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Abstract 

We developed a new methodology of 

extracting the frequency of a patient’s 

epilepsy seizures from unstructured, free-

text outpatient clinic letters by: first, 

devising a singular unit of measurement for 

seizure frequency; and second, fine-tuning 

a generative Large Language Model (LLM) 

on our bespoke annotated dataset. We 

measured frequency by the number of 

seizures per month: one seizure or more 

requires an integer; and less than one a 

decimal. This approach enables us to track 

whether a patient’s seizures are improving 

or not over time. We found fine-tuning 

improves the F1 score of our best-

performing LLM, Ministral-8B-Instruct-

2410, by around three times compared to an 

untrained model. We also found Ministral 

demonstrated an impressive ability for 

mathematical reasoning. 

1 Introduction 

Extracting key patient data from longitudinal 

Electronic Health Records (EHRs) is critical to 

developing AI models that help improve patient 

treatments. Yet unstructured, free-text narratives 

are typically not suited to computational models 

that require structured data, and so medical 

researchers are increasingly utilizing Natural 

Language Processing (NLP) tools to enable clinical 

AI models to understand medical terminology and 

concepts (Yang et al., 2022).  

In recent years, much clinical NLP research has 

focused on generative Large Language Models 

(LLMs). On the one hand, this has involved the 

development of LLMs with some degree of clinical 

expertise, such as ClinicalBERT (Huang et al., 

2019), GatorTron (Yang et al., 2022), and 

ClinicalMamba (Yang et al., 2024). On the other 

hand, researchers have applied general knowledge 

LLMs to extract data from clinical texts (for 

example, Agrawal et al., 2022; Thirunavukarasu et 

al., 2023; and Zhou et al., 2023). In turn, this field 

of research has led to the creation of a benchmark, 

ClinicBench, to evaluate the performance of 22 

LLMs in a clinical setting (Liu et al., 2024). 

Yet the application of LLMs to epilepsy research 

is still relatively uncommon, although it is expected 

that this field will increase significantly in future 

(van Diessen et al., 2024). Epilepsy affects about 

1% of the general population (Fiest et al., 2017) and 

contributes to an estimated half a percent of the 

global disease burden (WHO. Epilepsy. 2019). 

About 30% of people with epilepsy do not respond 

to anti-seizure medications (ASMs) and are 

therefore regarded as refractory to treatment (Kwan 

and Brodie, 2000). In the United Kingdom over the 

last decade, more than 30 individual ASMs have 

been available to prescribe and the number of 

possible combinations of ASMs taken as 

polytherapy is much larger. Consequently, it is not 

feasible to try all possible monotherapy and 

polytherapy options in every refractory patient. 

This underlines the importance of research in 

predicting which ASMs would have the greatest 

impact on epileptic seizures for individual patients. 

The most extensive relevant research on LLMs 

and epilepsy remains a long-term study (Xie et al., 

2022a; Xie et al., 2022b; Xie et al., 2023; and Xie 

at al., 2024) that used a different methodology from 

ours to extract seizure frequency information from 

Electronic Health Records (EHRs). In their      

2022-23 papers, the University of Pennsylvania 

researchers applied the pre-trained Transformers 

Bio_ClinicalBERT (for text classification), 

RoBERTa (for text extraction), and a T-5 model (to 

summarize sentences with seizure frequency data) 

to free-text EHRs to determine the seizure 

frequency of a person with epilepsy or whether that 

person was seizure free. They declared an “overall 

accuracy” score of 0.88 for seizure frequency. In 
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their 2024 paper, the team tested for bias (race, 

ethnicity, sex, income, and health insurance) in a 

ClinicalBERT model that they had fine-tuned on 

700 manually annotated epileptologist notes and 

which classified whether a clinic note specified if a 

patient was seizure free or had recent seizures. 

They found no evidence of bias in the model. 

