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Abstract
Many language models (LMs) in the literature
claim excellent zero-shot and/or few-shot ca-
pabilities for named entity recognition (NER)
and relation extraction (RE) tasks and assert
their ability to generalize beyond their training
datasets. However, these claims have yet to be
tested across different model architectures.

This paper presents a performance evaluation
of zero-shot relation triplet extraction (NER
followed by RE of the entities) for both small
and large LMs, utilizing 13,867 texts from
61 biomedical corpora and encompassing 151
unique entity types. This comprehensive eval-
uation offers valuable insights into the prac-
tical applicability and performance of LMs
within the intricate domain of biomedical rela-
tion triplet extraction, highlighting their effec-
tiveness in managing a diverse range of rela-
tions and entity types.

Gemini 1.5 Pro, the largest LM included in the
study, was the top-performing zero-shot model,
achieving an average partial match micro F1 of
0.492 for NER, followed closely by SciLitLLM
1.5 14B with a score of 0.475. Fine-tuned mod-
els generally outperformed others on the cor-
pora they were trained on, even in a few-shot
setting, but struggled to generalize across all
datasets with similar entity types. No models
achieved an F1 score above 0.5 for the RTE
task on any dataset, and their scores fluctuated
based on the specific class of entity and the
dataset involved. This observation highlights
that there is still large room for improvement
on the zero-shot utility of LMs in biomedical
RTE applications.

1 Introduction

In the field of biomedical natural language process-
ing (NLP), large efforts are being made to create
natural language models (LMs) capable of extract-
ing certain entity types and/or relationships, requir-
ing large sets of manually annotated texts. Re-
cently, large language models (LLMs) have proven

useful in extracting information from text in a zero-
/few-shot fashion, potentially enabling information
extraction (IE) where a smaller user-provided an-
notation may suffice to accomplish the task at hand
(Dagdelen et al., 2024). In this study, we focus on
biomedical relation triplet extraction (RTE). RTE
consists of identifying entities from a list of allowed
entity types (such as genes, diseases, etc.) and the
type of relationship that exists between them. Thus,
RTE can be broken down into a combined named
entity recognition (NER) and relation extraction
(RE) task. This extraction is valuable for identify-
ing evidence of specific biological connections in,
for example, knowledge base (KB) or knowledge
graph construction (KGC). Our goal is to investi-
gate the best architectures for reliable biomedical
zero-shot RTE to inform model choice for down-
stream specific biomedical KB question-answering
(QA) tasks.

Multiple papers have benchmarked LLMs for IE
tasks on biomedical texts (Dai et al., 2024; Jahan
et al., 2024; Chen et al., 2025), and there are multi-
ple established combined benchmark datasets (e.g.
BLURB (Gu et al., 2021)) and LLM instruction
datasets (e.g. SciRIFF (Wadden et al., 2024)), but
two main points remain unaddressed:

1. The generalisability of RTE performance out-
side of the corpora the models are trained on.
Performance reporting for the models usually
only includes the validation/test set perfor-
mance for the datasets they were trained on,
thus not truly evaluating their generalisabil-
ity. Performance reporting for some models
on certain datasets may also be sensitive to
bias through their inclusion in the LLM pre-
training (due to the opaqueness of data being
used in training of closed-sourced LMs), ne-
cessitating performance benchmarking on less
commonly used datasets.

2. A direct comparison of zero-shot capabil-
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ities of generative, decoder-only LLMs to
the newest BERT-like (and other) LMs for
biomedical NER/RE.

We compared the zero-shot RTE performance
across various model architectures using a large
combined corpus of gold-standard NER & RE an-
notation datasets outside of the most commonly
used benchmark datasets and across multiple archi-
tectures.

2 Datasets

To begin with, we assembled an extensive biomed-
ical gold-standard corpus. For this purpose, we
compiled a total of 61 different biomedical corpora
suited for public and commercial use, including
representative subsets from BigBIO (Fries et al.,
2022) featuring NER and/or RE annotations, as
well as the ComplexTome (Mehryary et al., 2024)
and RegulaTome (Nastou et al., 2024) datasets. Al-
together, the combined corpus comprises 13,867
texts, including 9,804 abstracts (70.7%), 1,596 sen-
tences (11.5%), and the remaining 2,467 regarded
as miscellaneous (such as case reports, full paper
paragraphs, etc.) or undefined. Additionally, 18
of the 61 corpora include annotations for 90 dis-
tinct relation types. In total, the entire selected
corpus comprises 151 distinct entity types, cate-
gorised into 11 groups: Organism, Gene/Protein,
Chemical, Disease, Medical, Gene-related,
Protein-related, Anatomy, Other biological,
Non-English, and Other. Definitions for these
groups can be found in appendix C).

