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Abstract
CRISPR-Cas systems enable systematic inves-
tigation of gene function, but experimental
CRISPR screens are resource-intensive. Here,
we investigate the potential of Large Language
Models (LLMs) to predict the outcomes of
CRISPR screens in silico, thereby prioritizing
experiments and accelerating biological discov-
ery. We introduce a benchmark dataset derived
from BioGRID-ORCS and manually curated
sources, and evaluate the performance of sev-
eral LLMs across various prompting strategies,
including chain-of-thought and few-shot learn-
ing. Furthermore, we develop a novel, efficient
prediction framework using LLM-derived em-
beddings, achieving significantly improved per-
formance and scalability compared to direct
prompting. Our results demonstrate the feasi-
bility of using LLMs to guide CRISPR screen
experiments.

1 Introduction and Related Work

CRISPR-Cas technology has revolutionized biolog-
ical research. While gene editing with CRISPR
(Jinek et al., 2012) is a promising technology,
genome-wide CRISPR screens have become a cor-
nerstone of functional genomics. These screens al-
low researchers to systematically perturb genes and
identify their causal roles in cellular processes and
disease mechanisms (Shalem et al., 2014; Wang
et al., 2014). However, these screens are resource-
intensive, both in time, cost, and laboratory infras-
tructure. This can limit the scale and scope of bi-
ological investigations, hindering the discovery of
novel therapeutic targets and a comprehensive un-
derstanding of complex biological systems, such as
cancer progression and immune response (Doench
et al., 2016; Evers et al., 2016). The ability to ac-
curately predict the outcomes of CRISPR screens
in silico, before conducting experiments, would
dramatically accelerate biological discovery.

Prior work has explored computational meth-
ods for analyzing CRISPR screen data after ex-
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Figure 1: Conceptual motivation for LLM-driven pre-
diction of CRISPR screen outcomes. An LLM-based
approach transforms the traditionally resource-intensive
experimental process of CRISPR screening into an in
silico prediction task, where an LLM infers the phe-
notypic consequences of gene perturbations based on
provided contextual information.

perimentation. For example, MAGeCK (Li et al.,
2014) and CRISPRAnalyzeR (Winter et al., 2017)
provide tools for identifying essential genes and
analyzing screen results. However, these methods
are inherently reactive, offering insights only after
resources have been expended on wet-lab experi-
ments. They do not provide the capability to predict
screen outcomes a priori. While other works have
explored LLMs for CRISPR experiment design
(e.g., guide RNA selection (Qu et al., 2024)) or dis-
covering novel CRISPR systems (Li et al., 2024),
our focus is distinctly on predicting the phenotypic
outcomes of established screen types by leveraging
an LLM’s existing biological knowledge.

LLMs have demonstrated remarkable capabil-
ities in understanding and reasoning about com-
plex concepts across diverse domains (Brown et al.,
2020; Chowdhery et al., 2023). Recent work shows
promising results in applying LLMs to biological
problems (Sarwal et al., 2023). For example, LLMs
have been applied towards summarizing gene func-
tion (Chen and Zou, 2024), medical question an-
swering (Singhal et al., 2023), cell-type annotation
(Hou and Ji, 2024), and identifying causal genes
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in statistical genetics (Shringarpure et al., 2024).
We hypothesize that LLMs possess the latent ca-
pacity to reason about and predict the outcomes
of CRISPR screens, effectively simulating the ef-
fects of gene perturbations on cellular phenotypes
(Figure 1). This would transform in silico biology
from a primarily analytical tool to a predictive one,
capable of guiding experimental design.

In this work, we investigate LLMs for CRISPR
screen prediction. Our contributions are as follows:

• Benchmark Dataset: We introduce a new bench-
mark dataset for a priori CRISPR screen out-
come prediction. It combines harmonized data
from BioGRID-ORCS (Oughtred et al., 2021)
with manually curated screens from recent high-
impact publications, carefully selected to post-
date LLM knowledge cutoffs, thus minimizing
data leakage and ensuring a rigorous test of pre-
dictive capabilities.

• Comprehensive LLM Evaluation: We compre-
hensively evaluate a diverse set of LLMs (includ-
ing variations of Llama-2 (Touvron et al., 2023),
Llama-3.x (Dubey et al., 2024), GPT-3.5 (Brown
et al., 2020), GPT-4 (Achiam et al., 2023), GPT-
4o (Hurst et al., 2024), and o1 (Jaech et al., 2024))
using zero-shot, few-shot, and chain-of-thought
(Wei et al., 2022) prompting strategies on our
benchmark.