Our previous, 2024 study was the first published 

paper to use a generative LLM to determine seizure 

frequency for people with epilepsy from 

unstructured, free-text EHRs (Holgate et al., 2024). 

We utilized Llama 2 13B (Touvron et al., 2023) to 

classify seizure frequency within eight temporal 

categories – ranging from once a year at one end of 

the spectrum to one or more per day at the other 

end – and in our analysis grouped the temporal 

categories into a binary split between infrequent 

and frequent seizures. We achieved an overall F1 

score of 0.73 with Llama 2 13B. 

An even more recent epilepsy study (Goldenholz 

et al., 2025) utilizes three different LLMs for 

different purposes: 1) Meta’s Llama 2 13B to 

generate a randomized clinical trial for the ASM 

Cenobamate and generate 480 synthetic clinical 

notes; 2) Mistral’s Mistral 7B v0.1 to summarize 

the clinical notes, specifically in regard to the 

number of seizures during the observation period 

and any symptoms associated with the ASM; and 

3) Anthropic’s Claude 2 to improve on the 

formatting and results of the data table. They used 

LLMs from different AI companies to ensure 

separation of technologies for the discrete tasks. 

Importantly, none of the LLMs were specially 

trained in medical language. The researchers 

concluded that their methodology demonstrated a 

capacity for inductive reasoning “from large sets of 

unstructured clinical encounters.” Consequently, 

they recommended “a paradigm shift away from 

perfectly understanding the individual patient 

towards generalizable knowledge extracted from 

groups of patients. This new paradigm capitalizes 

on the strengths of LLMs … [while] 

acknowledging their weakness at high precision.”  

While we agree that LLMs hallucinate at 

individual patient level for seizure frequency, 

based on our experience, we disagree that they are 

not useful for micro analysis. On the contrary, our 

study demonstrates that some of the latest 

generative LLMs are, in fact, very good at 

estimating seizure frequency in unstructured, free-

 
1 https://cogstack.org/ 

text EHRs based on our new methodology that 

incorporates a singular unit of measurement and 

fine-tuning. 

2 Data and Methods 

2.1 Data Collection 

We selected 51,760 EHRs from King’s College 

Hospital NHS Foundation Trust (KCH) that relate 

to 5,767 unique adult people with epilepsy being 

treated at KCH. The data spans more than a decade, 

from 1 January 2013 to 30 September 2023. The 

vast majority of the records comprise doctors’ and 

nurses’ reports of outpatients’ ambulatory visits. 

We defined a person with epilepsy as someone who 

has at least one record of an epilepsy diagnosis. 

The selection was done via CogStack, an open-

source information retrieval and extraction 

platform for EHRs developed by researchers at the 

NIHR Maudsley Biomedical Research Centre in 

London.1 CogStack integrates with KCH’s EHRs. 

We defined a set of epilepsy-related keywords and 

medical codes, and then used CogStack's search 

functionality to filter out EHRs that matched these 

definitions. 

We then used stratified random sampling to 

select 3,000 EHRs to create an annotated dataset, 

which ensured proportional distribution across the 

original dataset in regard to age, gender, and 

ethnicity to minimize bias (see below for further 

annotation details).  

2.2 Seizure Frequency Measurement 

We followed the logic of the U Penn team to create 

a standardized format to denote seizure frequency 

in a given EHR. However, our methodology 

differed in two ways. First, the U Penn researchers 

used three language model pipelines with three 

different language models – for text classification, 

text extraction, and summarization of sentences 

with seizure frequency data – whereas we used 

only one generative LLM for all classification, 

extraction, and calculation tasks, largely because 

the newest LLMs are much more powerful than the 

ones they used. Second, the U Penn researchers 

initially used different time periods – day, month, 

year, or visit –depending on the period specified in 

the text, and then converted that by a rules-based 

quantifier into a standardized format of the number 

of seizures per month, whereas we required only 
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one step by fine-tuning an LLM on our annotated 

dataset that denoted the text’s data as the number of 

seizures per month.  