Figure 1 characterises the text length, entity
count, relation count, and unique entity/relation
types within the test set for each corpus included
in our study. Details about the modifications made
to the corpora are provided in appendix B.

3 Models and methods

The 12 models included in this study are classi-
fied into five categories: BERT/BERT-like (Bidi-
rectional Encoder Representations from Transform-
ers), T5 (Text-to-Text Transfer Transformer), KGC-
SFT SLM (Knowledge Graph Construction Super-
vised Fine-Tuned Small Language Model), biology-
SFT SLM, and LLM. A comprehensive list of these
models, along with their architecture and maximum
context length, can be found in table 1.

The BERT models in this study include GLiNER,
NuNER, and ZeroShotBioNER. GLiNER (Gen-
eralist and Lightweight Model for Named Entity

Recognition) (Zaratiana et al., 2023) is a small, gen-
eralist NER model, introduced as an alternative to
traditional NER models. Unlike conventional mod-
els, GLiNER is not restricted to predefined entities,
even though it employs a BERT-like architecture.

Building on GLiNER, GLiNER Multi-task
(Stepanov and Shtopko, 2024) extends the capabili-
ties of the model to perform additional information
extraction tasks, such as RE and summarisation.

NuNER (Bogdanov et al., 2024) is another gen-
eralist alternative to GLiNER, distinguished by its
training method, which employs a contrastive learn-
ing approach on synthetic data generated by an
LLM (GPT-3.5).

ZeroShotBioNER (Košprdić et al., 2024) is a
BERT-based model, specifically a fine-tuned ver-
sion of BioBERT v1.1, trained on 26 biomedical
NER classes. It is designed for zero-shot infer-
ence across the biomedical domain, particularly
targeting chemicals, diseases, and proteins, and is
tailored for biological applications.

InstructUIE (Wang et al., 2023) utilizes a T5
architecture and is trained and evaluated on their
own curated information extraction benchmark set.
This set includes NER datasets from AnatEM,
BC5CDR, CHEMDNER, among others, encom-
passing a wide range of information extraction
tasks.

The two KGC-SFT SLMs, Triplex (SciPhi,
2024) and Phi3 Mini Graph (Emergent Methods,
2024), are fine-tuned versions of Phi3 models
specifically designed for generalist RTE.

SciLitLLM 1.5 (Li et al., 2024) is built upon
Qwen 2.5 and undergoes continuous pre-training
using an internal corpus comprising science text-
books and articles. It is subsequently fine-tuned
on SciRIFF (Wadden et al., 2024) as well as a syn-
thetic dataset designed for scientific literature un-
derstanding and instructions.

As the representative decoder-only, closed-
source LLM, we chose Gemini 1.5 Pro (Gem-
ini Team et al., 2024) due to its computational
efficiency. It presents itself as having excep-
tional ability in long-context needle-in-a-haystack
retrieval and demonstrates strong overall perfor-
mance across a diverse array of tasks.

Models were configured to perform NER and
RTE of all applicable types in a single model call,
wherever supported. For GLiNER multi-task mod-
els and InstructUIE, NER and RE were conducted
in two separate model calls. All models were em-
ployed at the document level. Details about the
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CHEBI Corpus† (n=100)
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Figure 1: Summary statistics of the text lengths, entity counts (& number of unique entity types), and relation counts
(& number of unique relation types) for the test set of each corpus used. The corpora categorised based on their
average character count (≤500, >500, >1500, >3000). Details regarding which entity types and relationship types
were included, excluded, or merged, can be found in appendix B. n denotes the number of texts in the corpus.
* Datasets were truncated to a maximum of 512 samples to minimise over-representation of certain datasets within
the overall corpus.
† For these 20 datasets, no splits were available via BigBIO, therefore, we used the test set from a 50/50 train/test
split.
‡ For the BioNLP 2011 EPI, BioNLP 2019 BB, BioRelEx, and DrugProt datasets, annotated test sets were not
available, so their development/validation sets were utilised instead.
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Architecture Model Context length limit Tasks
LLM Gemini 1.5 Pro (Feb 2025) 2,097,152 NER & RE
Biology-SFT SLM SciLitLLM 1.5 (Qwen 2.5 14B) 131,072 NER & RE

KGC-SFT SLM
Triplex (Phi3-3.8B) 131,072 NER & RE
Phi3 Mini Graph (Phi3-3.8B-128K) 131,072 NER & RE

