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Abstract

The classification of medical statements in Ger-
man doctor-patient interactions presents signif-
icant challenges for automated medical infor-
mation extraction, particularly due to complex
domain-specific terminology and the limited
availability of specialized training data. To
address this, we introduce a manually anno-
tated dataset specifically designed for distin-
guishing medical from non-medical statements.
This dataset incorporates the nuances of Ger-
man medical terminology and provides a valu-
able foundation for further research in this do-
main. We systematically evaluate Transformer-
based models and multimodal embedding tech-
niques, comparing them against traditional
embedding-based machine learning (ML) ap-
proaches and domain-specific models such as
medBERT.de. Our empirical results show that
Transformer-based architectures, such as the
Sentence-BERT model combined with a sup-
port vector machine (SVM), achieve the highest
accuracy of 79.58% and a weighted F1-Score
of 78.81%, demonstrating an average perfor-
mance improvement of up to 10% over domain-
specific counterparts. Additionally, we high-
light the potential of lightweight ML-models
for resource-efficient deployment on mobile de-
vices, enabling real-time medical information
processing in practical settings. These findings
emphasize the importance of embedding selec-
tion for optimizing classification performance
in the medical domain and establish a robust
foundation for the development of advanced,
domain-adapted German language models.

1 Introduction

With the introduction of the Transformer architec-
ture by Vaswani et al. (2017), substantial progress
was achieved in many application areas, including
general natural language processing (NLP) tasks
and also in the field of medicine. However, models
based on the Bidirectional Encoder Representa-
tions from Transformers (BERT) architecture (De-

vlin et al., 2018), initially trained on large-scale,
general-purpose datasets such as Wikipedia, have
struggled to accurately classify medical informa-
tion in German datasets due to the complex and
specialized vocabulary of medical language and the
scarcity of labeled domain-specific datasets (Idrissi-
Yaghir et al., 2024). To address these challenges,
specialized models for the medical domain have
been developed. An example is the German model
medBERT.de, which has been fine-tuned with med-
ical data and achieves an average Area Under the
Receiver Operating Characteristic (AUROC) score
of approximately 88% on various evaluated med-
ical benchmarks (Bressem et al., 2024). Domain-
specific models like medBERT.de can, for instance,
detect whether medically relevant information is
discussed in dialogues between doctors and pa-
tients. This capability is critical for extracting rele-
vant data for patient documentation and improving
the Electronic Health Record (EHR) system. Med-
ical documentation is a cornerstone of healthcare,
supporting patient care, legal accountability, and
research. Yet, the processing of German medi-
cal texts remains challenging due to the inherent
linguistic complexity and the limited availability
of annotated datasets. As our contribution in this
paper, we compare different Transformer-based
models fine-tuned for medical data with traditional
embedding-based methods. In particular, we fo-
cus on the analysis of German doctor-patient in-
terviews to determine the most effective approach
for classifying medical statements. Furthermore,
we introduce a manually labeled dataset of medical
statements to support future research in the pro-
cessing of German medical texts. In doing so, we
address two research questions:

• RQ1: How does the performance of Trans-
former models fine-tuned on medical data
compare to traditional embedding-based ap-
proaches in classifying German doctor-patient
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interviews?

• RQ2: How does the performance of fine-
tuned Transformer and machine learning
(ML)-models improve when evaluated on
dataset of medical statements for domain-
specific German medical texts?

2 Related Work

The classification of text in a medical context rep-
resents a fundamental challenge in the field of
NLP, particularly in the medical domain. Ac-
curate categorization of medical documents can
significantly improve information extraction and
decision-making processes (Kesiku et al., 2022).
The complex and specialized terminology in med-
ical texts poses a particular difficulty. Managing
synonyms, polysemy, and multi-word terms is es-
sential, as these can distort the true meaning of
a text (Shanavas et al., 2020). In addition, med-
ical text data often shows low density and high
dimensionality due to its special linguistic charac-
teristics, making its classification more challenging
compared to other domains (Zhou et al., 2021).

Several studies have shown that ML-models may
achieve high accuracy in medical text classification
when adapted to the specific language and struc-
ture of medical texts. These techniques include
support vector machines (SVMs), naive Bayes, lo-
gistic regression, and k-nearest neighbors (k-NNs).
These methods are often combined with word rep-
resentation models, such as term frequency-inverse
document frequency (TF-IDF) and Word2Vec, to
improve classification performance. (Mascio et al.,
2020; Almazaydeh et al., 2023)

Almazaydeh et al. (2023) used the mtsam-
ples.com dataset (MTSamples, 2025) to train ML-
models using TF-IDF, Bag-of-Words (BOW), and
Word2Vec as word representations. They were able
to classify 20 medical categories. The Word2Vec-
based k-NN classifier achieved an average accuracy
of 92%. However, the performance on German
medical datasets is unknown due to the challenges
posed by the strict regulatory framework of the
General Data Protection Regulation (GDPR).

