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Abstract

In this paper, we present an overview of CLIN-
IQLINK a shared task, collocated with the 24th
BioNLP workshop at ACL 2025, designed to
stress-test large language models (LLMs) on
medically-oriented question answering aimed
at the level of a General Practitioner. The
challenge supplies 4 978 expert-verified, med-
ical source-grounded question–answer pairs
that cover seven formats - true/false, mul-
tiple choice, unordered list, short answer,
short-inverse, multi-hop, and multi-hop-inverse.
Participating systems, bundled in Docker or
Apptainer images, are executed on the Cod-
aBench platform or the University of Mary-
land’s Zaratan cluster. An automated harness
(Task 1) scores closed-ended items by exact
match and open-ended items with a three-tier
embedding metric. A subsequent physician
panel (Task 2) audits the top model responses.

1 Introduction

LLMs have increasingly demonstrated their abil-
ity to memorize information and answer ques-
tions (Carlini et al., 2023). This has led to their
increased use by consumers to ask medically rel-
evant questions (Yun and Bickmore, 2025). How-
ever, LLMs have been shown to "hallucinate", that
is, to generate factually incorrect, or even harmful
answers (Singhal et al., 2023). In high-stakes do-
mains, such as medicine, it is incredibly important
to be able to evaluate the veracity of any question
answering system. While there exist datasets, such
as MultiMedQA (Singhal et al., 2023), designed to
do just this, recent LLMs have been trained over
their data. This limits their usefulness in evalu-
ating the ability of these models to generalize to
out-of-distribution data.

New datasets are necessary for the evaluation of
medical question-answering systems and new sys-
tems are needed to increase accuracy and mitigate
hallucinations.

To this end, we introduce the ClinIQLink shared
task, inviting participants to submit question-
answering systems to be evaluated on a novel
dataset of medical questions. Participants are en-
couraged to submit systems that are capable of
demonstrating medical knowledge, while mitigat-
ing hallucinations. Our dataset consists of seven
question types, both closed and open ended, and a
wide range of medical topics. Our task had a total
of three runs from one team. Our contributions are
as follows:

• A dataset of 4,978 vetted medical question-
answer pairs

• Automated evaluation metrics

• A task design for participant-submitted sys-
tems

• A physician audit of system responses

2 Task Description

ClinIQLink 1 is a shared task that evaluates the abil-
ity of generative models to produce factually accu-
rate medical information aimed at the knowledge
level of a general practitioner. The submitted sys-
tems are executed in a containerized environment
on CodaBench 2 or via the University of Mary-
land (UMD) HPC Zaratan 3 (depending on the size
and model/system complexity), where the submit-
ted systems answered a corpus of expert-curated
atomic medical questions. Answers provided from
the systems submitted were judged only on factual
accuracy, so leaderboard ranking reflects a model’s
ability to retrieve correct information from its own
parametric memory or any retrieval mechanism the
team elected to integrate.

1https://cliniqlink.org/
2https://www.codabench.org/
3https://hpcc.umd.edu/hpcc/zaratan.html
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The question sets were divided into two types
(closed and open-ended QA pairs) and spanned
seven modalities, including true/false, multiple
choice, unordered list, short answer, short-inverse,
multi-hop and multi-hop-inverse. Across all of the
seven QA pair modalities, the ground truth was an-
chored in standard open-source medical texts, and
each item targets a single, clearly defined concept
such as a procedure, drug, diagnostic finding, or
anatomical fact.

The challenge comprised two sequential compo-
nents. Task 1 executed all baseline systems and par-
ticipant submissions within our automated bench-
marking harness. The script marked closed-ended
items strictly for precision and evaluated open-
ended answers with a semantic-similarity module
that awards full or partial credit according to their
closeness to the hidden ground-truth. Leaderboard
rankings are derived solely from these automatic
scores. Task 2 began after the leaderboard was
frozen: a panel of human-expert annotators re-
viewed the highest-scoring outputs, ranking them
from best to worst and annotating each answer on
a spectrum from “good” to “bad”. Participants
were allowed to employ any architecture, external
knowledge base, or retrieval-augmented pipeline
to generate answers to questions posed, provided
the final system can run end-to-end inside the sup-
plied containerised harness. Teams were limited to
three leaderboard submissions and were required
to accompany their final entry with a short paper
that details model design, data usage, and inference
strategy for inclusion in the BioNLP 2025 proceed-
ings. The full evaluation dataset remains private to
preserve its viability for later use.