T5 InstructUIE (Flan-T5 11B) 512 NER & RE

BERT/BERT-like

ZeroShotBioNER (BioBERT V1.1) 512 NER
NuNER Zero 4K (Longformer Large 4K) 4,096 NER
GLiNER Medium v2.5 (DeBERTa-V3) 384 NER
GLiNER Large v2.5 (DeBERTa-V3-Large) 512 NER
GLiNER Large Bio v0.1 (DeBERTa-V3-Large)* 512 NER
GLiNER Multi-task v1.0 (DeBERTa-V2-XLarge) 512 NER & RE
GLiNER Multi-task Large v0.5 (DeBERTa-V3-Large) 512 NER & RE

Table 1: For each model, the table includes its name, model group, token limits for both prompt/input and
completion/output, and the tasks each model can perform—specifically NER and RE. Note that the context length
limit reflects the maximum number of tokens the architecture can process simultaneously, rather than a verified
range for optimal performance.
* This model is not included in the main GLiNER publication by Zaratiana et al. (2023), but is available on
HuggingFace (repo_id: urchade/gliner_large_bio-v0.1).

prompt/input preparation for each model are pro-
vided in appendix D.

Formally, we define zero-shot RTE as the pro-
cess of performing NER followed by RE, given
only the allowed entity and relation types. For k-
shot RTE, we give k examples from the training set.
If no relations were annotated for a given corpus,
only the NER task was evaluated.

To mitigate the possibility of hallucinations from
the language models, the output was limited to the
queried types of entities and relations. Given that
all models, except the BERT variants, are causal
language models (as opposed to token classifiers),
they produce entity name strings rather than token
positions. Consequently, to ensure fairness, perfor-
mance for all models was evaluated using the case-
insensitive micro F1 score from MUC-5 (Chinchor
and Sundheim, 1993), unless stated otherwise1, par-
tial boundary, exact-type matching for each unique
entity and relationship in the gold-standard data.
In this context, a partial match refers to a word
match at either boundary. Therefore, the reported
performance more closely aligns with the practical
application for KGC, where duplicate entities and
relationships are consolidated.

4 Results

All models, except the KGC SFT-SLMs, are eval-
uated across all datasets, with the exception of

1Due to capitalised words in the beginning of sentences
being considered identical to non-capitalised words for the
purposes of entity uniqueness.

BC5CDR, BioRED, and ChemDNER; these partic-
ular datasets are analyzed separately because some
of the models have been fine-tuned specifically us-
ing these datasets.

Figure 2 displays the NER rank distribution for
each corpus, providing a head-to-head comparison
of the models. Additionally, the win rates for NER
and RTE are detailed in appendix table A1. Gemini
1.5 Pro and the notably smaller SciLitLLM 14B
emerge as the clear frontrunners, whereas Instruc-
tUIE and ZeroShotBioNER are the lowest perform-
ers overall. However, ZeroShotBioNER excels
over all other models in the ChemProt, DrugProt,
CHEBI, ChemDisGene, and SETH corpora, which
predominantly contain chemical, gene/protein, and
disease annotations. Similarly, InstructUIE outper-
forms all other models in the Citation GIA Test,
IEPA, and GENETAG corpora, which exclusively
feature gene and protein annotations.

Although ZeroShotBioNER and InstructUIE out-
perform other models in the specific datasets men-
tioned, this is not generally the case across the en-
tity types they were fine-tuned on. This is evident
in figure 3, which illustrates NER performance by
entity type group. Note the two models generally
demonstrate lower performance for gene/protein,
chemical, and disease entity groups. Moreover,
despite being trained on biological entity types, In-
structUIE and ZeroShotBioNER do not generalize
well to other biological or gene-/protein-related
entity types. One might hypothesize that identify-
ing gene-/protein-related entity types parallels the
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Figure 2: Model ranks of NER micro F1 for all corpora
(excluding BC5CDR, BioRED, and ChemDNER).

task of identifying entity relations, which models
enabled for RE might excel at.

The NER and RTE performance by corpus mean
character count (≤500, >500, >1500, >3000) is
shown in figure 4. For models with a short context,
the input might be truncated and thus the recall
is decreased inherently as a result of the model
architecture. However, even for the long-context
models, the F1 drops for the longest input texts. In
lengthy corpora, RTE performance drops to nearly
zero, and across shorter corpora, the general per-
formance for this task remains quite poor across all
models.

The performance of ZeroShotBioNER and In-
structUIE on BC5CDR, BioRED, and ChemDNER
(which were excluded from the previous analy-
ses) is compared with zero-/few-shot prompting
of Gemini 1.5 Pro and SciLitLLM 1.5 14B in ta-
ble 2. Few-shot examples were sourced from the
training set.

