror analysis comparing human and machine output
is necessary, which we perform in the following
section.

5.2 Error analysis

The automatic evaluation results presented in the
previous section reach or even surpass the level of
inter-annotator agreement we have measured on the
Croatian and Serbian double-annotated data, there-
fore a natural question arises – given that we have
in some cases surpassed the limits in measuring
the quality of the automatic responses via human-
annotated data, we wonder who is actually better
at this task, human or machine? We hypothesize
that, based on the numbers we observed, where
automatic evaluation was sometimes higher than
inter-human agreement, machines might actually

perform better than humans.
To answer the above question, we perform a man-

ual analysis of 20 test instances per language where
human and machine disagree. This comparison
was performed by a trained phonetician, who has a
good understanding of three out of five languages,
using transcripts for easier decision-making on the
remaining two. The phonetician-annotator discrim-
inated between false positives, i.e., situations where
human or machine would claim there was a non-
existing filled pause, and false negatives, i.e., sit-
uations where human or machine would miss an
existing filled pause.

The results of the disagreement analyses show
that human error is the more frequent reason for a
disagreement between human and machine, prov-
ing our assumption that machines overall perform
better on the task. However, while humans mostly
miss existing filled pauses, resulting in more false
negatives in comparison to machines, machines
generate more false positives than humans do.
Given that humans generate twice as many false
negatives as machines do, while machines gener-
ate around 40% more false positives than humans,
machines generating a similar amount of false neg-
atives and positives, we can conclude that machines
generate stable, high-quality output.

It is important to stress that both human and
machine perform very well on the task. In all the
test data, humans and machines agreed in 95%
of their predictions, showing that both manual or
automatic annotations of filled pauses can be safely
used in downstream data analyses.

5.3 Qualitative analysis
The following qualitative analysis is performed by
a phonetician, documenting the sources of con-
fusion and discrepancies observed in the model’s
results in all evaluation languages.

Prolonged vowel sounds (e.g. the conjunction
/a/), prolonged nasals (e.g. /m, n/) and noise (e.g.
a cough or other speaker in the background) can
all have a negative impact on the model’s perfor-
mance. On occasion, a repetition or repair might be
wrongly flagged as filled pause. Generally speak-
ing, short filled pauses are reliably detected by the
model, even when they are subtle or barely percep-
tible to human listeners. The model demonstrates
particular strength in capturing voiced, but weakly
articulated sounds, often unnoticed by annotators.

The most frequent model errors in terms of false
positives for each language are as follows: In both
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Slovenian and Croatian, nasals caused the most
false positives. In Serbian and in Czech, the source
of false positives were vowel sounds, e.g., the con-
junction /a/, especially if prolonged. In Polish,
nasals and background noise have caused the most
false positives.

5.4 Acoustic analysis
To gain a deeper understanding of the problem at
hand, we analyse the acoustic features of filled
pauses in the five Slavic languages and examine
how their formant overlap relates to the model’s
cross-lingual performance. We perform this anal-
ysis on around one thousand gender-balanced pre-
dicted filled pauses per language.

Formants are the resonant frequencies of the vo-
cal tract that shape vowel sounds in speech. We
analyse the first and second formants (F1 and F2),
which are commonly used to represent differences
in vowel quality, including those found in vowel-
like filled pauses. These values are visualized in
a vowel diagram (see Figure 2). By comparing
formants of filled pauses, it is possible to con-
clude how similarly they are articulated between
languages.

Formant measurements for both vowels and
filled pauses were extracted at the phoneme level
using Praat (Boersma and Weenink, 2001). Median
values were selected in lieu of means to mitigate the
impact of erroneous formant readings occasionally
produced by Praat. To provide a reference frame-
work within the vowel space, we included the five
Croatian vowels /i, e, a, o, u/, the language with
the strongest support in the original dataset. This
contextualization enables a clearer interpretation of
the relative positioning of the filled pauses.

To visualize distributional tendencies, kernel
density estimation (KDE) was used, with a single
isoline drawn at 80% of the peak density, resulting
in smoother and more interpretable contour repre-
sentations.