3 Dataset Description

3.1 Generation and Vetting
A neuro-symbolic pipeline was employed to pro-
duce roughly ∼20K atomic question–answer pairs
from open-source medical texts. Each pair was
linked to its supporting passage so that later re-
viewers could verify every biomedical fact. The
QA Pairs were then ported to our online annotation
portal4, (which is now open to accredited medical
schools and hospitals who wish to contribute fur-
ther judgments), where human-experts (paid medi-
cal students) confirmed correctness, rated general-
practitioner (GP) relevance on a five-point scale,

4https://bionlp.nlm.nih.gov/ClinIQLink/
NIHLogin

and could file structured feedback or formal dis-
putes.

3.2 Human-verification Workflow
1. Primary review: an expert validated factual

accuracy against the source excerpt, assigned
a GP-relevance score, and could flag issues or
supply comments.

2. Secondary review: ∼ 45% of items received
an independent second pass; disagreements trig-
gered adjudication. By 1 May 2025 reviewers
had lodged 601 feedback notes and 461 disputes.
The 1062 QA Pairs that had been flagged as
feedback or disputes were not used for testing
and are presently still being held for later review.

3.3 Benchmark Snapshot (1 May 2025)
At the dataset freeze the repository contained 5,118
verified QA pairs (Table 1): 5,118 had a single ex-
pert judgement and 2,505 were double-annotated.
For leaderboard scoring, we retained only the 4,978
items rated maximally relevant (score = 5); 140
lower-relevance items were set aside for future anal-
ysis. The sample dataset plus the full evaluation
architecture are available at 5.

3.4 Question Modalities
Seven formats cover both machine-gradable closed-
ended items and semantically scored open-ended
prompts:

• Closed-ended

– True/False (TF)
– Multiple Choice (MC) — single-best an-

swer
– Unordered List (LIST) — enumerate all cor-

rect elements

• Open-ended

– Short Answer (SHORT) — concise factoid
– Short-Inverse (SHORT_INV) — explain

why the supplied wrong answer is incorrect
– Multi-hop (MULTI_HOP) — required sev-

eral leaps in knowledge to arrive at a fi-
nal answer; models must return answer and
knowledge leaps

– Multi-hop Inverse (MULTI_HOP_INV) —
locate the faulty step in a provided, erro-
neous multi-hop rationale

5https://github.com/Brandonio-c/ClinIQLink_
Sample-dataset
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Table 1: ClinIQLink benchmark composition at the baseline freeze (1 May 2025). “High” denotes GP-relevance
score 5 items used for leaderboard evaluation; “Low” items (< 5) were withheld.

QA Format Counts Subset with Two Independent Reviews

High Low Total High Low Total Percent Double

True/False (TF) 813 38 851 369 – 369 43.4%
Multiple Choice (MC) 765 29 794 346 – 346 43.6%
Unordered List (LIST) 714 28 742 341 – 341 46.0%
Short Answer (SHORT) 427 9 436 339 – 339 77.8%
Short-Inverse (SHORT_INV) 742 16 758 353 – 353 46.6%
Multi-hop (MULTI_HOP) 771 8 779 331 – 331 42.5%
Multi-hop Inverse (MULTI_HOP_INV) 746 12 758 318 – 318 42.0%

Totals 4 978 140 5 118 2 497 – 2 505 48.8%

4 Evaluation Protocol

Our assessment of CLINIQLINK was conducted
in two sequential phases. First, we relied on a
fully automated evaluation script (Task-1) that in-
gested model/participant system responses; second,
we complemented the automated evaluation with
an expert preference study (Task-2) in which paid
medical students compared top-performing model
responses.