The KGC SFT-SLMs were evaluated separately
on a small subset of datasets, specifically BC5CDR
and BioRED, as detailed in table 3. For both
datasets, the NER performance of the KGC mod-
els is lower than that of all other models, particu-
larly for the more complex dataset, BioRED. Al-
though these models are intended for generalist
KGC, their performance falls significantly below
that of SciLitLLM 1.5 and Gemini 1.5 Pro (table 2).
This discrepancy may be attributed to the lack of
biomedical data in their fine-tuning process.

Appendix table A2 compares the partial and
strict matching performance of the top three mod-
els: Gemini 1.5 Pro, SciLitLLM 1.5 14B, and
GLiNER Multi-task v1.0; alongside the two SFT IE

models, InstructUIE and ZeroShotBioNER. Gem-
ini 1.5 Pro experiences the largest performance
drop when evaluation criteria shift to strict match-
ing. This is due to certain instances, like the
one in BC5CDR, where "methamphetamine in-
duces psychosis" is incorrectly labeled as "metham-
phetamine psychosis" instead of the correct "psy-
chosis." This labeling would be correct under par-
tial matching but incorrect under strict matching.
GLiNER Multi-task v1.0 demonstrates the smallest
performance loss for NER, achieving the highest
F1 score and precision under strict matching con-
ditions. Conversely, SciLitLLM 1.5 14B exhibits
the least performance decline when transitioning to
strict matching, and even shows an improvement
in precision.

5 Discussion

The models explicitly fine-tuned for biology,
namely InstructUIE, ZeroShotBioNER, SciL-
itLLM 1.5, and GLiNER Large Bio v0.1, were gen-
erally outperformed by the larger, more generalist
models. Exceptions occurred for datasets on which
these models were directly fine-tuned or those con-
taining very similar entity types. However, Instruc-
tUIE and ZeroShotBioNER did not consistently
outperform all other models across datasets fea-
turing entity types similar to those in their fine-
tuning datasets. The KGC-specific models demon-
strated significantly lower performance compared
to other models, possibly due to their lack of bio-
logical understanding needed to identify entity and
relation types. Overall, Gemini, the largest and
most resource-intensive model, achieved the high-
est scores in the benchmark. Notably, Gemini’s
performance was only marginally better than the
considerably smaller SciLitLLM 1.5, which has 14
billion parameters, in zero-shot biomedical NER,
although SciLitLLM had lower RTE performance.
We hypothesize that a model fine-tuned on biology
and further instruction-tuned specifically for RTE
could achieve even better results.

SciLitLLM 1.5 14B was specifically fine-tuned
on the literature understanding instruction dataset
SciRIFF (Wadden et al., 2024), which includes
NER tasks for several of our datasets, such as
BioRED and GNormPlus, as well as RE tasks for
ChemProt. This may introduce a bias in the perfor-
mance evaluation.

The best-performing BERT model was GLiNER
Multi-task v1.0, which also achieved the best av-
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Dataset Model k-shot NER RTE
F1 Precision Recall F1 Precision Recall

BC5CDR

ZeroShotBioNER* SFT 0.847 0.777 0.931 - - -
InstructUIE SFT 0.601 0.790 0.485 0.105 0.214 0.070

Gemini 1.5 Pro
0-shot 0.583 0.842 0.446 0.442 0.477 0.413
3-shot 0.666 0.826 0.558 0.438 0.458 0.419
10-shot 0.717 0.836 0.627 0.497 0.488 0.507

SciLitLLM 1.5 14B
0-shot 0.697 0.796 0.620 0.340 0.446 0.274
3-shot 0.723 0.811 0.653 0.381 0.471 0.320
10-shot 0.738 0.785 0.696 0.400 0.443 0.364

BioRED

ZeroShotBioNER* SFT 0.666 0.685 0.648 - - -
InstructUIE No SFT 0.265 0.666 0.165 0.002 0.045 0.001

Gemini 1.5 Pro
0-shot 0.516 0.725 0.400 0.138 0.232 0.098
3-shot 0.669 0.755 0.600 0.162 0.232 0.125
10-shot 0.684 0.779 0.610 0.183 0.266 0.139

SciLitLLM 1.5 14B
0-shot 0.607 0.651 0.569 0.021 0.094 0.012
3-shot 0.600 0.641 0.564 0.057 0.105 0.039
10-shot 0.622 0.678 0.574 0.085 0.159 0.058

ChemDNER*

ZeroShotBioNER* SFT 0.866 0.944 0.800 - - -
InstructUIE SFT 0.658 0.865 0.532 - - -