Transformer-based models are gaining impor-
tance in medical NLP research. Idrissi-Yaghir
et al. (2024) compared different German BERT
architectures on medical datasets and evaluated
them on different downstream tasks such as named
entity recognition (NER), multi-label classifica-
tion, and extractive question answering. The re-

sults show that models with medical or translation-
based pre-training typically outperform generic
language models, as they are better at captur-
ing complex medical terminology and medical
context. The language models achieved the fol-
lowing average F1-Scores: CLEF eHealth 2019
(Neves et al., 2019): 0.820, RadQA (Dada et al.,
2023): 0.816, GraSCCo (Modersohn et al., 2022):
0.673, BRONCO150 (Kittner et al., 2021): 0.844,
and GGPONC 2.0 (Borchert et al., 2022): 0.779.
Idrissi-Yaghir et al. (2024) showed that continued
pretraining can match or even surpass the perfor-
mance of medical models trained from scratch. Fur-
thermore, pretraining on medical data or leverag-
ing translated texts has proven to be an effective
approach for domain adaptation in medical NLP
tasks. In addition to medBERT.de, there is also
BioGottBERT by Lentzen et al. (2022), which was
fine-tuned specifically on medical data. They con-
ducted a comprehensive analysis of the suitabil-
ity of existing and new transformer-based models
for the German biomedical and clinical domain by
systematically comparing 8 general-purpose lan-
guage models and 3 newly trained models, includ-
ing BioGottBERT and two BioELECTRA versions.
The study showed that General-Purpose Language
Models (GPLMs) performed surprisingly well on
clinical NLP tasks, with a German variation of
BERT called GBERT (Chan et al., 2020) perform-
ing particularly well on document classification
tasks and BioGottBERT on NER tasks. Domain
adaptation of existing models proved to be more
effective than training new models from scratch,
which was mainly attributed to the limited size of
the pre-training corpus.

In recent years, several German medical datasets
have been published, such as GGPONC (Borchert
et al., 2020) and BRONCO150 (Kittner et al.,
2021), which include annotation information for
NER and part-of-speech (POS) tagging. Other Ger-
man datasets, such as those from Makowski and
Simko (2018) and Suominen et al. (2020), lack
such annotation. Datasets like CLEF eHealth 2019
(Neves et al., 2019) offer German medical queries
and documents for information retrieval and ques-
tion–answering (QA); RadQA (Dada et al., 2023)
comprises German radiology reports with questions
to support radiological reasoning and GraSCCo
(Modersohn et al., 2022) offers annotated social-
care correspondence for entity and relation extrac-
tion. A specific German dataset for intent recog-
nition in doctor-patient interviews was developed
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by Rojowiec et al. (2020), consisting of 63 classes.
These classes represent various categories or inten-
tions of questions and statements that can occur
during doctor-patient conversations. The dataset
supports medical students in taking medical his-
tories by interacting with virtual patients, and the
doctors’ intentions were detected using BERT (Ro-
jowiec et al., 2020). Section 3 provides further
details on this dataset and its application in the
context of this paper.

While it has been shown that Transformer-based
models can perform well with domain adaptation,
their performance in German dialog-based context
recognition is not as well studied, and there is no
high-quality medical dataset available to classify
whether a statement contains medically relevant
information or not.

3 Data Acquisition

To develop a German contextualized ML-model for
classifying medical and non-medical statements,
we used the publicly available “Intent Recogni-
tion in Doctor-Patient Interview” (IntRec) dataset
(Rojowiec et al., 2020). This dataset consists of
German transcriptions of live doctor-patient in-
terviews conducted during university training ses-
sions, in which medical students interviewed actors
portraying patients, transcribing only the doctors’
statements. 80% of the entries in the dialogue se-
quence consist of statements in the form of ques-
tions directed at the patient, such as “When was
the surgery?” while 20% are normal statements,
such as “I think so, yes.”. For each entry, the cor-
responding class, its position within the sequence,
the previous statement, and the class of the preced-
ing statement are also provided. Table 1 shows the
corresponding metadata about the original dataset
before preprocessing.

Attribute Statistic
Total number of samples 2,397
Number of classes 63 (62 + “OTHER”)
Classes with ≤ 10 samples 50%
Largest class (“OTHER”) 1,169 samples
Second-largest class (“AM02”) > 85 samples
Annotated with two classes 101 (4%)
Average utterance length 10 words
Utterance Previous utterances, intention

Table 1: Overview of the dataset for intent recognition
in doctor-patient interviews.

The dataset consists of a total of 2,397 samples
with multiple dialogue-label pairs, where 101 of
these pairs have two label assignments. Each label

consists of a symptom category and a question ID.
The symptom category defines the symptom area,
and the question ID specifies the intent within that
area. For example, the label (PH10) belongs to
the “Prior History” category (PH) and refers with
question ID 10 to questions about “heart diseases”.
The dataset includes seven symptom categories (see
Table 2).