4.1 Task-1: automatic scoring
Each submission returned answers for seven dis-
tinct question classes. True/False and single-best
multiple-choice items were judged by straightfor-
ward accuracy

Accuracy =
#correct

N
,

whereas multiple select list questions were
graded with both macro- and micro F1 (Manning
et al., 2008):

Fmacro
1 =

1

N

N∑

i=1

F
(i)
1 ,

Fmicro
1 =

2TP

2TP + FP + FN
.

All free-text tasks (short, multi hop, and their
inverse variants) were assessed twice; once with the
ClinIQLink semantic-similarity score and again
with the conventional n-gram metrics BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005).

ClinIQLink semantic-similarity score. The score
blended three complementary cosine layers:

(1) Token layer: an IDF-weighted, greedy token-
alignment F1, rewarding exact overlap on in-
frequent clinical terms.

(2) Sentence layer: cosine similarity of
SBERT–MINILM 6 CLS embeddings, cap-
turing broader paraphrase.

(3) Paragraph layer: cosine similarity of the raw
answer strings, offering global context.

Let Ctok, Csent, Cpara ∈ [0, 1] denote these three
cosines. With weights wtok = wsent = 0.4 and
wpara = 0.2 the raw score is

Sraw = 0.4Ctok + 0.4Csent + 0.2Cpara.

Because SBERT assigns unrelated sentence pairs
a baseline similarity of about β = 0.25, we subtract
that offset, floor negatives, and snap near-perfect
matches:

S = min
(
1, max

(
0, Sraw − β

))
,

S ≥ 0.95 =⇒ S := 1.

Penalty for multi-hop inverse. If a model
highlighted the wrong reasoning step, the se-
mantic score was down-weighted. Let d =
| predicted step − gold step | be the absolute dis-
tance; then

α(d) =





1 d = 0,

0.7 d = 1,

0.3 d = 2,

0.3 2−(d−2) d ≥ 3,

S∗ = α(d)S.

Hence, the final similarity S∗ combined graded
lexical alignment, distributional semantics, and ex-
plicit reasoning correctness, while conventional

6https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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BLEU/ROUGE/METEOR offered secondary diag-
nostics. A complete implementation of the evalua-
tion script that implements the above can be found
with the testing harness7.

4.2 Task-2: expert preference study
We found that the automated metrics employed
for analysis of the open-ended QA pairs were
not effective for evaluation of model responses,
nor were they effective in discriminating top-
ranking model responses from mediocre model re-
sponses. Hence, to complement the automated
evaluation metrics we organized a human eval-
uation in which we required our annotators to
rank the six strongest foundation models on our
public leaderboard (Falcon-10B, Llama-3.3-70B,
Llama-4 Scout, Mistral-Large-2411, Microsoft Phi-
4 Base, Qwen-3-32B) together with the best partici-
pant submission, Preceptor-AI and the ClinIQLink
ground-truth answers. For every question we shuf-
fled these seven model responses plus the Clin-
IQLink dataset reference solution, and asked hu-
man annotators to rank them from best to worst.
Each answer also received a coarse quality tag
(good/okay/bad). The annotation portal that we
built for this experiment is now open to accred-
ited medical schools and hospitals who wish to
contribute further judgments 8.

5 Baseline Systems

To provide a strong reference point for future work
we evaluated a broad range of publicly–available
large language models on the frozen CLINIQLINK

test split. For transparency, it should be noted
that the LLM utilised as the "neuro" component
of our neurosymbolic pipeline for data generation
was Llama 3.3-70B–Instruct. All baseline check-
points were used as-is and therefore reflect their
pre-training and instruction-tuning quality rather
than any task-specific fine-tuning.