Gemini 1.5 Pro
0-shot 0.684 0.713 0.657 - - -
3-shot 0.652 0.803 0.549 - - -
10-shot 0.690 0.781 0.619 - - -

SciLitLLM 1.5 14B
0-shot 0.755 0.755 0.755 - - -
3-shot 0.794 0.878 0.725 - - -
10-shot 0.792 0.889 0.714 - - -

Table 2: Comparison of model performance of fine-tuned models, ZeroShotBioNER and InstructUIE, with the
zero-/few-shot performance of the LLM, Gemini 1.5 Pro, and the biology-SFT SLM, SciLitLLM 1.5 14B. Both
ZeroShotBioNER and InstructUIE were fine-tuned on BC5CDR and ChemDNER (denoted with SFT in the
table), and ZeroShotBioNER was additionally fine-tuned on BioRED, whilst InstructUIE was not (No SFT). Best
performance by dataset is highlighted in bold, and second-best in italics.
* NER-only model/dataset.

Dataset Matching criteria Model NER RTE
F1 Precision Recall F1 Precision Recall

BC5CDR

Partial (strict type)
Triplex 0.458 0.380 0.576 0.132 0.242 0.090
Phi3 Mini Graph* 0.545 0.698 0.448 - - -
GLiNER Multi-task v1.0 0.611 0.771 0.505 0.162 0.500 0.097

Relaxed
Triplex 0.486 0.407 0.605 0.121 0.223 0.083
Phi3 Mini Graph 0.482 0.412 0.581 0.096 0.058 0.290
GLiNER Multi-task v1.0 0.612 0.770 0.507 0.160 0.493 0.095

BioRED

Partial (strict type)
Triplex 0.015 0.529 0.007 0.002 0.200 0.001
Phi3 Mini Graph* 0.096 0.295 0.058 - - -
GLiNER Multi-task v1.0 0.575 0.662 0.508 0.004 0.143 0.002

Relaxed
Triplex 0.014 0.529 0.007 0.002 1.000 0.001
Phi3 Mini Graph 0.509 0.478 0.544 0.167 0.141 0.205
GLiNER Multi-task v1.0 0.599 0.691 0.529 0.007 0.219 0.003

Table 3: KGC-SFT SLM performances vs. GLiNER Multi-task performance for NER and RTE with partial,
strict-type matching criteria (used through the paper) and relaxed matching (case-insensitive, no schema restriction
of output, entity and relation type-agnostic, relation directionality-agnostic). For comparison, Gemini 1.5 Pro 0-shot
F1 for RTE in BioRED with relaxed matching criteria is 0.287. Best performance by dataset is highlighted in bold.
* The Phi3 Mini Graph model is unable to follow the instruction to output only specified relation types, and thus
restricting the output to the specified schema yields no predictions.
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erage performance for strict matching. It is sig-
nificantly smaller than either SciLitLLM 1.5 14B
or Gemini 1.5 Pro, potentially making it the ideal
choice when cost and scalability are concerns.

Notably, while SciLitLLM 1.5 Pro was the over-
all best-performing model among the ones com-
pared, RTE performance was relatively low across
the board. No zero-shot model achieved a micro F1
score above 0.5 for any dataset, raising concerns
about their effectiveness for RTE tasks. In agree-
ment with Chen et al. (2025), we therefore do not
recommend using zero-shot models for biomedical
RTE. Although few-shot performance can be com-
parable to SFT performance for certain models and
datasets, fine-tuned models generally outperform
non-fine-tuned ones when manually annotated data
is available for SFT. In cases where such data is
unavailable, few-shot models may be utilized if
downstream tasks can accommodate a compromise
in performance, possibly due to additional checks
at later stages.

While the RTE task yields a simple KG without
additional metadata, leveraging information extrac-
tion models such as InstructUIE, NuExtract 1.5,
and LLMs like Gemini 1.5 Pro could enhance the
metadata associated with the triplets. In a biomed-
ical context, this could involve incorporating sur-
rounding biological context such as tissue, organ-
ism, intervention, and co-factors. Such contextual
enrichment can be done with traditional NLP meth-
ods, and could be improved with powerful general-
ist LLMs (Sosa et al., 2023).

Although some benchmarking datasets are ex-
tensive and well-annotated across a wide range of
relationships and entities, they present challenges
when used to generate KBs or KGs. For instance,
RegulaTome includes relationships that are specu-
lative or hypothesized and does not account for the
negation of relations. Consequently, using these an-
notations as the truth set means there is no distinc-
tion between verified conclusions and mere specu-
lations—only their mention in the text is captured,
while negative results are omitted.