Figure 2 shows a clear similarity between filled
pauses in Slovenian (SL_FP), Croatian (HR_FP),
Serbian (SR_FP) and Czech (CZ_FP). All four lan-
guages seem to share universal filled pauses, char-
acterised in the /@/ region of the vowel plot, having
a median F1 between 500-600 Hz and median F2
between 1300-1500 Hz.

The obvious outlier, Polish (PL_FP), stands out
substantially from the other languages, having
filled pauses localized more around the vowel /e/,
instead of /@/, suggesting that not all languages
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Figure 2: Filled pauses (FP) across languages presented
in the vowel diagram, with Croatian vowels /i, e, a, o, u/
as reference. Each filled pause and vowel distribution is
presented as a KDE plot at 80% peak density.

share a single filled pause form.
While filled pauses are frequently assumed to

approximate a mid-central /@/ in quality, Lickley
(2015) cautions that this may constitute an overgen-
eralization.

Notably, although Slovenian and Croatian show
the greatest acoustic overlap in filled pauses, the
fine-tuned model performs better on Serbian than
on Croatian test data. Even more striking, the
model achieves the highest precision on Polish,
despite its filled pauses being acoustically most dis-
tinct from Slovenian. It also outperforms Czech
on all metrics, though Czech and Slovenian filled
pauses are acoustically closer. These discrepan-
cies indicate that the model does not rely solely on
acoustic similarity and instead leverages contextual
or language-general features, demonstrating strong
generalization capability across typologically and
acoustically varied languages.

6 Conclusion

This paper has investigated the capacity of pre-
trained speech transformer models to identify filled
pauses – one of the most frequent paralinguistic
phenomena in speech. The fine-tuning language
was Slovenian, while evaluation languages were
Slovenian, Croatian, Serbian, Czech, and Polish,
which allowed the model to be evaluated across the
South and West Slavic languages.

The evaluation showed very strong results in
Slovenian and an acceptable drop of around 5 F1
points in prediction quality in the remaining lan-
guages. What is more, the quantitative evaluation
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revealed that the model’s performance surpassed
the observed inter-annotator agreement. Conse-
quently, an error analysis was conducted, showing
that the model’s outputs were actually of higher
quality than human annotations on all languages,
with an important limitation – machines showed
a slightly stronger tendency towards confusing
linguistic elements such as unclearly pronounced
words or lengthenings for filled pauses. At the
same time, humans were twice as likely to miss
filled pauses.

While the fine-tuning and test data for Slovenian
were already available (Verdonik et al., 2024), as
part of this work, we release four new datasets
based on the ParlaSpeech collection, covering
Croatian, Serbian, Czech, and Polish. These test
datasets are available upon request, to prevent the
integration of these data into future large language
models. These test sets could soon be useful for
evaluating speech-enabled large language models
in a prompting scenario.

We also release our fine-tuned filled pause iden-
tifier via the HuggingFace repository2. Aside from
that, we can report that the model has already been
applied to the ParlaSpeech spoken corpus collec-
tion, spanning 5 thousand hours, 4 languages, and
800 thousand identified filled pauses, together with
the linguistic annotation of the transcript, which
allows for downstream research on linguistic con-
texts inside which filled pauses occur. The resulting
datasets are available through a FAIR repository3.

Our future plans include extending the source
of speech data from parliamentary discussions to
sources covering more variation. We also envision
to expand the approach investigated here to other
paralinguistic features. By combining the extended
speech data sources with the possibility of auto-
matic speech annotation, we hope to empower a
new era of data-driven speech research.

Limitations

The main limitations of our work are the following:
(1) the Slovenian test data come from the same
source as the fine-tuning data, although the data
source is rather diverse, (2) the cross-lingual test
data come all from a single domain of parliamen-
tary debates, (3) while we do test cross-lingual
performance across a number of languages, we are

2https://huggingface.co/classla/
Wav2Vec2BertPrimaryStressAudioFrameClassifier

3http://hdl.handle.net/11356/1833

positive that performance would further drop if the
model was applied on phonologically more distant
languages, (4) our model is more prone to false
positives than humans, showing need for further
performance improvements.
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