5.1 Llama family.
The Meta Llama 3 (Grattafiori et al., 2024) decoder-
only transformer was represented by four parameter
scales; 1B, 3B, 8B and 70B weights as well as an
intermediate commercial variant (llama_4-scout,

7https://github.com/Brandonio-c/ClinIQLink_
CodaBench_docker-setup/blob/main/submission/
evaluate.py

8https://bionlp.nlm.nih.gov/ClinIQLink2/
NIHLogin

≈ 45B). All are dense models built with a 32-
layer architecture (70B: 80 layers) and grouped-
query attention; the instruction checkpoints add a
supervised fine-tuning and reinforcement learning
step to the base weights.

5.2 Mistral / Mixtral family.
We included the 7-billion-parameter Mistral-
7B (Jiang et al., 2023) dense decoder and the
Mistral-Large-Instruct-2411 release (8 × 22B
experts, two experts routed per token, giving
47B active parameters). The Mixtral series
consisting of Mixtral-8×7B (Jiang et al., 2024)
and Mixtral-8×22B tested share the same sparse
Mixture-of-Experts (MoE) scaffold, however, only
two of the eight experts are selected for each in-
put token, keeping inference costs close to their
12–13 B dense peers while exposing > 140B total
capacity.

5.3 Qwen3 family.
Alibaba’s Qwen3 (Yang et al., 2025) decoder stack
(RoPE positional encoding, grouped-query atten-
tion) was tested at five scales: 1.7B, 3B, 4B, 8B,
and 32B parameters. All checkpoints were released
under an open-source licence together with align-
ment (“-Instruct”) variants that follow the Su-
pervised Fine-Tuning (SFT) + Direct Preference
Optimisation recipe.

5.4 Phi family.
We evaluated Microsoft’s Phi-4 (Abdin
et al., 2024) (∼ 14B dense decoder) and its
lightweight derivatives (phi-4-mini-instruct
and phi-4-mini-reasoning (Abdin et al., 2025),
∼ 3.8B). This family of LLMs was designed as
“small-data curriculum models” whose pre-training
is dominated by synthetic textbook-style content
rather than filtered web corpora.

5.5 Falcon Family
For completeness, we benchmarked Falcon-10B-
Instruct (Almazrouei et al., 2023), an Apache–2.0
decoder model trained on the RefinedWeb dataset
and alignment-tuned with RLHF.

5.6 Google Flan family.
Encoder–decoder baselines were covered by Flan-
T5-XXL (Chung et al., 2022) (11B parameters) and
Flan-UL2 (Tay et al., 2023) (20B). Both models
extend the original T5/UL2 sequence-to-sequence
architecture with instruction tuning on a curated
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mixture of over one thousand NLP tasks; an addi-
tional attrscore_flan_t5_xxl (Yue et al., 2023)
checkpoint was tested, which augments the T5-
XXL Weights with token-level attribution heads
for explanation capabilities.

6 Participants and Methods

The CLINIQLINK shared task was publicly re-
leased through the Codabench evaluation platform9,
with an accompanying containerized setup for local
validation and submission via Docker and App-
tainer10. Submissions of models/systems over
10GB in size and requiring more compute than
what is offered via codabench were also enabled
via direct submission to organizers to be run on
the University of Maryland HPC Zaratan. In total,
43 participants registered for the challenge during
the initial release window. The competition re-
mains open for new submissions on Codabench
for smaller models that can run via the Codabench
platform.

6.1 Preceptor AI
Although forty-three teams registered, only PRE-
CEPTOR AI submitted runnable systems. They
provided three containerised runs, v001, v002, and
v003, but discuss only v001 in their participant
paper.

v001 – VeReaFine (Verifier-augmented RAG).
v001 is an iterative, evidence-seeking pipeline that
couples a Qwen-7B-Instruct generator with a sepa-
rately fine-tuned Qwen-8B medical-reasoning veri-
fier. For each question the system:
1. retrieves up to 20 passages from a Col-

BERT (Khattab and Zaharia, 2020) +
BM25 (Robertson et al., 2009) hybrid in-
dex built over PubMed abstracts and StatPearls;