Our project’s lead data scientist annotated 1,480 

EHRs in accordance with our singular unit of 

measurement for seizure frequency – that is, the 

number of seizures per month. The EHRs had 

previously undergone an initial annotation process. 

In our previous study (Holgate et al., 2024), we 

used stratified random sampling to select 3,000 

EHRs to create an annotated dataset, which 

ensured proportional distribution across the 

original dataset for age, gender, and ethnicity to 

minimize bias. Subsequently, a team of six 

annotators, comprising four neuroscience 

clinicians (including two epileptologists) and two 

data scientists, manually annotated the 3,000 EHRs 

for key data categories of the project, in particular 

seizure frequency, as well as seizure freedom, 

current anti-epilepsy medication, epilepsy type, 

seizure type, associated symptoms, and 

comorbidities. The annotators categorized seizure 

frequency into eight temporal frequencies – 

ranging from one seizure per year to one or more 

per day – plus ‘unknown.’ Due to time and resource 

limitations, the annotators worked on separate 

batches of the 3,000 EHRs, rather than having two 

annotators work on the same batch for moderation. 

However, the two epileptologists reconvened to  

create a ‘gold standard’ annotated dataset of 300 

EHRs; their inter-annotator agreement was a 

Cohen’s kappa score of 0.84, which signified near 

perfect agreement. 

In turn, the lead data scientist used the 300 EHRs 

from this ‘gold standard’ annotated dataset plus a 

further 1,180 annotated EHRs to create a training 

and testing dataset to fine-tune LLMs on seizure 

frequency. The reason why the training / testing 

dataset was about half the size of the original 

annotated dataset was that about the same 

proportion of the KCH EHRs extracted contained 

information about a patient’s seizure frequency. 

The lead data scientist converted the annotator’s 

original annotation for seizure frequency to our 

new measurement system, in which one seizure or 

more per month required an integer, and less than 

one seizure per month a decimal (see Table 1). Two 

other categories were required for notation. If an 

EHR contained reference to seizures but the 

duration was unspecified or unclear, the number 

 
2 https://www.langchain.com 

‘1000’ was used (essentially a proxy figure to 

denote incomplete information). Or if an EHR 

contained no reference to seizures, a ‘0’ was used. 

This methodology provided three key 

advantages: first, a single numerical metric makes 

it easy to track a patient’s seizure trajectory over 

time (a declining number means the frequency of 

their seizures is reducing, while an increasing 

number means the frequency of their seizures is 

rising); second, a single numerical metric is easier 

to understand than eight, discrete temporal 

categories to record seizure frequency; and third, a 

single numerical metric is a more accurate and 

reliable input to feed into a seizure prediction 

model that we are developing as part of our wider 

epilepsy research project.  

 

2.3 Model Development and 

Implementation 

Environments and Models: We used LangChain 

as our development framework because it provides 

convenience and flexibility for building 

applications powered by LLMs. 2   First, we 

deployed LangChain in our local environment, 

then we downloaded the four LLMs we 

experimented with in this study from Hugging Face 

and loaded the models into LangChain, which 

allowed us to perform multiple LLM operations in 

the local environment.3  LangChain offers simple 

interfaces for loading and initializing LLMs.  

We also employed parameter-efficient fine-

tuning techniques, or PEFT, in particular parameter 

updates by low-rank adaptation, or LoRA. The 

latter hacks the regular backpropagation updates by 

splitting the update matrix into two smaller 

matrices which, when multiplied together, can give 

back the original update matrix. LoRA can 

accelerate training while reducing the 

computational demands. 

We experimented with four LLMs that were 

released in 2024 or 2025 and developed by three 

different AI companies: US-based Meta’s Llama 

3.1 8B Instruct (Grattafiori et al., 2024); France-

based Mistral’s Mistral Nemo Instruct 2417 

(Mistral AI Team, 2024a) and Ministral 8B Instruct 

2410 (Mistral AI Team, 2024b); and China-based 

Alibaba’s Qwen 2.5 7B Instruct (Yang et al., 2025). 

