SzegedAI at ArchEHR-QA 2025: Combining LLMs with traditional methods for grounded question answering

Soma Nagy, Bálint Nyerges, Zsombor Kispéter, Gábor Tóth, András Szlúka, Gábor Kőrösi, Zsolt Szántó, Richárd Farkas


Abstract
In this paper, we present the SzegedAI team’s submissions to the ArchEHR-QA 2025 shared task. Our approaches include multiple prompting techniques for large language models (LLMs), sentence similarity methods, and traditional feature engineering. We are aiming to explore both modern and traditional solutions to the task. To combine the strengths of these diverse methods, we employed different ensembling strategies.
Anthology ID:
2025.bionlp-share.17
Volume:
BioNLP 2025 Shared Tasks
Month:
August
Year:
2025
Address:
Vienna, Austria
Editors:
Sarvesh Soni, Dina Demner-Fushman
Venues:
BioNLP | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
136–149
Language:
URL:
https://preview.aclanthology.org/acl25-workshop-ingestion/2025.bionlp-share.17/
DOI:
Bibkey:
Cite (ACL):
Soma Nagy, Bálint Nyerges, Zsombor Kispéter, Gábor Tóth, András Szlúka, Gábor Kőrösi, Zsolt Szántó, and Richárd Farkas. 2025. SzegedAI at ArchEHR-QA 2025: Combining LLMs with traditional methods for grounded question answering. In BioNLP 2025 Shared Tasks, pages 136–149, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
SzegedAI at ArchEHR-QA 2025: Combining LLMs with traditional methods for grounded question answering (Nagy et al., BioNLP 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/acl25-workshop-ingestion/2025.bionlp-share.17.pdf