• Embedding-Based Classifier: We propose a
novel, computationally efficient, and scalable
CRISPR screen prediction framework. This ap-
proach leverages LLM-derived embeddings of
CRISPR screen components (perturbation, gene,
cell line, phenotype) as input to a multilayer
perceptron (MLP) classifier, significantly outper-
forming direct LLM prompting, especially for
complex phenotypes.

Our results show that LLMs, particularly our
embedding-based model, can achieve promising
performance. To our knowledge, this is the first
systematic investigation of LLM potential for a
priori CRISPR screen prediction, offering a new
direction for computational biology.

2 Benchmark Dataset and Data
Preparation

To systematically evaluate LLMs for a priori
CRISPR screen prediction, we construct a new
benchmark dataset. This dataset combines data

Does [perturbation] of [gene] in [cells] result in [phenotype]?

LLM Prompting

LLM

Embedding Classifier

LLM

LLM

MLPObtain 
embeddings

Generate 
expanded 

summaries

LLM

1

2

Figure 2: Two approaches for LLM-based CRISPR
screen prediction: (Top) Direct prompting, where the
LLM predicts a binary hit/no-hit outcome from a natu-
ral language query describing the screen. (Bottom) An
embedding-based classifier, where LLM-derived embed-
dings of the screen components (perturbation, gene, cell
line, and phenotype) are used as input to a trained MLP
for outcome prediction. Embeddings are generated from
either (1) raw text descriptions of each component or
(2) LLM-generated summaries of these components.

from established repositories with manually cu-
rated data from recent publications. These publica-
tions were selected specifically because they were
published after the training cutoffs of the LLMs we
evaluate. This strategy ensures both a breadth of
biological scenarios and minimizes the risk of data
leakage, providing a fair assessment of the LLMs’
predictive reasoning.

2.1 Data Sources

Our benchmark is built upon two primary sources.
(1) BioGRID-ORCS (v1.1.16): The BioGRID
Open Repository of CRISPR Screens (ORCS)
(Oughtred et al., 2021) is the largest publicly avail-
able, harmonized database of CRISPR screens. It
provides a broad foundation, encompassing a wide
variety of experimental designs, cellular contexts,
and observed phenotypes. (2) Manually Curated
Screens: We complement BioGRID-ORCS with a
manually curated set of screens focusing on com-
plex phenotypes, extracted from two publications
released in late 2024 (Chen et al., 2024; Skoulidis
et al., 2024). This critical step ensures the dataset
includes real-world screens and stringently avoids
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data leakage by selecting articles published after
the knowledge cutoff of all evaluated LLMs.

2.2 Data Representation and High-Confidence
Hit Definition

We adopt the BioGRID-ORCS harmonization ap-
proach, considering only results deemed statisti-
cally significant (“Hits”) by the original study au-
thors. This standardization minimizes inconsisten-
cies arising from heterogeneous analysis pipelines.
We focus exclusively on screens performed in hu-
man or mouse cell models, aligning genes to the
GRCh38 (human) and GRCm39 (mouse) reference
genomes.

Each screen result is represented as a tuple: (per-
turbation method, gene, cell line, phenotype, hit/no-
hit). We refer to these tuples as gene-phenotype
queries. This structure enables us to pose the pre-
diction task as a natural language question: “Does
{perturbation method} of {gene} in {cell line}
causally result in {phenotype}?” The answer is
binary: “Yes” (hit) or “No” (no-hit).

Crucially, we employ a high-confidence hit def-
inition. A “Yes” (hit) indicates a statistically sig-
nificant observation of the hypothesized effect. A
“No” (no-hit) signifies a statistically significant ef-
fect in the opposite direction of the hypothesized
phenotype. This is more stringent than simply the
absence of the hypothesized effect. For example,
if the question is “Does knockout of CD28 in T
cells causally result in increased IL2 secretion?”,
a “No” outcome indicates that CD28 knockout de-
creases IL2 secretion significantly, not merely that
it does not increase or has no effect. This strict
definition is vital for evaluating LLM predictions,
further detailed in Section 4.1.

