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Abstract

Accurate identification and labeling of biomed-
ical entities, such as diseases, genes, chemical
and species, within scientific texts are crucial
for understanding complex relationships. We
propose Adaptive BERT or AdaBioBERT, a
robust named entity recognition (NER) model
that builds upon BioBERT (Biomedical Bidi-
rectional Encoded Representation from Trans-
formers) based on an adaptive loss function to
learn different types of biomedical token se-
quence. This adaptive loss function combines
the standard Cross Entropy (CE) loss and Con-
ditional Random Field (CRF) loss to optimize
both token level accuracy and sequence-level
coherence. AdaBioBERT captures rich seman-
tic nuances by leveraging pre-trained contex-
tual embeddings from BioBERT. On the other
hand, the CRF loss of AdaBioBERT ensures
proper identification of complex multi-token
biomedical entities in a sequence and the CE
loss can capture the simple unigram entities in
a sequence. The empirical analysis on multiple
standard biomedical coprora demonstrates that
AdaBioBERT performs better than the state of
the arts for most of the datasets in terms of
macro and micro averaged F1 score.

1 Introduction

The field of Biomedical Named Entity Recogni-
tion (NER) has evolved significantly, transitioning
from rule-based systems to advanced deep learning
methodologies. Early approaches relied heavily on
handcrafted rules, dictionaries, and regular expres-
sions to identify biomedical entities such as genes,
diseases, and proteins. For instance, He (He et al.,
2009) utilized domain-specific lexicons like UMLS
to recognize entities. While these rule-based meth-
ods provided moderate accuracy, they struggled
with the diversity and ambiguity of biomedical ter-
minology, particularly for multi-token entities or
novel terms. Their reliance on manual rule creation
and limited adaptability hindered scalability (Set-

tles, 2004; Leaman et al., 2015). The advent of ma-
chine learning techniques, such as Conditional Ran-
dom Fields (CRF) (Sutton and McCallum, 2011)
and Support Vector Machines (SVM) (Joachims,
1998), marked a shift toward data-driven models.
CRF-based systems, like those developed by Set-
tles (Settles, 2004) and Tsai (Tsai et al., 2006),
leveraged labeled datasets to train classifiers that
captured contextual and sequential information.
These models demonstrated greater flexibility and
adaptability compared to rule-based approaches.
However, they still require extensive manual fea-
ture engineering, which limited their effectiveness
in handling the complexity of biomedical data. For
example, Leaman (Leaman et al., 2015) success-
fully applied CRF models to extract chemical and
disease entities from PubMed abstracts but noted
challenges in recognizing infrequent or context-
dependent terms.

The introduction of Long Short-Term Memory
(LSTM) networks and Convolutional Neural Net-
works (CNNs) revolutionized the NER tasks. Lam-
ple introduced a BiLSTM-CRF framework (Lam-
ple et al., 2016), which set new benchmarks for
sequence labeling tasks, including NER. (Chiu
and Nichols, 2016) extended this approach to
biomedical texts, demonstrating the effectiveness
of deep learning in capturing sequential dependen-
cies and complex relationships. The emergence
of transformer-based models, such as BERT (De-
vlin et al., 2019) and its biomedical counterpart,
BioBERT (Lee et al., 2020), further advanced the
capabilities of NER systems. These models employ
self-attention mechanisms to capture the context
of each word within a sentence, making them par-
ticularly effective for complex biomedical texts.
BioBERT, which is pre-trained on biomedical cor-
pora, has been effective in recognizing domain-
specific entities (Lee et al., 2020). Unlike general-
domain models, BioBERT effectively captures in-
tricate relationships between biomedical terms, im-
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Figure 1: Proposed AdaBioBERT Architecture

proving NER performance in specialized datasets.
Despite their effectiveness, transformer-based mod-
els often struggle to properly identify the named
entities as they need large amount of data for fine-
tuning (Chalkidis et al., 2020; Beltagy et al., 2019).
Recent advancements have focused on combining
the strengths of different loss functions. For exam-
ple, Ma and Hovy (Ma and Hovy, 2016) introduced
a BiLSTM-CRF model that used a fixed combina-
tion of CE and CRF loss functions for NER. Sim-
ilarly, Lample (Lample et al., 2016) employed a
fixed-weight combination of CE and CRF loss func-
tions in their BiLSTM-CRF framework, which be-
came a standard approach for NER tasks. However,
these methods rely on fixed weighting scheme and
cannot distinguish the significance between regular
single token biomedical entities like Nucleolin and
Agyria, and rare but important multi-token entities
like lateral sinus thrombosis and parietal cortical
atrophy through the loss functions.