2. drafts an answer with inline citations;
3. scores every generated claim with the verifier’s

token-level entailment head;
4. if any claim falls below a 0.8 confidence thresh-

old, expands the evidence pool and repeats steps
(1)–(3) (max. four rounds).
The loop stops when all claims are verified or the

round limit is reached, after which the final answer
and citation list are emitted. This design yields
strong gains on all four open-ended modalities (top-
10 P75 recall) but was not tuned for the closed-

9https://www.codabench.org/competitions/5117/
10https://github.com/Brandonio-c/ClinIQLink_

CodaBench_docker-setup

ended formats, explaining its low rank on multiple-
choice and true/false items (see Table 2).

v002 and v003. The team also submitted v002
(a retrieval-free Qwen-32B classifier optimised for
closed-ended questions) and an ablation run v003.
Because their accompanying paper focuses on the
verifier-augmented strategy, only v001 is analysed
in detail there; we include the headline numbers for
all three runs in the leaderboard for completeness.

7 Results

Figure 1: Average performance on closed-ended tasks
(True/False accuracy, multiple-choice accuracy and list
F1).

Figure 2: Distributions of individual n-gram scores
(BLEU, ROUGE, METEOR) and semantic similarity
for each open-ended question type.

Figure 1 summarised mean performance on the
three closed-ended tasks. The spread between
True/False, multiple-choice and list accuracy was
modest, indicating that the leading models handled
discrete answer formats with broadly comparable
competence.

Open-ended behaviour was more nuanced. The
per-task distributions in Figure 2 showed markedly
heavier tails for semantic-similarity than for surface
n-gram metrics, confirming that several systems
produced answers that were lexically novel yet se-
mantically similar. This pattern was especially
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Table 2: ClinIQLink leaderboard snapshot (higher is better). Models were evaluated across all seven modalities
of the ClinIQLink challenge. All models were retrieved from their public Hugging Face repositories, except for
Preceptor_AI, which is private.

Rank Model Overall MC Acc TF Acc List F1 Short S-Inv MHop MH-Inv

1 llama_3-3-70B 0.541 0.796 0.822 0.682 0.235 0.488 0.313 0.450
2 Mistral-Large-Instruct-2411 0.530 0.797 0.822 0.645 0.260 0.472 0.313 0.398
3 phi-4 0.528 0.775 0.790 0.658 0.229 0.493 0.311 0.440
4 llama_4-scout 0.524 0.776 0.822 0.652 0.238 0.492 0.302 0.388
5 Mixtral-8x22B 0.521 0.752 0.800 0.643 0.227 0.491 0.306 0.428
6 Preceptor_AI_v002 0.512 0.762 0.817 0.583 0.213 0.479 0.298 0.430
7 llama_3-1-8B 0.499 0.720 0.765 0.613 0.223 0.479 0.293 0.396
8 Phi-4-mini-instruct 0.498 0.672 0.745 0.636 0.222 0.485 0.299 0.424
9 falcon3_10b_instruct 0.482 0.673 0.760 0.538 0.219 0.487 0.302 0.396