We were restricted to only using open-source 

language models because we used confidential  

3 https://huggingface.co 
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Figure 1: Prompt query structure. 

 

 

medical data from the UK’s National Health 

System (NHS) that had to remain within the 

hospital’s secure IT network for regulatory reasons. 

We ran the LLMs on up to eight Nvidia V100 

GPUs.  

Pre-processing: We implemented two pre-

processing elements. First, we found that an LLM’s 

performance was slightly improved by reducing 

the length of each EHR, deleting non-relevant 

administrative information at the top and bottom of 

each clinic letter. As a result, this minimized noise 

from the unstructured text. We deleted all text 

before the clinic date at the top of the letter, and 

removed all text after the letter writer (typically a 

doctor or nurse) signed off “yours sincerely” (a UK 

letter writing convention) towards the end. In the 

event there was no specified date or sign-off, we set 

a default deletion of the first 40 characters and final 

500 characters of each letter. 

Second, we created a balanced dataset from the 

1,480 annotated EHRs to train, test, and validate 

the LLMs. In each of the dataset’s 1,480 

observations, the input consisted of the EHR text, 

and the required output was the annotated decimal 

or integer for the corresponding seizure frequency, 

if stated in the document. A label for seizure 

frequency was assigned to the entire clinical note, 

based on the frequency for the patient at the time of 

the clinic visit. In other words. we fine-tuned the 

LLM on the annotated output. The balanced dataset 

was of various sizes, ranging from 375 to 813 

EHRs in order to create training datasets ranging 

from 300 to 650 EHRs in increments of 50. The 

balanced dataset was structured by: taking a 

specified number of EHRs annotated with seizure 

frequency measurements of 0.1 to 999 (meaning 

these letters contained a reference to seizures with 

a specified frequency) and selected at random from 

the 1,480 annotated EHRs; then taking 25% of the 

number of the 0.1-999 category letters from the 

‘1000’ category letters, selected at random; and 

finally taking the same 25% portion from the ‘0’ 

category letters, again selected at random. For 

example, 500 of the 0.1-999 letters were combined 

with 125 of the ‘1000’ letters and 125 of the ‘0’ 

letters to make a balanced dataset of 750 EHRs in 

total. The train/test/validation split was 

80%/10%/10%. So in this example the training 

dataset consisted of 600 letters, the testing dataset 

75 letters, and the validation dataset 75 letters. We 

use the term ‘balanced’ to mean that the dataset 

used to fine-tune the LLM was not weighted too far 

towards any of the three annotated categories. 

During experiments we found that this ratio of 25% 

of the total 0.1-999 letters for each of the ‘1000’ 

and ‘0’ letters worked best for adequately fine-

tuning the LLMs on our seizure frequency task.  

A fundamental challenge for this project was 

that the NHS EHRs used, mostly doctors’ and 

nurses’ reports of outpatients’ ambulatory visits, 

were unstructured and typically noisy. The reports 

included a range of medical and administrative 

information, such as the patient’s medication, other 

therapies, and details disclosed during previous 

clinic visits. Furthermore, the reports often did not 

include any information about seizure frequency 

and, if they did, the language was often imprecise, 

so that the nature of the frequency was vague or 

unclear. These factors make the application of 

LLMs to EHRs to research seizure frequency 

challenging. 

Prompt Engineering: Although fine-tuning the 

LLM on hundreds of examples was the primary 

methodology in meeting this challenge, a 

secondary methodology was prompt engineering. 

We found that the structure of the prompt query 

made a difference to the quality of an LLM’s 

answers. After experimentation, we concluded the 

optimal approach was Chain of Thought reasoning,  

You are a professional neuroscientist. 

