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Abstract

In the following paper, we present our team’s
approach to subtask 1.1 of the BioLaySumm
2025 shared task, which entails the automated
generation of lay summaries from biomedical
articles. To this end, we experiment with a
variety of methods for text preprocessing, ex-
tractive summarization, model fine-tuning, and
abstractive summarization. Our final results are
generated on a fine-tuned Llama 3.1 Instruct
(8B) model, notably achieving top scores on
two out of four relevance metrics, as well as
the highest overall ranking among this year’s
participating teams on the plain lay summariza-
tion subtask.

1 Introduction

Biomedical articles often contain information of in-
terest to audiences beyond the community of medi-
cal researchers and practitioners; however, the large
volume of content, in combination with domain-
specific technical language, often leaves such text
unsuited for consumption by non-experts. The auto-
mated generation of lay summaries may, therefore,
serve as a tool for improving the accessibility of sci-
entific publications to a broader public by offering a
non-technical glance to potential readers (Goldsack
et al., 2024). Following previous iterations initiated
by Goldsack et al. (2023), the BioLaySumm 2025
shared task presents precisely this objective, call-
ing for teams to make use of the PLOS and eLife
datasets (Goldsack et al., 2022; Luo et al., 2022b)
to build automated summarization systems with a
focus on ease of understanding while maintaining
relevance and factuality (Xiao et al., 2025).

Winners of the BioLaySumm 2023 shared task
(Turbitt et al., 2023) saw success in generating
summaries based on the abstracts of articles and
leveraging domain knowledge of GPT-style models,
with summaries generated by their system offering
better relevance and factuality scores than the fine-
tuned BioGPT (Luo et al., 2022a) model they tested

against, though at the cost of readability. Winners
of the BioLaySumm 2024 (You et al., 2024) sub-
sequently investigated an alternative approach to
the fine-tuning of the model, using TextRank (Mi-
halcea and Tarau, 2004) to extract the most salient
content before passing it to a GPT model for sum-
marization, augmented by a BERT-based clustering
technique and a keyword-based method to extract
definitions from the Wikipedia dataset. Another
team, Modi and Karthikeyan (2024), achieved top
factuality scores by running preprocessing meth-
ods over article abstracts before passing content
through an LLM.

Building on the success of these previous teams,
we develop and publicly release an open-source,1

end-to-end pipeline to facilitate rapid experimen-
tation in summarization (Section 3.1). Our best
model results from experiments conducted through
this pipeline.

2 Data

The shared task organizers have made available
two datasets, PLOS and eLife (Goldsack et al.,
2022; Luo et al., 2022b), which include biomedical
research articles and their corresponding expert-
written lay summaries. Together, these datasets
comprise a total of 29,119 training instances and
1,617 validation instances, with approximately 85%
of instances sourced from PLOS, and the remaining
15% from eLife. Additional dataset statistics are
provided in Appendix B.

3 Methods

In this section, we provide an overview of the
methodology used for our final submission, which
is an abstractive summarization model based on
Meta’s Llama 3.1 Instruct (8B) (Grattafiori et al.,
2024). Although this model did not perform the

1https://github.com/whopriyamuw/
biolaysumm2025-task
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Figure 1: Our proposed pipeline for rapid experimentation comprises four toggleable modules: data transformation,
model fine-tuning, model inference, and post-processing. We conducted over 20 experiments using distinct
combinations of these modules. Dashed boxes denote optional or composable functionality.

best in all our experiments (Section 4), it offers the
most balanced performance across the three groups
of evaluation metrics: relevance, readability, and
factuality (see Section 3.4).

3.1 Pipeline

Our proposed pipeline, illustrated in Figure 1, is
designed to facilitate experimentation through mod-
ular and composable functionality, consisting of
four components: data transformation, parameter-
efficient fine-tuning, model inference, and post-
processing. These modules are implemented as
Python scripts, on top of the transformers (Wolf
et al., 2020) and torchtune (torchtune maintain-
ers and contributors, 2024) libraries, and can be
configured using command-line arguments.

Initially, articles undergo a data transforma-
tion phase comprising optional preprocessing (Sec-
tion 4.1), extractive summarization (Section 4.2),
and abstract segmentation (Section 4.3). We apply
an identical transformation procedure to each of the
three splits from the eLife and PLOS datasets. The
resulting transformed texts are then stored as a sep-
arate column within a newly derived dataset, along-
side the original “article” and “summary” columns.
This derived dataset serves as input for all subse-
quent stages of the pipeline.