2.3 Simple and Difficult Benchmarks

To evaluate LLMs across varying levels of complex-
ity, we define two benchmarks (details in Appendix
Tables 3 and 4):

Simple Benchmark: This benchmark focuses
on relatively straightforward and well-understood
phenotypic effects, often involving direct gene-
phenotype relationships. We manually selected
4 screens from BioGRID-ORCS based on do-
main knowledge of the underlying biological path-
ways. This benchmark is comprised of 1175 gene-
phenotype queries, where 41.3% of these are hits.

Model F1 Score FPR

Llama-2-7B 0.58 ± 0.02 0.97 ± 0.05
Llama-2-13B 0.51 ± 0.12 0.80 ± 0.32
Llama-2-70B 0.47 ± 0.20 0.71 ± 0.36
Llama-3-8B 0.48 ± 0.24 0.85 ± 0.38
Llama-3-70B 0.53 ± 0.09 0.58 ± 0.24
Llama-3.1-8B 0.39 ± 0.17 0.39 ± 0.27
Llama-3.1-70B 0.44 ± 0.14 0.38 ± 0.23
Llama-3.2-1B 0.37 ± 0.25 0.57 ± 0.43
Llama-3.2-3B 0.26 ± 0.24 0.28 ± 0.35
Llama-3.3-70B 0.40 ± 0.19 0.40 ± 0.31
o1 0.16 ± 0.02 0.03 ± 0.00
o1-mini 0.31 ± 0.04 0.10 ± 0.03
GPT-4o 0.47 ± 0.06 0.22 ± 0.06
GPT-4o-mini 0.55 ± 0.04 0.77 ± 0.16
GPT-4-turbo 0.32 ± 0.10 0.15 ± 0.08
GPT-4 0.44 ± 0.12 0.38 ± 0.21
GPT-3.5-turbo 0.42 ± 0.13 0.39 ± 0.25
Random Baseline 0.47 0.36

Table 1: Performance on the Simple CRISPR screen
benchmark using LLM prompting. Results (mean and
std. dev.) are aggregated across up to 10 combinations
of Chain-of-Thought (CoT) and few-shot prompting
strategies for each model. Highlighted model which
maximizes F1 while minimizing FPR.

Difficult Benchmark: This benchmark presents
more complex phenotypes requiring multi-step
reasoning. For example, predicting “decreased
resistance to PD1 blockade and lung carcinoma
cell death” requires understanding the PD-1/PD-
L1 pathway, its role in cancer cell survival, and
the consequences of blocking this pathway. This
benchmark is comprised of 1814 gene-phenotype
queries from screens derived from the two manu-
ally curated, post-cutoff publications. Given the
high-confidence hit definition and the nature of
these complex screens, “hit” outcomes were rare.
To address label imbalance in this dataset, we em-
ployed an inversion strategy for “hit” labels uti-
lizing our high-confidence hit definition. For a
query where the true outcome was a significant
effect opposite to the hypothesized phenotype (a
“no-hit” by our strict definition), we formulated an
inverted query predicting this opposite phenotype
and labeled this new, inverted query as a “hit”. This
process resulted in a balanced split of positive and
negative examples for the Difficult Benchmark, to-
taling 907 positive and 907 negative instances. This
benchmark specifically tests a model’s ability to
reason about more intricate biological mechanisms.
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Model AUROC AUPRC F1 FPR PPV NPV Sens. Spec.

Raw Emb. 0.89 0.86 0.84 0.15 0.85 0.83 0.83 0.85
Summ. Emb. 0.72 0.69 0.67 0.26 0.71 0.67 0.64 0.74
GPT-4o (prompting) N/A N/A 0.35

±0.17
0.79

±0.19
0.32

±0.14
0.23

±0.13
0.41

±0.22
0.21

±0.19

Table 2: Performance on the Difficult CRISPR screen benchmark. Compares the embedding-based classifier using
embeddings of raw text (Raw Emb.) or embeddings of GPT-4o summaries (Summ. Emb.) against GPT-4o direct
prompting (results aggregated across prompting strategies). Standard classification metrics reported. GPT-4o
prompting gives binary outputs and thus AUROC and AUPRC are undefined. Best model highlighted.

3 Training Data for Embedding-Based
Classifier

In addition to the evaluation benchmarks, we pre-
pared a separate, larger training dataset for our
embedding-based classifier. From the BioGRID-
ORCS database, we selected screens performed in
human or mouse cells. We excluded screens that
indicated both significant positive and negative ef-
fects for the same gene-phenotype query, as this
ambiguity complicates the definition of a singular
phenotypic outcome from the free-text descriptions
provided by BioGRID-ORCS. Instead of attempt-
ing to extract precise phenotypes from these notes,
we utilize the entire phenotype note directly during
the embedding process for training.