We developed a preprocessing pipeline in which
we divided the samples into individual dialogues
and their associated labels. Each utterance and
its corresponding labels, as well as the preceding
utterance and its labels, were assigned individually
to each target utterance and label. In the next step,
duplicates in the utterance column were removed,
resulting in a normalized dataset of 1, 418 dialogue-
class pairs.

Symptom Category Code
Main Symptoms MS
Prior History PH
Allergies and Medication AM
Social and Family History SF
System Review SR
Inquiry IQ
Other Questions OQ

Table 2: Symptoms categories and code, with “IQ” +
“OQ” summarized under the category “OTHER”.

To develop a classification model for detecting
medical statements, we transformed the multiclass
problem into a binary problem. The dataset was
transformed by grouping all categories unrelated
to “IQ” or “OQ” under the class “MEDICAL”,
while “IQ” and “OQ” were combined into the class
“OTHER”. Following the categorization described
by Rojowiec et al. (2020), the symptom category
“Inquiry”, although referring to previously posed
questions, was not considered to contain medically
relevant information. In addition, redundant punc-
tuation, such as quotation marks ("), was removed
from the documents using regular expressions as
an additional preprocessing step to improve data
quality. The normalized dataset was split into train-
ing and test data in an 80/20 ratio (see Table 3).
To address potential data bias, the dataset was ran-
domized prior to splitting.

In addition, a second test dataset was devel-
oped using the publicly available Berlin-Tübingen-
Oncology Corpus (BRONCO150) by Kittner et al.
(2021). This German-language corpus consists
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of 150 discharge summaries from cancer patients
treated at the Charité-Berlin University of Medicine
or the University Hospital of Tübingen. To prevent
the reconstruction of discharge summaries and pa-
tient identities, Kittner et al. (2021) shuffled the
summaries and anonymized them at the sentence
level. The dataset, originally intended for informa-
tion extraction from German medical texts, com-
prises 8, 976 sentences with POS annotations and
includes medical entities along with relevant at-
tributes like negation and speculation.

Since the BRONCO150 dataset contains not
only complete sentences but also other information
from discharge summaries, we manually labeled
the data to extract only complete sentences or medi-
cally accurate statements. For a realistic evaluation
of the models trained on the IntRec dataset, the
BRONCO150 dataset was manually labeled based
on specific criteria, categorizing statements as ei-
ther medical or non-medical:

1. The sentence contains a medical claim.

2. Punctuation at the end is not mandatory if the
content conveys a medical statement.

3. The sentence cannot be used as a title.

4. The sentence begins with an uppercase letter.

5. A sentence must not be a list or contain a
colon “:” unless it begins with a date and a
statement.

Manual labeling was conducted using the pub-
licly available tool LabelStudio1 (Tkachenko et al.,
2020-2025). Annotation was performed by a Com-
puter Science PhD student with expertise in NLP.
Of the 8, 976 records, 6, 863 medical statements
remain after labeling and duplicate removal. Ap-
proximately 60.15% of the data received the label
0 because many sentences contained formatting
information such as date values or document head-
ers, “Dear Sir or Madam” or document lines such
as “Line ID. from document”. This resulted in a
reduction, leaving 39.85% with a value of 1. In
addition, the dataset included partial sentences that
were not standalone statements, but related to the
previous line. Furthermore, enumerations were not
considered because they were not independent sen-
tences with statements. The following examples
from the BRONCO150 dataset are English trans-
lations of original German texts published in the

1https://labelstud.io/

work of Kittner et al. (2021). To demonstrate these
criteria, we present the following examples from
the BRONCO150 dataset. Statements labeled as
“MEDICAL” satisfy these conditions by express-
ing clear clinical information. For instance, the
direct quotes “On 07/04/2134, the patient received
an uneventful nivolumab infusion.” (Kittner et al.,
2021, Fig. 1) and “A highly suspicious HCC lesion
was observed in liver segment VI on CT.” (Kittner
et al., 2021, Fig. 1) reflect medical events and fulfill
criteria (1) to (5). In contrast, direct quotes such as
“Start of chemotherapy according to the GeT pro-
tocol cycle 1.” (Kittner et al., 2021, Fig. 1) or “Di-
agnoses: RA: choroidal melanoma (ED 07/2023)”
(Kittner et al., 2021, Fig. 3) are often abbreviated,
context-dependent, or formatted as titles or lists,
thereby violating criteria (3) and (5), and are classi-
fied as “OTHER”. The resulting German-language
dataset can be used not only for our case, but also
for fine-tuning German models on medical data,
with the aim of supporting medical data extrac-
tion and improving semi-automatic methods for
annotating medical documents. We use this dataset
to evaluate how well the transfer learning of all
trained models performs on unseen data, to under-
stand whether the models can understand not only
previous medical queries but also complex medi-
cal language and derive correct classifications for
medical statements. The fully labeled dataset by
Bahrololloomi (2025), consisting of the 8, 976 sen-
tence_ids and labels is publicly available in the
form of a CSV file. This dataset acts as a mapping
and can be combined one-to-one with the original
dataset by Kittner et al. (2021).