The model inference module uses the Llama
Instruct model, optionally combined with a LoRA

adapter (Hu et al., 2021) that was fine-tuned on
the transformed text to generate abstractive sum-
maries. During inference, multiple decoding strate-
gies are available: greedy decoding, beam search,
and DoLa (Chuang et al., 2024).

Finally, the post-processing module can be used
to refine further the pipeline’s output, which can be
the abstractive summary or the text resulting from
the data transformation stage.

3.2 Fine-tuning

The Llama model was fine-tuned using LoRA (Hu
et al., 2021) for 2 epochs, training separate mod-
els for the PLOS and eLife datasets, with varying
batch sizes depending on the GPU and input length.
When fine-tuning on full articles on an A40 GPU,
a batch size of 2 was used for the PLOS dataset
and 1 for the eLife dataset. The model employed
bf16 precision, and activation checkpointing, acti-
vation offloading, and torch.compile were used
to reduce VRAM usage.

LoRA was applied to the query, value, output
projection layers within the attention layers, as well
as the MLP layers, with a rank of 8, α of 16, and
dropout set to 0.0. The model was optimized using
fused AdamW (Loshchilov and Hutter, 2019), with
a learning rate of 3e-4 and weight decay of 0.01.
A cosine learning rate scheduler with 100 warmup
steps was used.
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The random seed was set to 4 for reproducibility,
and prompts from Table 4 were used to instruct the
model.

3.3 Abstractive summarization
We add the LoRA adapters trained on full-text arti-
cles to the base Llama instruct model to generate
the abstractive summaries. The model instructions
follow the system, user, and assistant structure
defined by the Chat Markup Language. Further-
more, the system messages, summarized in Ta-
ble 4, include specific target grade-level drawing on
the instruction-based readability control outlined
by Ribeiro et al. (2023).

To decode the output tokens, we apply Decod-
ing by Contrasting Layers (DoLa) (Chuang et al.,
2024) on the lower layers, 0, 2, and 20, using a rep-
etition penalty of 1.2. Compared to beam search
and greedy decoding, we found DoLa to provide
the best balance between readability and factuality.

Model inference is performed on a single
NVIDIA A40 GPU with a batch size of 1, using the
EOS token for padding, which takes an average run-
time of 62 minutes on the test split. Furthermore,
we limit the maximum number of tokens generated
to 384. We selected this value based on the median
summary lengths of the training splits and empir-
ical evaluation comparing output lengths of 256
and 512 tokens (see Figure 4). Furthermore, each
submission file, plos.txt and elife.txt, is cre-
ated using adapter weights tuned to the respective
dataset. Except for the system message version, all
inference parameters remain constant across runs.

3.4 Evaluation
For experimental validation, we train models on
the train split of the data and evaluate them on the
validation split using a pipeline made available
by the shared task organizers.2 Summaries are as-
sessed across 11 automated metrics falling into one
of three criteria: relevance, readability, and fac-
tuality. To compare results, we adopt the ranking
approach used in the previous iteration of BioLay-
Summ (Goldsack et al., 2024). Specifically, we
apply min-max normalization to each metric and
average the scores within each criterion before cal-
culating an overall average across all criteria. Our
model selection is based on achieving the highest
average score from this methodology. The metrics
are categorized as follows:

2https://github.com/gowitheflow-1998/
BioLaySumm2025

Relevance ROUGE (Lin, 2004), BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), and BERTScore (Zhang et al., 2020).

Readability Flesch-Kincaid Grade Level (Kin-
caid et al., 1975), Dale-Chall Readability Score
(Dale and Chall, 1948), CLI (Coleman and Liau,
1975), and LENS (Maddela et al., 2023).

Factuality AlignScore (Zha et al., 2023) and
SummaC (Laban et al., 2022).

4 Results and Analysis

In this section, we present our experimental setup
and findings obtained through our end-to-end
pipeline. Table 1 summarizes the results of these
experiments.

4.1 Preprocessing

We replicate the preprocessing approach from
Modi and Karthikeyan (2024) to remove content
within parentheses, braces, and brackets. Addition-
ally, we apply a number-aware regular expression
to collapse additional spacing around punctuation
marks and other special characters. In Table 1, we
denote experiments that utilized preprocessed in-
puts with a “pre" suffix. Our findings indicate that
preprocessing leads to improved relevance scores
and a better FKGL score, especially when combined
with fine-tuning. However, these improvements are
nullified by lower LENS and SummaC scores. We
hypothesize that removing parentheticals from the
input prevents the model from including chunk
cues in the output, thereby reducing lexical overlap
and potentially lowering entailment scores.