Our final training dataset consists of 1,678
screens from BioGRID-ORCS (from an initial pool
of 1,924 total screens). This dataset yields ap-
proximately 22.6 million individual gene-level re-
sults across 3 perturbation methods, 40,461 unique
genes (human and mouse), 133 cell lines, and 613
distinct phenotype descriptions. Within this train-
ing set, 7.74% of the gene-phenotype pairs are
“hits” according to our high-confidence definition.
For model development, we randomly selected 5
screens from this training dataset to serve as a vali-
dation set, used for tasks such as early stopping and
hyperparameter tuning. To mitigate potential bias
from dataset similarity during final evaluation, our
embedding-based classifier is exclusively evaluated
on the Difficult Benchmark (Section 2.3), which
contains no data from BioGRID-ORCS.

4 CRISPR Screen Prediction Approaches

We explore two main approaches for in silico
CRISPR screen prediction: direct LLM prompting
and a scalable, embedding-based classifier (concep-
tualized in Figure 2).

4.1 LLM Prompting and Evaluation

We evaluated a diverse set of LLMs, including
open-source Llama models and proprietary OpenAI
models (see Appendix Table 7 for a complete list).
We systematically tested combinations of Chain-
of-Thought (CoT) (Wei et al., 2022) and few-shot
prompting strategies, as well as zero-shot prompt-
ing. For CoT prompting, we instruct the model
to explicitly reason through the relevant biological
processes step-by-step. For few-shot prompting,
we provide one or two example input-output pairs
(illustrating positive and/or negative outcomes) be-
fore the target question. When combining CoT
with few-shot prompting, the few-shot examples
also include the CoT reasoning steps. An example
prompt is provided in Appendix Table 5. Further
details of our benchmarking pipeline are provided
in Appendix Section A.1.

For each model and prompting strategy, we ex-
tract a binary answer (“Yes” or “No”) from the
generated text. Performance is primarily assessed
using the F1 score and False Positive Rate (FPR).
The F1 score is the harmonic mean of precision
and recall, providing a balance between them. FPR
(1 - Specificity) measures the proportion of actual
negatives incorrectly classified as positive. We pri-
oritize maximizing F1 and minimizing FPR due to
our high-confidence hit definition, where a false
positive (incorrectly predicting “Yes”) means the
model wrongly asserts a phenotypic effect in the
opposite direction to the true significant effect.

Table 1 shows the aggregated results of LLMs
on the Simple Benchmark. We report the mean
and standard deviation for each model across up
to 10 prompting strategy combinations. The ran-
dom baseline (detailed in Appendix Section A.2)
provides a performance floor. Compared to a
random baseline (F1=0.47, FPR=0.36), GPT-4o
(F1=0.47±0.06, FPR=0.22±0.06) is the only model
which achieved a comparable F1 while attaining
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a notably better FPR. The generally modest per-
formance of direct prompting, even on the Sim-
ple Benchmark, may stem from several factors.
General-purpose LLMs, despite vast training data,
may lack the specific, fine-grained biological nu-
ance required even for seemingly direct gene-
phenotype links. Additionally, the inherent com-
plexity and context-dependency of biological sys-
tems mean that even “simple” effects can be modu-
lated by cellular states or pathways not fully cap-
tured by the concise prompt. Nevertheless, GPT-
4o’s lower FPR suggests some capacity to avoid
confident incorrect predictions of positive effects.
We also observe relatively small variance in GPT-
4o’s performance across strategies compared to
other models. The full performance metrics for
GPT-4o across all prompting strategies on the Sim-
ple Benchmark are in Appendix Table 8.

4.2 Embedding-Based Classifier
Prompting LLMs for every gene in a genome-wide
screen (often tens of thousands of genes) is com-
putationally infeasible and cost-prohibitive. To ad-
dress this scalability challenge, we developed a
novel embedding-based classification framework.
This approach leverages pre-computed embeddings
of screen components, resulting in a small, efficient
classifier at inference time where only cell line or
phenotype descriptions may need new embeddings.

We use OpenAI’s text-embedding-3-large
model to generate embeddings for each component
of the CRISPR screen tuples (perturbation method,
gene symbol, cell line description, and phenotype
description) from our training dataset (Section 3).
We explored two strategies for generating these em-
beddings: (1) directly embedding the raw text terms
for each component, and (2) embedding concise
summaries of these terms, generated by GPT-4o,
following a strategy similar to Shringarpure et al.
(2024). An example prompt for summarization is
in Appendix Table 6.