10 Qwen3-32B 0.477 0.737 0.803 0.373 0.233 0.474 0.307 0.415
11 Mixtral-8x7B 0.474 0.656 0.750 0.570 0.213 0.472 0.304 0.353
12 qwen_2_5_3b 0.461 0.629 0.726 0.535 0.216 0.484 0.292 0.347
13 Qwen3-8B 0.454 0.722 0.748 0.293 0.223 0.477 0.316 0.397
14 llama_3-2-3B 0.436 0.502 0.733 0.517 0.200 0.463 0.271 0.369
15 Mistral-7B 0.427 0.425 0.701 0.491 0.216 0.483 0.295 0.378
16 Qwen3-4B 0.423 0.515 0.752 0.294 0.212 0.470 0.310 0.408
17 Qwen3-1_7B 0.419 0.393 0.681 0.484 0.206 0.483 0.299 0.390
18 flan_t5_xxl 0.390 0.599 0.705 0.558 0.220 0.420 0.220 0.005
19 flan_ul2 0.383 0.567 0.695 0.556 0.205 0.430 0.223 0.003
20 attrscore_flan_t5_xxl 0.383 0.571 0.680 0.552 0.214 0.428 0.227 0.005
21 llama_3-2-1B 0.354 0.379 0.610 0.477 0.181 0.450 0.269 0.111
22 Preceptor_AI_v001 0.295 0.047 0.713 0.021 0.163 0.482 0.277 0.363
23 Phi-4-mini-reasoning 0.249 0.095 0.068 0.256 0.196 0.456 0.281 0.389
24 Preceptor_AI_v003 0.221 0.000 0.581 0.074 0.111 0.286 0.233 0.263
25 Phi-4-reasoning-plus 0.167 0.000 0.000 0.070 0.206 0.470 0.290 0.135

pronounced for the multi-hop and multi-hop
inverse questions, where BLEU occasionally
under-estimated quality relative to the embedding-
based score.

To illustrate model-specific traits, Figures 3–5
present the full metric dashboards for three repre-
sentative baselines. The FLAN-UL2 run exhibited
tight clustering around mid-range similarity values
and an extreme outlier for the multi-hop inverse
modality.

LLAMA-3 70B displayed a broader inter-
quartile range on semantic scores but maintained
competitive n-gram fidelity, suggesting flexible
paraphrasing capabilities.

Similarly, the PHI-4-REASONING-PLUS sub-
mission produced a long tail of semantically sim-
ilar scores when evaluated with the CLinIQLInk
semantic similarity metric, but low scoring across
all the n-gram scoring metrics utilised; further in-
spection of the model responses revealed that, de-
spite using the prescribed stop tokens and output
template, the model frequently emitted extensive
chain-of-thought traces capped by an ambiguous
or missing “final answer” cue. Our automated eval-
uation script extracted only the required answers
utilising pre-determined queues (i.e. the prompt
templates used explicitly constrained models to pro-

vide list-type responses as comma-separated lists,
etc.) and as such, the digressions observed from
the Phi-4-Reasoning-Plus (amongst others) trans-
lated into poor task compliance rather than genuine
comprehension deficits.

A consolidated leaderboard is provided in Ta-
ble 2. The ranking served solely as an empirical ref-
erence from the evaluation metrics gathered from
task 1 automated evaluation script.

8 Discussion

8.1 Closed-ended tasks (Figure 1).
Table 2 confirms what is visually apparent in the
right-hand side of Figure 1, which is that single-
labelled questions (e.g., t/f, MC, etc.) are close
to saturation for modern LLMs. The top five
systems tested (llama_3-3-70B, Mistral-Large,
phi-4, llama_4-scout, and Mixtral-8x22B) all
scored between 0.75 – 0.80 on multiple-choice and
0.79 – 0.82 on True/False. By contrast, list ques-
tions remained challenging with macro–micro F1

not exceeding 0.68. List answers required both
recognition of all correct options and rejection
of distractors, and as such, the metric penalised
even minor hallucinations; consequently, models
whose generation style tended to “hedge” with ex-
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Figure 3: Comprehensive dashboard for FLAN-UL2
showing boxplots, jitter plots and histograms across
semantic and n-gram metrics.

tra choices (e.g. falcon3_10b_instruct) under-
performed relative to their multiple-choice score.
The tight inter-quartile ranges on True/False and
multiple-choice further suggest that most contem-
porary LLMs share a common ceiling on purely
factual one-shot classification, leaving little room
for architectural distinctions to distinguish in these
settings.