Analyze the text and work through these 

4 steps: 

1. Determine whether the text has any 

information about the frequency of the 

patient's epilepsy seizures. 

2. If the text does have information 

about the frequency of the patient's 

epilepsy seizures, then estimate the 

frequency of the seizures, and return the 

answer as the number of seizures per 

month. 

3. If the text does refer to seizures but 

you cannot estimate the frequency of the 

seizures, then return the answer '1000'. 

4. If the text does not have any 

information about the patient's epilepsy 

seizures, then return the answer '0'. 
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asking the LLM to work through four logical steps, 

each of which was numbered (see Figure 1). The 

first step was to determine whether the EHR 

contained any information about the frequency of a 

patient’s seizures (because often the letters did not). 

The second step asked the LLM to estimate the 

frequency as the number of seizures per month. 

The third step asked to return an answer of ‘1000’ 

if the frequency of seizures of was too difficult to 

answer. The fourth and final step asked to return ‘0’ 

if there was no information about seizures. At the 

start of the prompt, we asked the LLM to take on 

the role of a professional neuroscientist, as we 

found this slightly improved the quality of answers. 

We hypothesize that contextualizing the reasoning 

task for the LLM assists it in logically connecting 

the prompt (question) and text (EHR) with the 

relevant medical parts of the vast corpora that the 

LLM was originally trained on.    

    Hyperparameters: We kept the temperature at 

a very low 0.0001 (0 does not work for some 

LLMs) because we wanted the LLMs to generate 

typically fact-based answers and be consistent in 

their answers across multiple runs. In addition, our 

aim was to minimize both the LLMs’ ‘creativity’ 

and hallucinations. 

Although we experimented with changing some 

hyperparameters, such as the number of training 

epochs, batch size, and learning rate, we found 

none of these had any significant impact on the 

quality of the LLMs’ answers. We set the number 

of epochs at three, the batch size at one, and the 

learning rate at 0.0002. In other words, the most 

influential factor in improving output was the  

 

size of the training dataset, followed by the prompt 

structure. For LoRA, we set the r value at 64, the 

alpha at 16, and the dropout rate at 0.1. 

    Post-processing: Despite fine-tuning the LLMs 

on our annotated dataset, the models’ raw answers 

often needed to be cleaned up by a post-processing 

algorithm. The raw answers from the original 

model were typically variable, with a best-case 

answer being exactly what was asked by the 

prompt questions (e.g., ‘0’, ‘2’, or ‘1000’), a mixed 

answer (e.g., ‘11 to 16 seizures per month’), to 

outright nonsensical (e.g., ‘123456789' or ‘He also 

showed some difficulties'). The raw answers from 

the fine-tuned LLMs were, however, generally 

more in line with what was required, typically 

generating an answer as either a decimal or integer 

with no (or little) text. Yet the LLM’s construction 

– or attempt at construction – of a decimal was 

often confused with more than one decimal point 

(e.g., ‘2.00.0000’). As a consequence of the LLMs 

not being able to generate an answer in exactly the 

required format 100% of the time, we wrote a rules-

based algorithm that either corrected the answer 

format where reasonably clear (e.g., ‘2.00.0000’ 

becomes ‘2’) or changed to a ‘0’ if completely 

unclear (e.g., ‘123456789'). 

Model Selection: We began by running the four  

LLMs that we tested on different sized balanced 

datasets in order to create training datasets ranging 

from 300 to 650 EHRs in increments of 50, as 

outlined above. During fine-tuning each LLM was 

trained on the training dataset and also given 

separate evaluation and test datasets. At this stage 

we identified Mistral’s two models as being the 

 

Table 1: Seizure frequency categories and measurements per month, performance evaluation methods. 
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best performing, followed by the Qwen 2.5 model, 

and the Llama 3 model. Overall, the best 

performing model was Ministral-8B-Instruct-2410. 