Dataset OTHER MEDICAL
Train/Validation 1134 (80%) 688 446
Test 284 (20%) 160 124
Test BRONCO150 6863 (100%) 4127 2736

Table 3: Data distribution and class distribution for
IntRec and the normalized BRONCO150 data with class
0 as “OTHER” and class 1 as “MEDICAL”.

4 Model Engineering

We extracted embeddings from four different Trans-
former models based on the BERT architecture
to classify medical statements within sentences.
These embeddings were then combined with five
traditional ML-models for classification. The ad-
vantage of pure embedding extraction, as opposed
to training the entire Transformer model, is evident
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in the decreased training duration and the capability
to efficiently adapt these models into a mobile vari-
ant. This adaptation facilitates their use for local
predictions, such as in smartwatches.

During the model selection process, we ensured
the use of a German, a multilingual, and a medi-
cally specialized English model to systematically
evaluate the transfer performance in the classifica-
tion process. The multilingual model is a variant of
the Sentence Transformer (Sentence-BERT)2 from
Reimers and Gurevych (2019). Additionally, we
used a general German BERT model (BERTger)3

(Bavarian State Library, 2025) to evaluate the trans-
fer performance of the BERT architecture on medi-
cal data.

We also selected the BioBERT model
(BioBERT)4 for the classification of medical docu-
ments. This model was developed by Deka et al.
(2022) and specifically trained on English scientific
publications related to medical trials. Furthermore,
the German model medBERT.de (MedBERT)5,
created by Bressem et al. (2024), was used. This
model was trained on a comprehensive collection
of German medical documents, including medical
reports and patient records. Due to its optimization
for longer texts, MedBERT is particularly suitable
for the analysis and classification of medical infor-
mation and outperformed other German-language
models in NLP tasks such as NER.

The following ML-models have been used: Cat-
Boost (Dorogush et al., 2018), RandomForest (RF)
(Pedregosa et al., 2011a), XGBoost (Chen and
Guestrin, 2016), SVM (Pedregosa et al., 2011a),
and LightGBM (Ke et al., 2017). In order to extract
the best possible embedding, we compared differ-
ent extraction strategies by calculating the average
of the last hidden states over the sequence dimen-
sion (mean pooling), extracting the maximum value
over all tokens (max pooling), and using the hidden
state of the first token (CLS token) as a representa-
tion of the entire sequence.

The overall architecture of our approach is as
follows. In the first step, the cleaned and shuffled
1, 134 sentences from the training and validation
IntRec dataset are passed to the four Transformer

2https://huggingface.co/sentence-Transformers/
paraphrase-multilingual-MiniLM-L12-v2

3https://huggingface.co/dbmdz/bert-base-germa
n-cased

4https://huggingface.co/pritamdeka/BioBert-P
ubMed200kRCT

5https://huggingface.co/GerMedBERT/medbert-5
12

models. Simultaneously, the mentioned extraction
strategies are applied to the vanilla variants of the
models to extract the required embeddings. These
embeddings are then fed to the five ML-models.
The same seed was used on the dataset to repro-
duce the same training and validation data. We use
Sentence-BERT as a baseline for comparison with
other Transformer models. Similarly, for the ML-
models, we apply a Word2Vec approach to convert
the medical data into embeddings, as suggested
by Almazaydeh et al. (2023). We did not train a
Word2Vec model from scratch, but used the pre-
trained German Word2Vec6 model from Yamada
et al. (2020). In the next step, fixed parameters
such as batch size, learning rate, and maximum
padding size calculated over both datasets are set
on the Transformer models, and hyperparameter
optimization is performed on the ML-models via
grid search using the validation data. The final step
involves evaluating all ML-models on the IntRec
and BRONCO150 test datasets.

5 Evaluation

As discussed in Section 4, the IntRec training and
validation data are initially utilized to train and op-
timize the four proposed Transformer models. This
process aims to identify the optimal parameters, en-
abling the selection of the most suitable model for
the subsequent steps. To ensure optimal computa-
tional efficiency, we first performed document anal-
ysis on both datasets to determine the maximum to-
ken length and padding size. The German medical
model MedBERT of Bressem et al. (2024) was used
for this determination. As shown in Table 4, a max-
imum padding size of 143 tokens is sufficient to
cover all sequences in both the normalized IntRec
(1, 418) and BRONCO150 (6, 863) datasets, each
consisting of labelled sentences. We also found that
the BRONCO150 dataset contains documents of a
greater length than the IntRec dataset. This discrep-
ancy can be attributed to the divergent nature of
the text: while the IntRec dataset is primarily com-
posed of doctor questions directed at patients, the
BRONCO150 dataset consists of discharge sum-
maries that require a more comprehensive level of
understanding.