Therefore, there is room to improve the quality
of the existing methods to properly identify com-
plex multi-token biomedical entities. In this spirit,
this paper presents a transformer based Adaptive
BioBERT (i.e., AdaBioBERT) NER model, to iden-
tify the nuances of complex multi-token biomed-
ical entities by integrating a novel adaptive loss
function combining the standard cross entropy and
CRF loss functions in the pretrained Bio-BERT
model (Lee et al., 2020).

2 Proposed AdaBioBERT Method

AdaBioBERT architecture has two major compo-
nents: (1) Word2Vec embeddings (Kowsari et al.,

2019), which capture semantic relationships be-
tween biomedical terms as shown in Fig 1(a) and
(2) pretrained BioBERT model to generate rich con-
textual embeddings using the proposed Adaptive
Token-Sequence Loss as shown in Fig 1(b), which
dynamically balances token-level and sequence-
level predictions.

2.1 Generate Word2Vec Embeddings of
PubMED Data

In the first stage, the proposed framework extracts
sentences from the freely available PubMED Cen-
tral(PMC) repository1, which has mention of any
genes or diseases, based on frameworks proposed
by (Basu et al., 2021; Guetterman et al., 2018).
The objective is to build semantic embeddings of
all relevant genes and diseases which are men-
tioned in the current version of DisGeNET2 (v24.4)
repository. It comprises 26,798 genes and 39,972
diseases and traits (Piñero et al., 2019). Subse-
quently, we generated word embeddings for these
extracted sentences using Word2Vec model (Pen-
nington et al., 2014; Kowsari et al., 2019). Sen-
tences extracted from the PMC repository that build
the corpus are tokenized, and then the Word2Vec
algorithm generates embeddings for each word,
which is represented as a 128-dimensional vector.
The context window size of a word is set to 7, mean-
ing the model considers up to seven neighboring
words around a target word.

1https://pmc.ncbi.nlm.nih.gov/
2https://disgenet.com/DISGENET-Version-24-4-Whats-

New
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Table 1: Overview of biomedical datasets with training and testing splits

Dataset Entity Types Training Test
BC4CHEMD Chemical compounds, 6,000 abstracts 2,000 abstracts
(Krallinger et al., 2015) drug names
LINNAEUS (Gerner et al., 2010) Species names 80,000 sentences 10,000 sentences
NCBI-disease (Dogan et al., 2014) Disease names 793 abstracts 100 abstracts
BC5CDR (Li et al., 2015) Chemical compounds, diseases 1,000 articles 250 articles
JNLPBA (Kim et al., 2004) Proteins, DNA, RNA, 2,000 abstracts 204 abstracts

cell lines and types
AnatEM (Pyysalo, 2014) Anatomical entities 1,200 documents 300 documents
BioNLP13GE (Kim et al., 2013) Gene and gene product 1,500 sentences 500 sentences
Species-800 (Pafilis et al., 2016) Species mentions 800 abstracts 200 abstracts

2.2 Pretrained BioBERT with Adaptive Token
Sequence Loss (LATS)

Let X = {x1, x2, . . . , xT } denote an input se-
quence of tokens and Y = {y1, y2, . . . , yT } rep-
resent the true labels of X , where yt is a one-
hot encoded vector and yt = [y1t , y

2
t , · · · yNt ] and

yit ∈ {c1, c2, · · · cN}. Here ci,∀i = 1, 2, . . . , N
are different classes of biomedical entities. Let us
consider Ŷ = {ŷ1, ŷ2, . . . , ŷT } be the sequence
of predicted labels of the input sequence. The
predicted probability for the t-th token xt ∈ ci
is denoted as P (xt ∈ ci) , and S(yt, xt) is the
score of the true label sequence yt given xt. The
LATS combines Cross-Entropy Loss (LCE) and
CRF Loss (LCRF ) as follows:

LATS = α · LCE + (1− α) · LCRF , (1)

where α is a learnable weight parameter to make a
trade-off between CE loss and CRF loss. Here

LCE = − 1

T

T∑

t=1

N∑

i=1

yit log
(
P (xt ∈ ci)

)

is the Cross-Entropy Loss, which captures the se-
quence with a single biomedical entity and

LCRF = −
(

S(Y,X)− log
∑

Ŷ

exp(S(Ŷ ), X))
)

is the CRF Loss, which is used to identify complex
multi-label entities in a sequence. LATS dynam-
ically adjusts the importance of per-token accu-
racy and sequence coherence through the learnable
weight α. The adaptive weight parameter α is up-
dated iteratively after each training epoch using gra-
dient descent, as described in Algorithm 1. When
α is close to 1, the model prioritizes individual
token predictions, while α close to 0 emphasizes

sequence-level coherence for handling multi-token
entities and domain-specific terminology. Eventu-
ally, the pretrained BioBERT model is fine-tuned
using the word embeddings of the genes and dis-
eases generated by the word2vec model in the first
stage followed by using LATS .