We then tried various experiments to optimize 

the output of Ministral-8B-Instruct-2410. The most 

significant factors influencing the quality of the 

LLM’s answers were the size of the training dataset 

(in general, more observations improved the 

answers) and the prompt structure. We determined 

that when the training dataset consisted of about 

550 EHRs or more, the F1 score on our preferred 

method of evaluation reached about 0.80 or more. 

3 Results  

3.1 Performance Evaluation Methods 

We used a confusion matrix to calculate recall, 

precision, the F1 score, and accuracy to evaluate an 

LLM’s performance. We used a test dataset that 

each LLM had not seen during its training process. 

However, we devised two different methods of 

calculation, what we called the purist method and 

the pragmatic method. In the first method we used 

fuzzy logic, or the setting of soft (rather than hard) 

numerical boundaries between each of the eight 

temporal seizure frequency categories, on the basis 

that the temporal distinctions are arbitrary and our 

objective was to determine changes in a patient’s 

seizure frequency over time. 

The purist method set a high bar by calculating 

how well the LLM performed on eight temporal 

categories of seizure frequency. However, we 

treated this method more as a theoretical (rather 

than true) guide of performance, given the 

inconsistency of seizure information written by 

doctors and nurses in the outpatient letters, and the 

often inherent ambiguity of their language. Under 

this method, one seizure per year (specific target 

0.08) equated to a range of 0 < x ≤ 0.16, one seizure 

per six months (specific target 0.17) was 0.16 < x ≤ 

0.18, more than one seizure per six months but less 

than one per month (mid-point target ≈ 0.33) was 

0.18 < x ≤ 0.99, one per month (specific target 1) 

was 0.99 < x ≤ 1.1, more than one seizure per 

month but less than one per week was 1.1 < x ≤ 3.9, 

one per week (specific target 4) was 3.9 < x ≤ 4.1, 

more than one per week but less than daily was 4.1 

< x ≤ 29, and one or more per day was 29 < x ≤ 999 

(999 being 1 below the ‘fudge’ figure of ‘1000’). In  

addition, we tested the model strictly against the 

other two categories: seizures with no information 

about frequency (‘1000’); and no information 

about seizures (‘0’). 

By contrast, the pragmatic method set a lower 

bar and reflected our broader objective to 

determine whether LLMs are good at extracting 

information about a patient’s seizure frequency in 

such a way to reveal if their seizures are improving 

over time or not. In this method, we bifurcated the 

output into two temporal categories, infrequent and 

frequent seizures. Infrequent ranged from one 

seizure per year to one per month, which equated  

to a range of 0 < x ≤ 1.1. While frequent ranged 

from more than one per month to one or more per  

day, which equated to 1.1 < x ≤ 999. The two non-

temporal categories remained as above. The 

threshold between infrequent and frequent had an 

empirical (rather than clinical) justification, in that 

our chosen demarcation line spread the number of 

observations in both categories more evenly, to 

avoid the frequent category significantly 

outweighing the infrequent category. 

3.2 Model Performance 

As shown in Table 2, the best-performing LLM, 

Ministral-8B-Instruct-2410, achieved its highest 

F1 score on the pragmatic method of 0.81 (purist 

method 0.68) with a training dataset of 650 EHRs, 

and a corresponding accuracy rate of 0.68 (0.52). 

As Appendix A illustrates, the F1 score on the 

pragmatic method rose beyond the 0.70 level once 

the training dataset became greater than 500 EHRs. 

While this might imply that the bigger the training 

dataset, the more effective the fine-tuning and the 

better the answers, this may not necessarily be the 

case. The F1 score dipped at 600 training 

observations but then rose to a new high at 650. 

Further research is required with even larger 

training datasets to investigate in more depth. 

On the other hand, the results suggest that recall 

is not dependent on the size of the training data. 

Recall was consistently high, ranging from 0.86 to 

1.00 on almost all training dataset sizes (with one 

exception). In other words, this Ministral model 

was proficient at correctly estimating seizure 

frequency. 