We observe that methods such as GraphRAG
(Edge et al., 2024), attempt to leverage the emer-
gent information extraction capabilities of LLMs
to enhance knowledge base question answering
(KBQA) tasks. However, based on the outcomes
of this benchmark, we hypothesize that for results
from a GraphRAG-like approach to be valuable in
biomedical applications, tailored models are nec-
essary to accurately tag relevant entities and rela-

tionships. This is due to the fact that the inherent
biological understanding of zero-shot LLMs is typ-
ically insufficient for most practical downstream
applications.

6 Conclusion

In conclusion, this study benchmarks zero-shot
biomedical RTE across a range of LM architectures.
Larger models such as Gemini 1.5 Pro and SciL-
itLLM 1.5 14B excel in NER but face challenges
with subsequent RE, with no F1 score surpassing
0.5 in RTE tasks. Notably, GLiNER Multi-task
v1.0 stands out as the best-performing BERT-based
model, delivering strong performance relative to
its smaller size and excelling in strict matching cri-
teria, thus making it a cost-effective option when
scalability is a concern.

While fine-tuned models like ZeroShotBioNER
perform well on specific datasets, they are gener-
ally surpassed by larger, more generalized models
even when dealing with slightly out-of-distribution
data, underscoring the limitations of current zero-
shot models for practical applications in biomedical
NLP. Furthermore, although few-shot learning pro-
vides some benefits, fine-tuning remains essential
for maximizing model performance when annota-
tion is feasible.

Limitations

Conducting a fair evaluation of all available LMs
is a challenging task for several reasons. Firstly,
accessing and comprehensively testing each model
may not be financially viable, necessitating the se-
lection of representative models from various LM
categories. Additionally, information regarding the
training data is not always publicly available, as
seen with Gemini, or models may be trained on
known public benchmarks like BLURB, which in-
cludes datasets that overlap with our benchmark
(EBM PICO, ChemProt, and BC5CDR) or contain
shared entity types (JNLPBA) (Gu et al., 2021),
thus complicating the fair comparison between
models.

Moreover, performance is sensitive to the match-
ing criteria employed, and the options for this
benchmark are restricted due to the nature of
the model outputs from causal language models,
as they are not token classifiers. More sophisti-
cated matching criteria, such as ontology matching,
would be preferable but fall outside the scope of
this research.
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The models are constrained by their context
length, and some might have benefited from re-
engineering the task by breaking the texts into sen-
tences—even models with a relatively long context
length. Additionally, running the models in mul-
tiple rounds, such as one round per entity type,
could offer advantages, like increased task speci-
ficity. However, this approach also presents draw-
backs, including overlap issues and higher costs.

Finally, it is important to recognize that different
models may require distinct prompts to achieve op-
timal performance. Studies have demonstrated that
benchmark results are sensitive to prompt engineer-
ing (Jahan et al., 2023). Exploring techniques such
as chain-of-thought prompting, meta-prompting
(Suzgun and Tauman Kalai, 2024), reasoning mod-
els (DeepSeek-AI et al., 2025), or other related
strategies could potentially enhance performance.
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A Supplementary figures/tables

Model NER win-rate RTE win-rate
Gemini 1.5 Pro 72.8% 89.1%
SciLitLLM 1.5 14B 72.8% 64.1%
GLiNER Multi-task v1.0 62.8% 35.9%
GLiNER Large Bio v0.1 55.0% -
GLiNER Medium v2.5 54.8% -
GLiNER Large v2.5 46.2% -
GLiNER Multi-task Large v0.5 40.6% 43.8%
NuNER Zero 4K 34.7% -
InstructUIE 31.2% 17.2%
ZeroShotBioNER 29.1% -

Table A1: Model micro F1 win rates in all head-to-
head comparisons per dataset (for both NER and RTE,
excluding BC5CDR, BioRED, and ChemDNER). Best
performance is highlighted in bold,and second-best in
italics.

B Dataset modifications

To align the datasets to the same tasks, the
relationship type names were renamed to an
active form (e.g. COMPLEX_FORMATION →
FORMS_COMPLEX_WITH). Selected entities and re-
lationships were removed, if they were not deemed
relevant for the task (such as part-of relations).
All relation types were capitalised, and all entity
types were in PascalCase.

BigBIO dataset import modifications: BioRelEx
(to include type of binding: binds, not-binds,
inconclusively-binds), ComplexTome (imple-
mented), ProGene (changed splitting to original
split), RegulaTome (implemented).