The hyperparameters were set uniformly for all
Transformer models with a number of epochs of
20, a batch size of 20, a learning rate of 2× 10−5,

6https://huggingface.co/Word2vec/wikipedia2ve
c_dewiki_20180420_300d
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Metric IntRec 1418 BRONCO150 6863
Maximum Token Count 143 142
Average Length 14.90 18.32
Median Length 13.0 14.0
Standard Deviation 8.53 14.94

Table 4: Statistical properties of token lengths for both
datasets.

and a maximum padding size of 143. For opti-
mization, the AdamW optimizer is employed, as
it offers more robust convergence compared to the
traditional Adam optimizer due to its enhanced reg-
ularization through weight decay (Baevski et al.,
2020). To minimize overfitting, a linear scheduler
uniformly reduces the learning rate during train-
ing. Early stopping is implemented to terminate
training if the validation accuracy (val_acc) fails
to improve over three consecutive epochs. This
approach prevents overfitting and reduces unneces-
sary computation. The training loss is calculated
using BCEWithLogitsLoss from Pytorch (Paszke
et al., 2019). Our analysis indicates that mean
pooling is the most effective method for extracting
embeddings. Consequently, it is consistently ap-
plied across all ML-models (see Appendix Table
9).

Hyperparameter optimization of ML-models is
performed using Word2Vec embeddings with grid
search and triple cross-validation, evaluated based
on weighted F1-Score. The CatBoost model under-
goes a separate optimization process, since Grid-
SearchCV (Pedregosa et al., 2011b) is incompati-
ble with the Pool format of CatBoost. Instead, the
model is trained on a training dataset (train_pool)
and evaluated on a validation dataset (val_pool).
The best parameter configuration is determined
based on the highest F1-Score. In addition to the
application of hyperparameter optimization using
Word2Vec embeddings, extensive hyperparameter
exploration was simultaneously performed on the
full set of ML-models, incorporating every avail-
able variant of BERT embeddings. The best pa-
rameters for each model are listed in the Appendix
in the Table 8. These parameters are consistently
applied to all ML and Transformer models with-
out explicit mention in the Tables, as the optimal
parameters are always used.

After determining the best hyperparameters,
both the Transformer-based BERT models and
all variations of the ML-models with BERT and
Word2Vec embeddings were trained and validated
on the cleaned IntRec test data. To measure the

performance of the models, we use well-known
metrics such as accuracy, precision, recall and F1-
Score for both classes (medical and general). The
individual results on the validation data are shown
in Table 5.

Classifier Acc. Macro F1 Weighted F1 Gen. F1 Med. F1
Sentence-BERT 0.84 0.83 0.84 0.87 0.80
BERTger 0.84 0.84 0.84 0.87 0.81
BioBERT 0.77 0.76 0.77 0.80 0.72
MedBERT 0.85 0.84 0.85 0.88 0.81

Table 5: Performance of classification models on the
IntRec validation data.

The metric Medical F1-Score (Med. F1) indi-
cates how well the model correctly classifies med-
ical statements, in contrast to the metric General
F1-Score (Gen. F1), which represents the F1-Score
over documents labeled as general. The Macro
Avg F1-Score (Macro F1) calculates the average
F1-Score across all classes, regardless of their size.
In contrast, the Weighted Avg F1-Score (Weighted
F1) additionally weights the size of each class and
adjusts the F1-Score accordingly. The results show
that MedBERT delivers the best overall perfor-
mance, achieving an accuracy of 0.85 and a high
F1-Score in both the macro and weighted average.
The MedBERT model achieves a macro F1-Score
of 0.84 and a weighted F1-Score of 0.85, indicat-
ing its ability to effectively perform both balanced
and weighted classifications. In comparison, the
English BioBERT shows the weakest performance,
especially in the medical context, with an F1-Score
of only 0.72. This model only achieves an accuracy
of 0.77, indicating its limited ability to correctly
classify medical statements in this specific dataset.
Interestingly, both Sentence-BERT and BERTger
achieve similar performance, with an accuracy of
0.84 and a consistent Weighted and Gen. F1-Score
of 0.84 and 0.87, respectively. Both models show
strong and balanced classification performance, but
they perform slightly worse than the MedBERT
model. For the evaluation of the ML-models on
the IntRec validation data with the respective text
representations, the Weighted F1-Score is used as
evaluation metric (see Table 7).