By contrast, the results imply that precision is 

dependent on the size of the training dataset. The 

Ministral model required more than 500 training 

observations to improve precision – the same size 

needed to trigger an uplift in the F1 score. 

Nevertheless, precision remained the model’s weak 

spot, achieving a best result of only 0.71 at 650 
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training observations on the pragmatic method,  

which was still comparatively low. This points to 

the model still ‘hallucinating’ on too many 

occasions, despite our attempts to minimize false 

positives through various techniques, in particular, 

fine-tuning, prompt engineering, setting a very low 

temperature, and adjusting the proportions of the 

balanced dataset. 

    The second-best performing LLM was the other 

Mistral model, Mistral-Nemo-Instruct-2407, 

which achieved a top F1 score of 0.78 on the 

pragmatic method, followed by Qwen2.5-7B-

Instruct (0.66) and Llama-3.1-8B-Instruct (0.28) 

(see Table 2). Appendix B shows the comparative 

performance evaluation of the original LLMs -- 

that is, the non-fine-tuned models – which is much 

lower. 

4 Discussion 

Fine-tuning improved the F1 score of our best-

performing LLM, Ministral-8B-Instruct-2410, by 

at least three times based on a training dataset of 

650 EHRs. The F1 score of the fine-tuned model 

when evaluated by the purist method, 0.68, was 

three times that of the F1 score of the untrained 

model, 0.22. And the F1 score of the fine-tuned 

model when evaluated by the pragmatic method, 

0.81, was 3.7 times that of the original model, also 

0.22. This demonstrates that fine-tuning is an 

effective technique to improve the capacity of 

LLMs to identify the frequency of a patient’s 

seizures in unstructured, free-text EHRs.  

Both Mistral models performed at a high 

standard on this seizure frequency task, with only a 

3 percentage points difference in their best F1 

scores. However, there was a significant drop-off 

of 15 percentage points for the Qwen2.5 F1 score, 

and a 53 percentage points slide for the Llama 3.1 

model, which did not perform well at all on this 

task.  

Both Mistral models were also stable and 

consistent across multiple fine-tuning runs: their 

average F1 scores under the pragmatic method 

across three runs were only 2 percentage points 

below that of their respective top F1 scores; and the 

standard deviation of their F1 scores across 3 runs 

was only 1% or 2%. Stability is important in 

medical research. By contrast, Qwen2.5’s F1 score 

was highly variable with a standard deviation of 

12%. 

Our study also demonstrates that some of the 

most recent LLMs have a capacity for 

mathematical reasoning. The Ministral models, in 

particular, were adept at identifying the frequency 

of a patient’s seizures from the raw text, which 

could be anything from annually to daily or more, 

then converting that frequency to a standardized 

time period of per month, both in terms of decimals 

and integers. Indeed, Qwen2.5 was designed in part 

specifically to achieve “state-of-the-art 

performance” in mathematical tasks (Yang et al., 

2025), and Llama 3’s design had a partial focus on 

“mathematical reasoning performance” 

(Grattafiori et al., 2024), while the Mistral AI Team 

claims its Ministral 8B model achieves superior 

results to Llama 3.1 8B on a mathematical 

benchmark (Mistral AI Team, 2024b), which 

accords with our experience.  

We can also postulate whether the LLMs we 

tested, especially the Ministral models, have some 

in-depth knowledge of medicine in general and 

 

Table 2: Comparative performance evaluation of fine-tuned LLMs with same training dataset of 650 EHRs. 
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epilepsy in particular in their original, non-fine-

tuned form. On the one hand, the comparatively 

low F1 scores of the original models compared to 

the much higher F1 scores of the fine-tuned models 

imply that may not be the case. On the other hand, 

the models’ ability to quickly pick up the logic from 

the annotated training dataset to identify and 

calculate seizure frequency in a standardized 

format suggests it might be the case. 