4.2 Extractive summarization

Our extractive summarization method follows from
You et al. (2024), using TextRank (Mihalcea
and Tarau, 2004) and embedding-based similar-
ity matching. For the latter, we experiment with
five pre-trained language embedding models ex-
plicitly built for processing biomedical text data,
namely: BioBERT (Lee et al., 2019), MedEmbed
(Balachandran, 2024), PubMedBERT (Gu et al.,
2021), PubMedBERT-MS-MARCO (Deka et al., 2022),
and Medical-MiniLM-L6.3 Sentence embeddings
created using these models are used to measure
semantic similarity between them. We also test dif-
ferent embedding models using k-values of 20, 30,

3https://huggingface.co/Manal0809/
medical-term-similarity
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× 10 0.323 4.561 0.242 0.833 10.154 7.917 11.342 71.258 0.532 0.528
× 20 0.338 5.266 0.256 0.834 10.408 7.965 11.574 68.262 0.532 0.527
× 30 0.342 5.530 0.261 0.834 10.868 8.040 11.938 66.199 0.526 0.512
X 10 0.366 7.253 0.272 0.854 9.334 7.529 10.075 77.782 0.615 0.622
X 20 0.373 7.730 0.278 0.856 9.037 7.523 9.901 78.760 0.626 0.637
X 30 0.373 7.650 0.277 0.856 9.062 7.526 9.954 79.118 0.633 0.640
X 40 0.379 8.421 0.285 0.857 9.004 7.534 10.008 78.472 0.643 0.645

Ext pre

× 10 0.328 4.767 0.247 0.834 10.185 10.589 11.316 71.154 0.533 0.529
× 20 0.337 5.181 0.259 0.834 10.348 10.739 11.501 68.144 0.516 0.517
× 30 0.341 5.386 0.261 0.835 10.640 10.927 11.770 67.053 0.531 0.513

Abs
+Ext

X 10 0.379 8.279 0.292 0.855 8.924 10.304 9.966 78.128 0.634 0.610
X 20 0.380 8.332 0.294 0.856 8.999 10.261 10.033 77.653 0.635 0.614
X 30 0.380 8.373 0.293 0.855 8.829 10.226 9.950 76.940 0.648 0.614
X 40 0.382 8.651 0.297 0.855 8.956 10.232 9.934 76.674 0.646 0.608

Abs
+Ext(abs)

X 10 0.356 7.462 0.278 0.848 8.885 10.171 9.728 76.015 0.594 0.604
X 20 0.365 7.845 0.282 0.853 8.869 10.326 9.850 77.129 0.637 0.637
X 30 0.372 8.109 0.284 0.854 9.020 10.376 9.975 78.025 0.643 0.643
X 40 0.372 8.200 0.289 0.852 8.857 10.283 9.847 75.797 0.641 0.614

Abs X – 0.369 7.532 0.277 0.854 8.783 10.278 9.803 79.448 0.634 0.663
Abs pre X – 0.373 8.126 0.289 0.853 8.733 10.250 9.809 77.527 0.637 0.599

Full X – 0.385 8.694 0.289 0.859 9.308 7.674 10.143 78.670 0.643 0.663
× – 0.344 5.766 0.259 0.840 12.483 8.450 12.896 67.947 0.600 0.483

Full post X – 0.384 8.523 0.287 0.859 9.329 10.455 10.153 79.206 0.644 0.662

Table 1: Performance of our abstractive summarization experiments on the eLife validation split. We use PEFT
to denote models fine-tuned with LoRA and k to represent the extractive summary length. Data inputs are: (Ext)
extractive summary, (Ext pre) preprocessed extractive summary, (Abs+Ext) abstract concatenated with extractive
summary, (Abs+Ext(abs)) abstract concatenated with extractive summary that excluded the abstract during extraction,
(Abs) abstract only, (Abs pre) preprocessed abstract, (Full) entire article, and (Full post) entire article, with post-
processing applied to the generated summary.

and 40 for summary length. The results indicate
a consistent preference for the BioBERT embed-
ding model, regardless of the number of sentences
selected. As shown in Figure 3, the overall evalua-
tion score correlates positively with the summary
length.