Classifier Word2Vec Sentence-BERT BERTger BioBERT MedBERT
CatBoost 0.6839 0.8372 0.7621 0.6678 0.7813
RandomForest 0.6611 0.8121 0.7086 0.6535 0.7310
XGBoost 0.6551 0.8059 0.7519 0.6720 0.7671
SVM 0.6946 0.8330 0.7616 0.6668 0.7854
LightGBM 0.6654 0.8107 0.7599 0.6551 0.7567

Table 7: Weighted F1-Scores of ML-models with vary-
ing text representations on the IntRec validation data.
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Model Word Rep. Acc. IntRec F1-IntRec Acc. BRONCO F1-BRONCO

CatBoost

Word2Vec 0.6620± 3.33 e−16 0.6218± 1.11 e−16 0.5993± 1.11 e−16 0.4931± 5.55 e−17

Sent.-BERT 0.7746± 1.11 e−16 0.7614± 1.11 e−16 0.5974± 0.00 e−16 0.4787± 5.55 e−17

BERTger 0.7183± 1.11 e−16 0.7006± 1.11 e−16 0.6016± 0.00 e−16 0.4526± 5.55 e−17

BioBERT 0.6162± 1.11 e−16 0.6000± 2.22 e−16 0.6283± 2.22 e−16 0.5542± 1.11 e−16

MedBERT 0.6514± 1.11 e−16 0.6189± 1.11 e−16 0.6012± 1.11 e−16 0.4521± 0.00 e−16

RF

Word2Vec 0.6479± 1.11 e−16 0.6103± 1.11 e−16 0.5951± 0.00 e−16 0.4808± 1.66 e−16

Sent.-BERT 0.7394± 2.22 e−16 0.7145± 1.11 e−16 0.5920± 1.11 e−16 0.4584± 1.66 e−16

BERTger 0.6866± 1.11 e−16 0.6540± 1.11 e−16 0.6013± 0.00 e−16 0.4519± 0.00 e−17

BioBERT 0.6268± 1.11 e−16 0.6049± 1.11 e−16 0.6209± 2.22 e−16 0.5226± 2.22 e−16

MedBERT 0.6549± 0.00 e−16 0.6073± 1.11 e−16 0.6015± 0.00 e−16 0.4520± 1.66 e−16

XGBoost

Word2Vec 0.6268± 1.11 e−16 0.6091± 2.22 e−16 0.6088± 1.11 e−16 0.5087± 2.22 e−16

Sent.-BERT 0.7183± 1.11 e−16 0.6994± 1.11 e−16 0.5997± 1.11 e−16 0.4953± 0.00 e−17

BERTger 0.6937± 2.22 e−16 0.6711± 3.33 e−16 0.6031± 2.22 e−16 0.4587± 5.55 e−17

BioBERT 0.6232± 1.11 e−16 0.6130± 0.00 e−16 0.6200± 0.00 e−16 0.5399± 0.00 e−16

MedBERT 0.6585± 2.22 e−16 0.6301± 1.11 e−16 0.6013± 0.00 e−16 0.4548± 5.55 e−17

SVM

Word2Vec 0.6549± 0.00 e−16 0.6469± 1.11 e−16 0.5659± 0.00 e−16 0.5043± 1.11 e−16

Sent.-BERT 0.7958± 1.11 e−16 0.7881± 2.22 e−16 0.5885± 0.00 e−16 0.4806± 5.55 e−17

BERTger 0.7465± 1.11 e−16 0.7370± 2.22 e−16 0.5990± 0.00 e−16 0.4518± 0.00 e−16

BioBERT 0.6338± 1.11 e−16 0.6093± 0.00 e−16 0.5911± 0.00 e−16 0.5322± 1.11 e−16

MedBERT 0.6761± 2.22 e−16 0.6395± 2.22 e−16 0.6013± 0.00 e−16 0.4516± 1.11 e−16

LightGBM

Word2Vec 0.6514± 1.11 e−16 0.6288± 1.11 e−16 0.5957± 1.11 e−16 0.5080± 0.00 e−16

Sent.-BERT 0.7852± 0.00 e−16 0.7746± 0.00 e−16 0.5955± 1.11 e−16 0.4717± 0.00 e−16

BERTger 0.7148± 0.00 e−16 0.6951± 1.11 e−16 0.6016± 0.00 e−16 0.4562± 5.55 e−17

BioBERT 0.6479± 1.11 e−16 0.6358± 1.11 e−16 0.6159± 0.00 e−16 0.5380± 2.22 e−16

MedBERT 0.6831± 1.11 e−16 0.6560± 0.00 e−16 0.6010± 2.22 e−16 0.4526± 1.66 e−16

Sent.-BERT - 0.7676± 1.11 e−16 0.7671± 1.11 e−16 0.5280± 0.00 e−16 0.5191± 1.11 e−16

BERTger - 0.7711± 2.22 e−16 0.7655± 2.22 e−16 0.5790± 2.22 e−16 0.4538± 1.66 e−16

BioBERT - 0.7218± 2.22 e−16 0.7101± 1.11 e−16 0.6018± 2.22 e−16 0.4796± 5.55 e−17

MedBERT - 0.7782± 2.22 e−16 0.7752± 0.00 e−16 0.6048± 1.11 e−16 0.4938± 0.00 e−17

Table 6: Performance of various classification models on IntRec and BRONCO150 test data, based on accuracy and
weighted F1-Score. The results include the mean and standard deviation from 100 evaluations.