C Entity group definitions

Organism (n=10) cell, cellline, celltype, living-
being, microorganism, monocell, organism,
organismtaxon, plant, species

Gene/Protein (n=18) dna, dnafamilyorgroup,
gene, geneorgeneproduct, geneormolecularse-
quence, geneorprotein, geneorproteinfam-
ily, geneorproteinorrna, geneproductormark-
ergene, geneprotein, peptide, protein, pro-
teinenum, proteinfamiliyorgroup, proteinfam-
ily, proteinfamilyorgroup, proteinisoform,
proteinmolecule

Chemical (n=17) aminoacid, aminoacid-
monomer, atom, carbohydrate, chemical,
chemicalabbreviation, chemicalentity, chemi-
calfamily, chemicalordrug, chemicalstructure,
compound, drug, metabolite, nucleotide,
partchemical, reagent, simplechemical

Disease (n=20) adverseeffect, compositedisease-
mention, condition, disease, diseaseclass,
diseaseordisorder, diseaseorphenotypicfea-
ture, disorder, disorderfinding, outcome,
outcomeadverseeffects, outcomemental, out-
comemortality, outcomeother, outcomepain,
outcomephysical, participantcondition, phe-
nomena, phenotype, specificdisease

Medical (n=11) assay, device, diseasemodifier,
intervention, interventioneducational, inter-
ventionother, interventionpharmacological, in-
terventionphysical, interventionpsychological,
interventionsurgical, procedure

Gene-related (n=16) dnadomainorregion,
dnamolecule, dnamutation, dnasubstructure,
geneticvariant, mutation, polynucleotide,
regulonoperon, rna, rnadomainorregion,
rnafamilyorgroup, rnamolecule, sequence-
variant, snp, snporsequencevariation,
twocomponentsystem

Protein-related (n=13) complex, fusionpro-
tein, proteincomplex, proteindomain, protein-
domainorregion, proteinmotif, proteinmuta-
tion, proteinregion, proteinrelatedentity, pro-
teinrnacomplex, proteinsubstructure, protein-
subunit, proteinvariant

Anatomy (n=13) anatomicalsystem, anatomy,
bodypart, bodystructure, developinganatomi-
calstructure, immaterialanatomicalentity, mul-
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Model Matching criteria NER RTE
F1 Precision Recall F1 Precision Recall

Gemini 1.5 Pro
Partial (strict type) 0.492 0.611 0.457 0.204 0.236 0.200
Strict 0.386 0.472 0.365 0.030 0.214 0.016

-22% -23% -20% -85% -9% -92%

SciLitLLM 1.5 14B
Partial (strict type) 0.475 0.541 0.487 0.105 0.232 0.074
Strict 0.427 0.486 0.440 0.043 0.284 0.024

-10% -10% -10% -59% +22% -68%

GLiNER Multi-task v1.0
Partial (strict type) 0.429 0.581 0.383 0.082 0.437 0.057
Strict 0.400 0.535 0.359 0.011 0.189 0.006

-7% -8% -6% -87% -57% -89%

InstructUIE
Partial (strict type) 0.310 0.529 0.264 0.046 0.195 0.030
Strict 0.257 0.437 0.222 0.013 0.193 0.007

-17% -17% -16% -72% -1% -77%

ZeroShotBioNER
Partial (strict type) 0.301 0.366 0.352 - - -
Strict 0.254 0.301 0.304 - - -

-16% -18% -14% - - -

Table A2: Comparison of model performance when transitioning from partial strict-type matching criteria, as used
throughout the paper, to strict matching. Strict matching involves case sensitivity, schema restriction of output, and
an exact match for entities and relations. The smallest decrease in model performance when switching from partial
to strict matching is highlighted in bold for each performance metric.

titissuestructure, organ, organismsubdivision,
organismsubstance, pathologicalformation,
physiology, tissue

Other biological (n=8) biologicalactivity, can-
cer, cellcomponent, cellularcomponent, lipid,
multicell, organelle, virus

Non-English (n=6)* diagnostico, enfermedad,
procedimiento, proteina, quimico, sintoma

Other (n=19) age, characteristic, cohortorpatient,
ethnicity, experimentalconstruct, experiment-
tag, gender, geographicarea, habitat, inor-
ganic, interventioncontrol, object, participant,
participantage, participantsamplesize, partici-
pantsex, process, size, spectraldata

* The entity names for the French QUAERO and
the Swedish Medical NER dataset were in English
and thus included in the other groups.

D Model prompting

Inference for GLiNER, GLiNER multi-task, and
NuNER were performed using the gliner python
library, and ZeroShotBioNER using the published
implementation. No prompts had to be provided
for these TokenClassifier models - only en-
tity/relation types were provided. Whenever pos-
sible, the default prompt format specified in the
model implementation was used. Such prompts are

marked with "(default)" - otherwise the prompts
were designed.