8.2 Aggregate open-ended behavior
Figure 2 shows that, across all models evaluated,
the short inverse distributions peaked around
0.50 semantic similarity, while the forward short
items clustered near 0.25, indicating that simply cri-
tiquing providing an answer was easier than gener-
ating an answer from scratch. The gap between se-
mantic and n-gram scores widens for larger check-
points. Mixtral-8×22B and LLaMA 3.3 70B fre-
quently achieved high semantic similarity scores
(above 0.60) despite very low BLEU scores (be-
low 0.1), indicating that their correct answers were
often paraphrased rather than copied verbatim, sup-
porting the long-tailed distribution of paraphrastic
responses seen in Figure 2. Inspection of the model
responses for multi-hop inverse QA types also re-
vealed answers that often diagnosed the wrong
knowledge hop step, which in turn attracted the
multiplicative penalties. Traditional n-gram met-
rics failed to flag these omissions, underscoring
the necessity of the custom semantic evaluation
platform.

Figure 4: Comprehensive dashboard for LLaMA-70B
showing boxplots, jitter plots and histograms across
semantic and n-gram metrics.

8.3 Model-specific open-ended evaluations
Figures 3–5 illustrate how aggregate patterns mate-
rialised at the system level. The model-specific
open-ended evaluations are shown for only the
highest performing model across the board (llama-
3.3 70B and the lowest performing model for
closed and open-ended metrics (Phi-4-reasoning
and FLAN-UL2, respectively).

• FLAN-UL2 Figure 3 reveals that FLAN-
UL2’s outputs cluster tightly between 0.20
and 0.60 for the three forward-facing open-
ended tasks, yet its multi-hop inverse
scores collapse toward the origin on all four
axes—semantic similarity, BLEU, ROUGE,
and METEOR rarely rise above 0.05. The
dashboard traces that floor effect to the
model’s habit of supplying only a step la-
bel (e.g., “Step 5”) with no explanatory text,
which earns minimal credit under the step-
penalised rubric. Elsewhere, list questions are
answered with bare option letters (e.g. “B,
C, D”), boosting recall but cutting precision
to roughly 0.33–0.50, while short prompts re-
ceive one or two-word noun phrases, driving
n-gram metrics to zero even when the seman-
tics are acceptable. These abrupt, template-
bound behaviours keep variance low and pre-
vent catastrophic errors, but they also cap the
weighted open-ended average at 0.14 and hold
FLAN-UL2 in 18th place despite competent
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Figure 5: Comprehensive dashboard for Phi-4-
reasoning-plus showing boxplots, jitter plots and his-
tograms across semantic and n-gram metrics.

closed-ended performance.

• LLaMA-3-3-70B Figure 4 shows that
LLaMA-3 70 B’s open-ended answers cluster
in the mid-range for every metric, not at the
extremes. Its semantic-similarity box-plot sits
roughly between 0.35 and 0.55, with whiskers
reaching only the mid-0.70s; BLEU, ROUGE,
and METEOR centre much lower (BLEU’s
median is barely above 0.04, ROUGE around
0.20, METEOR around 0.25). The small band
of higher-value semantic outliers (around
0.65–0.75) is confined to short inverse
and multi-hop inverse items in which the
model repeated key medical terms but re-
ordered the surrounding sequence of words,
so n-gram overlap stayed muted. Conversely,
many short replies are abrupt noun-phrases,
depressing all four metrics and keeping the
inter-quartile ranges tight.

• Phi-4-Reasoning-Plus (Figure 5). The cloud
at the extreme lower-left of the dashboard mir-
rors the 624 malformed list entries and 813 in-
valid True/False lines produced by this model.
Extensive “chain-of-thought” preambles ob-
scured the required delimiters, so the auto-
mated evaluation script extracted empty or
partial lines. BLEU/ROUGE medians (around
0.04) remained higher than the semantic me-
dian (around 0.02) because the responses still
shared surface n-grams with the references.

8.4 Cross-metric contrasts.
1. The ClinIQLink Semantic similarity metric

displayed higher variance than any n-gram
metric across every model dashboard, reflect-
ing sensitivity to both omissions and verbose
digressions.

2. The gap between ClinIQLink Semantic sim-
ilarity metric and BLEU was inversely
correlated with parameter count; smaller
Qwen checkpoints recycled reference word-
ing, whereas 70-B LLaMAs paraphrased ag-
gressively.