The results show that, in contrast to the direct
comparison with the Transformer models, all ML-
models achieve the best results with multilingual
Sentence-BERT embeddings, reaching an average
Weighted F1-Score of 0.8198 with a low standard
deviation of 0.0114. This indicates a consistent
performance of the ML-models with this embed-
ding. In comparison, the BioBERT and Word2Vec
embeddings have an average performance that is
19.12% and 18.02% worse, respectively. These
differences in model performance indicate that the
multilingual Sentence BERT embeddings are best
suited for the given classification task. The stable
results show that this representation not only deliv-
ers high F1-Scores, but also exhibits low variance
between models, further demonstrating its robust-
ness. However, the overall results are worse than
those of the Transformer variants.

To evaluate the robustness of the Transformer
and ML-models, a data-driven analysis was per-
formed during inference. Both the test data of
the IntRec dataset and the normalized and labeled
6, 863 large BRONCO150 dataset were randomly

shuffled 100 times with different but fixed seeds
for the iteration index. Table 6 presents the results
obtained, showing the mean and standard deviation
for all metrics. Since the standard deviations for all
models are in the range of 10−16, they are presented
with the factor e−16. The results underline how cru-
cial both the choice of the classification model and
the underlying embedding representation are. Al-
though MedBERT showed the best performance
on the validation data, the MedBERT embeddings
overall do not perform optimally on the IntRec test
data. Notably, pure Transformer models do not
outperform on average an SVM working in combi-
nation with Sentence-BERT embeddings. In partic-
ular, this combination achieves the best results with
an accuracy of 0.7958 and a weighted F1-Score
of 0.7881. The superiority of the Sentence-BERT
embeddings over alternative representations such
as Word2Vec, BERTger, BioBERT or MedBERT
highlights the importance of a powerful embed-
ding base, especially in the analysis of medical
datasets. Furthermore, the extremely low standard
deviations confirm the high robustness and repro-
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ducibility of the results, a factor further favored by
the weighted F1-Scores, which take into account
the class frequencies. Overall, the analysis shows
that for optimal classification performance in the
medical domain, not only the model complexity,
but also the targeted selection of embeddings is of
central importance.

Given that the BRONCO150 dataset consists en-
tirely of domain-specific medical statements, and
that no prior model training has included such
data, its evaluation provides a potential means of
exploring the transfer learning ability of differ-
ent approaches when confronted with novel and,
to some extent, partially different sentence struc-
tures. Table 6 shows that all models achieve robust
results, with accuracy values mostly above 59%
and weighted F1-Scores delivering consistent re-
sults. It is worth noting that the CatBoost model
combined with BioBERT embeddings achieves
the best results with an accuracy of 0.6283 and
a weighted F1 Score of 0.5542. These results sug-
gest that BioBERT embeddings, which are already
pre-trained on medical texts, offer a significant ad-
vantage in the classification of purely medical sen-
tences. The observed differences in performance
can mainly be explained by the different charac-
teristics of the datasets. While the IntRec dataset
used for training mainly contains doctor-patient
interviews with comparatively simple medical ter-
minology, the content of the BRONCO150 dataset
is based on discharge summaries, which document
the course of treatment and the main medical find-
ings and therapy decisions in detail. This high
degree of precision and the distinct linguistic style
complicate the direct transfer of the classification
capabilities acquired during training, thereby ac-
counting for the divergent results.

6 Discussion

Our study investigated the classification of medical
statements in German doctor-patient dialogues by
integrating Transformer-based models with tradi-
tional ML-models that leverage BERT-based em-
beddings. The evaluation provided key insights
into model performance and domain adaptability,
while highlighting the trade-offs between general-
purpose and domain-specific methods. Regarding
RQ1, our findings reveal that domain-specific mod-
els such as MedBERT.de even though explicitly op-
timized for medical texts do not exhibit a significant
advantage over general-purpose Transformer mod-