4.3 Training data

We fine-tuned the base instruct model at different
levels of input granularity and transformations.

Extractive summary In these experiments, we
use the summaries extracted via BioBERT embed-
dings as the only input. Our results indicate that
performance generally improves with more con-
text, although this leads to longer training times.
We found that the model fine-tuned on extracted
summaries with k = 40 is comparable to our best
model while requiring less training time.

Abstract-only In this setting, the model is
trained solely on the abstract, which is the first
paragraph of the input article and serves as a con-
densed, high-level overview of the study. Even
without additional context, the model demonstrated
solid performance in terms of readability and fac-
tual accuracy. This combination offered the best
balance between summarization quality and com-
putational efficiency (see Appendix C).

Abstract and extractive summary We concate-
nate abstracts with extractive summaries to enrich
the input, aiming to provide the model with addi-
tional context to improve the factual accuracy and
clarity of the generated summaries. We explore two
configurations: in Abs+Ext, the abstract is concate-
nated with an extractive summary generated from
the full article, whereas in Abs+Ext(abs), we first
remove the abstract from the article before produc-
ing the extractive summary. Our evaluation indi-
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Decoding Runtime Relevance Readability Factuality

ROUGE BLEU METEOR BertS FKGL DCRS CLI LENS AlignS SummaC

DoLa 02:35:41 0.39 9.21 0.30 0.86 9.16 10.39 10.10 77.82 0.67 0.65
Greedy 02:17:50 0.39 9.13 0.30 0.86 9.23 10.38 10.16 78.19 0.66 0.64
Beam search 07:32:55 0.37 6.56 0.29 0.85 11.31 10.39 10.55 79.61 0.55 0.49

Table 2: Runtime and evaluation comparison of the three decoding strategies implemented in our pipeline.

cates that repeating key information (as evidenced
by comparing Ext, Abs+Ext, and Abs+Ext(abs))
yields improved relevance scores; however, we ob-
serve a decline in both readability and factuality.
We hypothesize that the concatenation disrupts the
logical ordering of information, which is crucial
for these criteria.

Full-text The model is trained on the entire arti-
cle without any data transformation. This setting
showed the best performance, possibly due to hav-
ing more context, and was our model of choice.
Our final submission was trained both on the train
split and the validation split. The models were
trained on eLife for 2 epochs and on PLOS for 1.4
epochs.

4.4 Decoding strategies

We investigate the effect of three decoding strate-
gies on our evaluation criteria: greedy decoding,
beam search, and DoLa (Chuang et al., 2024). As
demonstrated in Table 2, beam search performed
poorly, showing significantly lower factuality and
relevance scores while also requiring additional
hours for inference. Summaries generated using
DoLa and greedy decoding had comparable perfor-
mance and runtimes, with the former achieving the
best scores in eight out of eleven metrics. Notably,
contrastive decoding yielded the highest factuality
results.

4.5 Post-processing

In these experiments, we applied the same text
processing method detailed in Section 4.1. Addi-
tionally, we removed incomplete sentences arising
from the decoding limit on the maximum output
token length. Specifically, we identified summaries
that did not end with a period and discarded all to-
kens that appeared after the final complete sentence.
Surprisingly, this post-processing step resulted in
decreased performance across seven of eleven eval-
uation metrics, including three readability scores,
despite the intuitive assumption that truncated sen-
tences negatively affect summary quality.

5 Conclusion

In this study, we presented an end-to-end pipeline
for generating lay summaries of biomedical arti-
cles. Our approach achieved the highest overall
rank in subtask 1.1 of BioLaySumm 2025. Our
method balances readability and factuality by em-
ploying instruction-based readability control and
contrastive decoding (Chuang et al., 2024). In par-
ticular, we include the Flesch-Kincaid grade-level
target in the system message to improve readability,
and control over the LoRA weights enabled the
application of contrastive decoding for improved
factual accuracy.

We posit that investigating more advanced in-
struction strategies, such as self-reflection and
synthesized chain-of-thought (CoT), represents a
promising direction for future research. These
strategies could incorporate factual claims and lay
terminology to improve the model’s relevance and
factual accuracy. Furthermore, adding a reinforce-
ment learning component, such as Direct Prefer-
ence Optimization (Rafailov et al., 2023), to our
pipeline could help select outputs that better align
with the evaluation framework of this task.
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A Instruction Messages

Table 4 details the system messages used to instruct
the model in generating the summaries. We found
that including the target domain and grade level
contributed to better readability scores. The eLife
summaries were created with version 1, while the
PLOS summaries were produced with version 2.