3. Multi hop inverse was the most discrimi-
native sub-task; its step-penalty compressed
medians for every system (lowest boxes in
Figure 2), frequently reshuffling neighbouring
ranks in Table 2.

8.5 Findings
• High closed-ended scores hide residual hal-

lucinations. Even with a vocabulary capped
at just true/false or four choice-letters, every
model occasionally invented an out-of-range
option, proving that 0.75–0.82 headline accu-
racies do not equal flawless control.

• List questions are the singular closed-ended
format that is still able to effectively discrimi-
nate model effectiveness because they demand
selecting all true items while rejecting distrac-
tors, and as such, macro–micro F1 was found
to be spread from 0.30 to 0.68. Those wider
answer sets surface the hallucinated extras that
multiple-choice and true/false conceal.

• “Critique” is easier than “generate”. Across
the board, short inverse prompts (spot the
error) cluster around 0.50 semantic similarity
which is roughly double the median for for-
ward short prompts that require composing
a fresh answer.

• Multi-hop-inverse is the most discriminative
open-ended task. Its step-distance penalty
drags every model’s median to the bottom of
Figure 2, reshuffling several adjacent leader-
board positions and exposing brittle reasoning
chains.

• Embedding-level similarity scores for LLM
evaluation tasks are now required as the min-
imum standard. High-ranked systems such
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as Mixtral 22B and LLaMA-3.3 70B often
score > 0.60 on the semantic metric while
BLEU, ROUGE and METEOR sit < 0.05, con-
firming that lexically novel yet faithful para-
phrases fool token-overlap measures. Con-
versely, runs that recycle reference text earn
decent n-gram scores but remain low on the
embedding metric, demonstrating that overlap
alone no longer tracks answer fidelity.

• Note on open-ended evaluation challenges.
Despite impressive progress in embedding-
based metrics (e.g., BERTScore, Sentence-
Mover, BLEURT, COMET etc.) and NLI-
based metrics (e.g., MENLI, UniEval), no sin-
gle method can yet (a) decide with high confi-
dence that two free-form LLM responses con-
vey the same meaning, while also (b) ground-
ing that decision in consistent entity and rela-
tion alignment across passages. Embedding
similarity captures distributional closeness but
is blind to logical entailment; NLI classifiers
reason over sentence-level entailment yet lack
explicit entity grounding and scale poorly be-
yond short contexts, and recent surveys and
benchmark studies conclude that integrating
these complementary views into a robust, scal-
able metric remains an unsolved problem and
a key direction for future work (Ito et al., 2025;
Croxford et al., 2025).

9 Conclusion

The CLINIQLINK evaluation shows that modern
LLMs reach impressive headline scores on tightly
constrained True/False and single-letter multiple-
choice items, yet every model evaluated still spo-
radically produces out-of-vocabulary or otherwise
invalid answers; unordered list questions, with
their wider response space, remain the only closed-
ended format able to expose this fragility. On
open-ended tasks, embedding-based semantic sim-
ilarity distinguishes genuinely informative para-
phrases from superficial n-gram overlap. Con-
ventional n-gram indices systematically mis-score
open responses, rewarding superficial token over-
lap while penalising lexically novel yet factually
correct paraphrases; embedding-based similarity
aligns far more closely with clinical accuracy and,
through the step-penalised multi-hop-inverse task,
reveals brittle reasoning chains. More work is re-
quired to produce an effective semantic similarity
scoring metric with explicit reasoning validation

into a composite metric that more rigorously cap-
tures factuality, logical coherence, entity relation-
ship framing, and schema compliance. To sup-
port this goal, future iterations of CLINIQLINK

will link each question–answer pair to a machine-
readable knowledge graph for graph-based verifi-
cation of multi-step rationales and will introduce
multimodal variants that couple text queries with
images, thereby challenging models to ground their
answers in heterogeneous clinical evidence.
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