For zero-shot inference (no examples),
only the <text>, <entity_types>, and
<relation_types> fields are provided. If
no RE annotation exists for a given corpus, this
part of the prompt is omitted. For models where
we used few-shot prompting (Gemini 1.5 Pro
& SciLitLLM 1.5), we show the format of the
example given enclosed in parentheses.

InstructUIE (default)

NER:

Please list all entity words in the text that fit the category.
Output format is "type1: word1; type2: word2"
Option: <entity_types>
Text: <text>
Answer:

RE:

Given a phrase that describes the relationship between two words,
extract the words and the lexical relationship between them. The
output format should be "relation1: word1, word2; relation2: word3,
word4".
Option: <relation_types>
Text: <text>
Answer:

Triplex (default)

Perform Named Entity Recognition (NER) and extract knowledge graph
triplets from the text. NER identifies named entities of given
entity types, and triple extraction identifies relationships between
entities using specified predicates.

**Entity Types:**
<entity_types>

**Predicates:**
<relation_types>

**Text:**
<query>
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Phi3 Mini Graph (default - modified to accept specific types)

A chat between a curious user and an artificial intelligence
Assistant. The Assistant is an expert at identifying entities and
relationships in text. The Assistant responds in JSON output only.

The User provides text in the format:

-------Text begin-------
<User provided text>
-------Text end-------

The Assistant follows the following steps before replying to the
User:

1. **identify entities** The Assistant identifies all entities in
the text of the types: <entity_types>. These entities are listed in
the JSON output under the key "nodes", they follow the structure of
a list of dictionaries where each dict is:

"nodes":[{"id": <entity N>, "type": <type>}, ...]

where "type": <type> is the type of the entity.

2. **determine relationships** The Assistant uses the text between
-------Text begin------- and -------Text end------- to determine
the relationships between the entities identified in the "nodes"
list defined above. These relationships are called "edges" and they
follow the structure of:

"edges":[{"from": <entity 1>, "to": <entity 2>, "label":
<relationship>}, ...]

The <entity N> must correspond to the "id" of an entity in the
"nodes" list and relationship must be one of the following types:
<relation_types>.

The Assistant never repeats the same node twice. The Assistant never
repeats the same edge twice.
The Assistant responds to the User in JSON only, according to the
following JSON schema:
{

"type":"object",
"properties":{

"nodes":{
"type":"array",
"items":{

"type":"object",
"properties":{

"id":{
"type":"string"

},
"type":{

"type":"string"
},
"detailed_type":{

"type":"string"
}

},
"required":["id", "type", "detailed_type"],
"additionalProperties":false

}
},
"edges":{

"type":"array",
"items":{

"type":"object",
"properties":{

"from":{
"type":"string"

},
"to":{

"type":"string"
},
"label":{

"type":"string"
}

},
"required":["from", "to", "label"],
"additionalProperties":false

}
}

},
"required":["nodes", "edges"],
"additionalProperties":false

}

Input:
-------Text begin-------
<text>
-------Text end-------

Note: The JSON in the Phi3 Mini Graph prompt is
condensed to take up less characters, but formatted
here for readability.

Gemini 1.5 Pro

Please extract a list of entities, and subsequently a list of
relations between these entities.
The allowed entity types are: <entity_types>.
The allowed relation types are: <relation_types>.
The output should look like:
Entities:
Entity1 (EntityType)
Entity2 (EntityType)

Relationships:
Entity1 (EntityType) --RELATIONSHIP_TYPE-- Entity2 (EntityType)

(Examples:
Example 1:
<example_text>

Entities:
<example_entities>

Relationships:
<example_relationships>)

Do not provide any explanation or deviate from the format. If any
entity does not conform to the entity types stated, they should not
be included. Please now perform the task for the following text:
<text>

SciLitLLM 1.5

As a biomedical researcher, you are able to extract structured
information from a given piece of text. Please extract a list
of entities, and subsequently a list of relations between these
entities.
The allowed entity types are: <entity_types>.
The allowed relation types are: <relation_types>.
The output should look like:
(entity1_name, entity1_type), (entity2_name, entity2_type),
(entity1_name, RELATION, entity2_name), (entity3_name, RELATION,
entity4_name), ...

(Examples:
Example 1:
<example_text>

Output:
<example_output>)

Do not provide any explanation or deviate from the format. If any
entity does not conform to the entity types stated, they should not
be included. Please now perform the task for the following text:
<text>

Additional information

Setup, implementation details, and code can
be found at https://github.com/FSGade/
BiomedicalZeroShot.
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