If the latter, it would support the findings of a 

recent study that tested three well-known LLMs – 

GPT-4, Bard, and Claude 2; admittedly not models 

that we used – on epilepsy practice examinations 

(Habib et al., 2024). These LLMs achieved mean 

scores of 72%, 65%, and 67%, respectively, 

compared to anecdotal reports suggesting the 

passing score for the examinations was 

approximately 70%. 

“We found that LLMs scored well on the 

epilepsy practice examinations, did not appear to 

rely on memorization, and could logically explain 

the reasons for a correct answer,” said the authors. 

“However, they occasionally hallucinated logic for 

incorrect answers.” Their latter point matched our 

experience with too many false positives and a 

comparatively lower precision, even with our best-

performing model and optimal training dataset. 

Minimizing hallucinations in medical research is 

a common problem (Kim et al., 2025). 

Hallucinations are defined as responses from 

LLMs that are inaccurate or have fabricated 

information. This could affect clinical decisions 

and patient safety. Algorithms tend to hallucinate 

when providing answers to questions that have a 

high complexity, when there is insufficient or 

biased training data for a topic, or when a dataset is 

particularly noisy. All of these are common 

problems in medical research, especially with data 

collected from medical reports and diaries. Fine-

tuning a general LLM is one way to mitigate these 

effects but it is not necessarily a complete solution 

(Zuo and Jiang, 2025). As a result, hallucinations 

may still occur after fine-tuning. 

One possible solution is Retrieval Augmented 

Generation (RAG), which has gained popularity in 

medical contexts in recent years (Li et al., 2024; 

Halamka 2023). RAG involves taking a pre-trained 

LLM but not fine-tuning it. Instead, a prompt is 

given to the algorithm which then uses its training 

and augments it by looking up information from a 

corpus of documents, either from a public or 

private source. This can reduce the effect of 

hallucinations by essentially performing a cross-

check. RAG warrants investigation in further 

research of our study. 

5 Conclusion 

Fine-tuning is an efficient method to optimize the 

extraction of seizure frequency data from 

unstructured, free-text medical records by LLMs. 

Moreover, we found that some of the most recent 

LLMs demonstrated an impressive ability for 

mathematical reasoning, in this case not only 

calculating the frequency of a patent’s epilepsy 

seizures from a text, but also converting that 

calculation into a standardized temporal format of 

the number of seizures per month. Prompt 

engineering is also critical to fine-tuning an LLM 

for this task. However, hallucinations and the 

associated problem of too many false positives 

remain an issue, and further research is required 

here. Nevertheless, this study, by achieving an F1 

score of 0.81 from our best-performing model, 

shows that fine-tuning an LLM provides a new and 

innovative way of extracting seizure frequency 

data from EHRs that in turn enables better analysis 

of the effects of ASMs in the treatment of epilepsy 

and therefore improved patient outcomes. 

Limitations 

This study has three main limitations. First, the 

confidential nature of the medical records used for 

the training dataset means the model outputs are 

not reproduceable by research teams outside the  

hospital where the authors worked. Second, the 

confidential records meant we could not 

experiment with LLMs such as OpenAI’s ChatGPT 

that are only available via an API to an off-site 

service due to privacy reasons. Third, we were 

restricted in what sized LLMs we could use by the 

computing power generated by our GPU platform 

(eight Nvidia V100 GPUs).  

Ethical Considerations 

The confidential EHRs of patients had to remain 

within the hospital’s secure IT network. As a 

consequence, the study’s researchers could only 

access the data and input it into LLMs via the 

hospital’s IT network. 
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Appendix A: Ministral-8B-Instruct-2410 performance (pragmatic method) and size of training dataset. 
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Appendix B: Comparative performance evaluation of non-fine-tuned LLMs with same training dataset of 650 EHRs. 

Note: Llama-3.1-8B-Instruct ‘n/a’ due to lack of true positives under purist method.  
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