B Dataset Statistics

The Public Library of Science (PLOS) is a non-
profit, open-access publisher launched in 2000
with the goal of providing free access to full-text
scientific articles. It currently publishes 14 aca-
demic journals in a range of fields such as biology,
medicine, and computational biology. eLife is
likewise a non-profit, peer-reviewed, open-access
publisher for articles in the biomedical and life sci-
ence domains established in 2012. Articles in the
two datasets cover various topics and specialties
within the biomedical domain. We report length
statistics for the PLOS and eLife datasets in Ta-
ble 3.

Dataset # Docs Doc Summary
# words # words # sents

PLOS 27,525 5,366.7 175.6 7.8
eLife 4,828 7,806.1 347.6 15.7

Table 3: Average word and sentence counts for each
dataset. Adapted from Goldsack et al. (2022).

C Computational Efficiency

Although using full article texts as model input
yielded the highest performance, this approach is
significantly more resource-intensive than relying
only on extractive summaries or abstracts. This
difference is clearly illustrated in Figure 2, which
compares average inference runtimes on the eLife
and PLOS datasets. Specifically, inference on full-
text inputs required over 30 times the runtime of

246

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.48550/arXiv.2305.18290
https://doi.org/10.48550/arXiv.2305.18290
https://doi.org/10.18653/v1/2023.emnlp-main.714
https://doi.org/10.18653/v1/2023.emnlp-main.714
https://doi.org/10.18653/v1/2023.bionlp-1.65
https://doi.org/10.18653/v1/2023.bionlp-1.65
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2024.bionlp-1.11
https://doi.org/10.18653/v1/2024.bionlp-1.11
https://doi.org/10.18653/v1/2024.bionlp-1.11
https://doi.org/10.18653/v1/2024.bionlp-1.11
https://doi.org/10.18653/v1/2023.acl-long.634
https://doi.org/10.18653/v1/2023.acl-long.634
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


# Message

1 You are a specialist medical communicator responsible for translating biomedical articles into a
clear, accurate 1020 sentence summary for non-experts. The summary should be at a FleschKincaid
grade level of 1014 and explain any technical terms.

2 You are a specialist medical communicator responsible for translating biomedical articles into
a clear, accurate 10 to 20 sentence summary for non-experts. The summary should have a
FleschKincaid grade level of 10 to 14, explaining any technical terms in simple language. Ensure
factual accuracy by using terminology from the source article, and omit all in-text citations.

Table 4: The two system messages used to generate the abstractive summaries. Generative language models were
used to refine the messages.

abstract-only inputs, while providing only a 14.86%
improvement in the overall average score.

Full-text Extractive Abstract
0

10

20

30

40

50

60

R
un

tim
e 

(m
in

ut
es

)

Figure 2: Inference runtime comparison of the summa-
rization model based on different input types: full-text
articles, extractive summaries, and abstracts.

D Training Challenges and Workarounds

There is a peculiarity that we would like to mention
about our training setup. While University of Wash-
ington’s high-performance computing cluster Hyak
offers powerful hardware, GPU jobs are prone to
preemption and can run at most for 8-9 hours be-
fore being requeued. However, a full epoch ex-
ceeded that limit, sometimes taking over 24 hours.
At the time of our experiment, torchtune did not
support mid-epoch checkpointing, so we had to
split the data into smaller sections to ensure each
partial epoch could finish within the time limit.
The actual split sizes were smaller to accommo-
date preemption and were dynamically adjusted
along with the batch size based on the number and
model of the GPU in use. The total number of
epochs was set to

⌈
1

split ratio

⌉
× (number of epochs)

to have torchtune save the training state between

partial epochs. Training processes were killed
and restarted after each partial epoch to force
torchtune to reload the training configuration
file with updated data splits. This part is specific
to Hyak, and the code will only be included in
the release/class branch and excluded from the
main branch and future releases.
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Figure 3: Relative performance of extractive methods on the eLife training data, categorized by embedding model
and the top-k sentences extracted using TextRank (Mihalcea and Tarau, 2004).
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Figure 4: Distribution of token counts across training and validation splits for the PLOS and eLife datasets.
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