Algorithm 1 Adaptive Token-Sequence Loss with
Learnable Weight α

1: Input: Token sequence X = {x1, . . . , xT },
true labels Y = {y1, . . . , yT }

2: Initialize: Model parameters θ, adaptive
weight α ∈ [0, 1], learning rate η

3: Output: Updated θ, α, and loss LATS

4: Compute token-level cross-entropy loss

5: LCE ← −1
T

T∑
t=1

N∑
i=1

yit logP (xt ∈ ci)

6: Compute CRF sequence-level loss
7: Compute score of true sequence S(Y,X)
8: Compute partition function Z(X) =

log
∑
Ŷ

exp(S(Ŷ , X))

9: LCRF ← −(S(Y,X)− Z(X))

10: Compute adaptive loss
11: LATS ← α · LCE + (1− α) · LCRF

12: Backpropagation and parameter updates
13: Compute gradients: ∇θLATS , ∇αLATS

14: Update parameters:
15: θ ← θ − η · ∇θLATS

16: α← α− η · ∇αLATS

17: Return: Final loss LATS , updated θ, α

3 Experimental Evaluation

3.1 Datasets and Settings
Experimental evaluation was conducted on eight
widely used biomedical NER datasets as reported
in Table 1. All of these datasets are formatted
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Table 2: Macro F1-Scores of AdaBioBERT and State of the Arts

Dataset SciSpacy Stanza Spark NLP PubMedBERT BioBERT AdaBioBERT
BC4CHEMD 71.98 83.25 90.09 91.43 91.72 95.40
Linnaeus 79.84 81.73 82.14 85.07 85.47 87.51
NCBI Disease 74.82 83.08 84.13 87.83 88.45 92.68
BC5CDR 74.47 83.13 83.25 88.67 85.37 89.83
JNLPBA 69.35 74.14 76.68 79.16 76.18 78.93
AnatEM 74.22 83.35 84.15 90.57 88.14 94.03
BioNLP13GE 73.70 82.93 83.24 80.24 84.91 85.36
Species800 73.67 81.04 83.14 82.79 81.93 87.63

in the IOB (Inside, Outside, Beginning) tagging
scheme, ensuring consistency in annotation and
format across different biomedical domains. Each
dataset is processed by extracting unique labels
and tokenized using the AutoTokenizer from Hug-
ging Face’s Transformers library, ensuring compat-
ibility with the pre-trained BioBERT model. The
Word2Vec embeddings, pre-trained on biomedical
literature, are integrated into the model as an addi-
tional feature to enhance entity recognition. Our
model architecture is based on BioBERT, extended
with a CRF layer for structured sequence prediction.
A fully connected classifier with dropout is applied
to the concatenated BioBERT and Word2Vec em-
beddings, projecting them onto the label space. The
loss function is a weighted combination of CE and
CRF loss, where the weight is a trainable parame-
ter optimized during training. The optimizer used
is AdamW with weight decay to improve gener-
alization. The model is fine-tuned for 5, 10, 20,
40 epochs with a batch size of 4, 8, 16, 32 us-
ing an initial learning rate of 1e-4, 2e-4, 3e-43. A
NVIDIA A100 40 GP GPU server is used to im-
plement AdaBioBERT. Evaluation is performed on
an evaluation dataset after each epoch, saving the
best-performing checkpoint. The trainer relies on
mixed precision training and gradient accumulation
for efficient computation.

3.2 Results and Discussion

The performance of AdaBioBERT and the state
of the arts are reported in Table 2 in terms
of macro-averaged F1-score. It can be seen
from Table 2 that AdaBioBERT recognizes the
biomedical entities better than the state of the

3Results are reported for 20 epochs, batch size of 32 and
learning rate of 1e-4.

arts and it outperforms the other methods for all
datasets for macro-averaged F1 scores. Signifi-
cant improvement of the F1-score of our method
can be observed in BC4CHEMD (+3.68 over
BioBERT (Lee et al., 2020)), Linnaeus (+ 2.04 over
BioBERT), NCBI Disease (+4.23 over BioBERT
), BC5CDR(+1.16 over PubMedBERT (Gu et al.,
2021)), AnatEM (+3.46 over PubMedBERT),
Species800 (+4.49 over SparkNLP) and marginally
exceeds BioNLP13GE (+0.45 over BioBERT).
Having JLNPBA as an exception where it lags
marginally (-0.23 by PubMedBERT) indicating
required improvement for recognition of protein,
cell line„ and cell type entities in biomedical data.
These results suggest that AdaBioBERT excels
in biomedical entity recognition tasks where con-
textual understanding is important. The perfor-
mance of AdaBioBERT on diverse biomedical en-
tity recognition datasets shows its adaptability and
robustness.