els in dialogue-based medical contexts. Sentence-
BERT, a non-domain-specific model, achieved an
F1-Score of 0.84, which is nearly equivalent to
that of MedBERT.de (F1 = 0.85). This suggests
that high-quality sentence embeddings extracted
from general Transformers can compensate for the
lack of domain-specific pretraining in certain sce-
narios. In contrast, the comparatively weaker per-
formance of BioBERT shows challenges related
to linguistic and data-specific adaptation, particu-
larly in cross-lingual settings. Our evaluation indi-
cates that hybrid approaches such as combining an
SVM classifier with Sentence-BERT embeddings
yield strong performance on the test set, achiev-
ing the highest accuracy (0.80) and weighted F1-
Score (0.79). This finding emphasizes the impor-
tance of careful selection of embedding strategies
and model architectures for the effective classifi-
cation of medical statements. To understand the
performance differences observed in RQ2, it is im-
portant to note that, while both datasets contain
German medical language, they differ in context
and linguistic formality: IntRec features short, spo-
ken questions, whereas BRONCO150 consists of
structured discharge summaries. In the context of
RQ2, the evaluation on the BRONCO150 dataset,
which consists of structured medical texts, shows
that models trained on conversational data strug-
gle to generalize to more formal medical docu-
ments. While Sentence-BERT based models excel
in doctor-patient dialogues, domain-specific em-
beddings like BioBERT deliver better performance
for structured medical statements. This divergence
shows the need to tailor embedding strategies to
the specific nature of the text being analyzed. In
conclusion, our research confirms that Transformer-
based models, when optimally integrated with ad-
vanced embedding strategies, are capable of deliv-
ering accurate and robust classification of medical
statements. The RQ1 is answered, showing the fea-
sibility of employing hybrid approaches in doctor-
patient interviews. This work not only sets a solid
foundation for the evolution of more sophisticated
models in the field but also highlights the criti-
cal importance of careful embedding selection and
parameter tuning in navigating the challenges in-
herent in specialized medical language. Regarding
RQ2, the complexity of the BRONCO150 dataset
poses a significant challenge. None of the models
achieved a good F1-Score on this data. Although
accuracy remained higher than the F1-Score, this
suggests that the models are more effective at clas-
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sifying “OTHER” statements while struggling with
“MEDICAL” ones.

7 Conclusion and Future Work

This study identifies several opportunities for future
research. A practical evaluation of the proposed
methods in real-world medical settings is essential
to assess their effectiveness in automated text ex-
traction within EHR systems. In this context, the
application of knowledge distillation techniques
should be explored to adapt models for resource-
constrained environments, such as mobile devices
and smartwatches, enabling real-time processing.
In addition, future work should systematically in-
vestigate the extent to which automatically gen-
erated examples (e.g., via GPT-4o or other Large
Language Models (LLMs)) can reduce the need for
manual labeling. In particular, it is crucial to assess
the quality of the resulting pseudo-labels and to ex-
plore how a hybrid approach (synthetic + manual)
can yield robust models in resource-constrained en-
vironments. Furthermore, extending the approach
to multi-turn dialogues and incorporating clinician
feedback could enhance classification accuracy and
system robustness. To better capture the context of
IntRec’s short and isolated sentences, we plan to
reframe the task as a QA problem by concatenating
each QA instance into a single input and predicting
its original label. Future work should also focus on
optimizing embedding selection strategies, lever-
aging data augmentation techniques, and investi-
gating transfer learning approaches to mitigate the
performance gap between conversational and struc-
tured medical texts. Additionally, evaluating these
models in real-world deployment scenarios, such
as automated documentation systems, will provide
valuable insights into their practical applicability.
By addressing these challenges and refining current
methodologies, future research can significantly
improve the efficiency and domain relevance of
automated medical text processing.
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A Appendix

Classifier Parameter Word2Vec Sentence-BERT BERTger BioBERT MedBERT

SVM

Kernel Type poly poly poly poly rbf
Kernel Degree 4 3 4 2 2
Cost 10 1 1 10 1
Gamma scale scale scale scale 0.01
Coef0 0 0.5 0.5 0.5 0

RF

Bootstrap False False False False False
Max Depth 20 20 20 10 20
Max Features sqrt sqrt sqrt sqrt sqrt
Min Samples Leaf 1 2 1 4 2
Min Samples Split 5 5 2 10 2
n Estimators 1500 500 500 500 500

LightGBM
Num Leaves 31 31 31 31 31
n Estimators 1000 2000 2000 1000 1000
Learning Rate 0.01 0.1 0.1 0.01 0.01

CatBoost
Depth 6 6 6 8 6
Iterations 1000 1000 3000 1000 1000
Learning Rate 0.01 0.1 0.01 0.01 0.01

XGBoost
Max Depth 8 8 8 6 8
n Estimators 2000 1000 1000 2000 1000
Learning Rate 0.01 0.01 0.01 0.01 0.01

Table 8: Optimized hyperparameters of ML-models
based on grid search for different embeddings.

Classifier with Sentence-BERT Mean Pooling Max Pooling CLS Token
CatBoost 0.8372 0.5242 0.6858
RandomForest 0.8121 0.6375 0.7671
XGBoost 0.8059 0.5130 0.7105
SVM 0.8330 0.6768 0.7196
LightGBM 0.8107 0.4799 0.7205

Table 9: Weighted F1-Scores for ML-models using
different extraction strategies on the IntRec validation
dataset.
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