Notable improvements in micro F1-score are
also reported in Table 3, where AdaBioBERT sur-
passes the performance in BC4CHEMD (+2.64
over PubMedBERT), Linnaeus (+5.07 over Pub-
MedBERT), NCBI Disease (+7.17 over BioBERT),
and AnatEM (+5.41 over PubMedBERT), demon-
strating AdaBioBERT’s recognition capability
in chemical and disease-related entities. Ad-
ditionally, AdaBioBERT surpasses BioBERT in
BioNLP13GE (+2.93), PubMedBERT in BC5CDR
(+1.82), SparkNLP in JNLPBA (+2.98), and Pub-
MedBERT on Species800 (+1.54).

The proposed AdaBioBERT model introduces a
novel approach to biomedical NER by integrating
Adaptive Token-Sequence Loss with pre-trained
contextual embeddings from BioBERT. One of
the key technical innovations of AdaBioBERT is
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Table 3: Micro F1-Scores of AdaBioBERT and State of the Arts

Dataset SciSpacy Stanza Spark NLP PubMedBERT BioBERT AdaBioBERT
BC4CHEMD 84.55 89.65 93.72 95.17 92.36 97.81
Linnaeus 81.74 88.27 86.26 90.22 88.24 95.29
NCBI Disease 81.65 87.49 89.13 88.36 89.71 96.88
BC5CDR 83.92 88.08 89.73 92.88 90.61 94.70
JNLPBA 73.21 76.09 81.29 79.53 77.49 84.27
AnatEM 84.14 88.18 89.13 92.04 91.26 97.45
BioNLP13GE 77.60 84.34 85.58 89.47 92.66 95.59
Species800 74.06 83.35 84.91 86.76 85.31 88.30

Figure 2: Final and Average α Values for Biomedical
NER Datasets

its use of a learnable weight parameter (α) in
the LATS loss function. This parameter enables
the model to dynamically adjust the trade-off be-
tween token-level and sequence-level objectives
during training, which ensures that our model can
effectively handle both short, unambiguous enti-
ties and longer and complex ones. This flexibil-
ity is a significant improvement over the state of
the arts that rely on fixed-weight combinations of
LCE and LCRF , which may not generalize well
across diverse biomedical texts. Additionally, the
integration of pre-trained Word2Vec embeddings
with BioBERT’s contextual embeddings provides
a multi-stage transfer learning framework, enhanc-
ing the model’s ability to capture both semantic
and contextual nuances in biomedical texts. The
effectiveness of AdaBioBERT for identifying regu-
lar single token and complex multi-token entities
has been demonstrated in the Table 2 and 3 for al-
most all datasets. The datasets like Species-800,
NCBI Disease, and BC5CDR, where AdaBioBERT
outperforms state-of-the-art by significant margins,
contain lots of multi-token entities.

The different values of α in Figure 2 show how
entity types vary in recognition difficulty. Chem-
ical and gene entities (BC4CHEMD, JNLPBA)
have much higher values (>0.94) because they
use standard naming patterns that make individ-
ual words more important. Disease and anatomy
terms (BioNLP13GE, BC5CDR, AnatEM) have
lower values (0.56-0.66) because they need more
context to understand ambiguous and less consis-
tent names.

4 Conclusion

The potential of the proposed adaptive token-
sequence loss with BioBERT embeddings is
demonstrated through the extensive empirical
analysis. By dynamically adjusting token-level
and sequence-level learning through the learnable
weight parameter (α), AdaBioBERT improves con-
textual understanding and multi-token entity recog-
nition. Additionally, the integration of pre-trained
Word2Vec embeddings further refines semantic rep-
resentation in biomedical text. Despite its effec-
tiveness, AdaBioBERT has high computational
costs and may struggle with highly specific hi-
erarchical entities. Future work will extend Ad-
aBioBERT to broader biomedical information ex-
traction tasks, including relation extraction, sen-
tence classification, and document classification, to
boost knowledge discovery in biomedical research.
Codes available at: https://github.com/sumit-
kumar-9297/AdaBioBERT-NER.git
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