We then train a 5-layer MLP classifier using
these concatenated LLM-derived embeddings as
input. Additional training details are in Appendix
Section A.3. The performance of our trained mod-
els on the Difficult Benchmark is presented in Table
2. We report Area Under the Receiver Operating
Characteristic curve (AUROC), Area Under the
Precision-Recall curve (AUPRC), F1 score, FPR,
Positive Predictive Value (PPV, Precision), Nega-
tive Predictive Value (NPV), Sensitivity (Recall,
True Positive Rate - TPR), and Specificity (True

Negative Rate - TNR). Predicted probabilities are
binarized using Youden’s J statistic.

Our embedding-based classifiers significantly
outperform direct GPT-4o prompting on the Dif-
ficult Benchmark. The model using raw text
embeddings (Raw Emb.: F1=0.84, FPR=0.15)
performs best, substantially exceeding GPT-4o’s
average prompting performance (F1=0.35±0.17,
FPR=0.79±0.19). Interestingly, embeddings of
raw text terms yield better results than embed-
dings of LLM-generated summaries (Summ. Emb.:
F1=0.67, FPR=0.26). We hypothesize that the sum-
marization process, while aiming for conciseness,
may inadvertently omit subtle but critical nuances
present in the original descriptions of cell lines or
complex phenotypes, which are crucial for accu-
rate prediction. This finding suggests that for tasks
requiring deep, nuanced understanding, providing
more complete and contextualized information to
the embedding model may be beneficial.

5 Conclusion and Broader Impact

In this work, we investigated the potential of LLMs
to predict CRISPR screen outcomes a priori. We
introduced novel benchmarks designed to evaluate
LLM capabilities across diverse biological contexts
while mitigating data leakage. Our comprehensive
evaluation of various LLMs and prompting strate-
gies revealed inherent limitations in direct prompt-
ing for this complex task. However, our scalable
and efficient embedding-based prediction frame-
work substantially outperformed direct prompting,
achieving an F1 score of 0.84 and an FPR of 0.15
on our Difficult Benchmark. This performance
underscores the broad potential of LLM-driven ap-
proaches in advancing functional genomics.

Specifically, we envision LLM-guided screening
as a powerful tool not only for CRISPR-based func-
tional genomics, but also for predicting outcomes
of diverse perturbation screens, thereby broadening
its impact across experimental biology. Further-
more, a critical application of this framework also
lies in identifying highly novel biological findings.
When an LLM, drawing upon its extensive train-
ing on established knowledge, fails to predict a
robust experimental hit, this discrepancy signals a
result potentially unexplainable by current under-
standing. Such instances pinpoint exciting areas
for discovering new biological mechanisms or gene
functions, thereby enabling researchers to focus on
novel leads and accelerating biological discovery.
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Limitations and Future Work

Our study, while demonstrating promising results,
has several limitations. The current prediction
task is framed as a binary “hit/no-hit” classifica-
tion, which simplifies the often quantitative and
nuanced nature of CRISPR screen outcomes (e.g.,
magnitude of effect). We relied on existing general-
purpose LLMs with fixed knowledge cutoffs; these
models cannot dynamically incorporate the latest
biological discoveries published after their training,
potentially limiting predictive accuracy on cutting-
edge research questions. While our Difficult Bench-
mark specifically used post-cutoff publications for
evaluation, this is a general concern for static mod-
els. The training data for the embedding classifier,
though large, may contain inherent biases (e.g.,
label imbalance, focus on protein-coding genes,
etc). Furthermore, the size of our Difficult Bench-
mark test set was constrained by the availability of
suitable, complex CRISPR screens published after
LLM knowledge cutoffs that also lent themselves
to our binary prediction framework; this reflects a
necessary trade-off between test set scale and the
rigor of avoiding data contamination for a priori
evaluation.

Future work will focus on addressing these lim-
itations and expanding the capabilities of our ap-
proach. We plan to:

• Expand our benchmark datasets to include more
diverse biological contexts and screens.

• Benchmark a wider range of model families,
including domain-specific LLMs pre-trained or
fine-tuned on biological data, to compare against
general-purpose models.

• Explore retrieval-augmented generation (RAG)
techniques to enable models to incorporate the
latest research findings at inference time, over-
coming fixed knowledge cutoffs.

• Develop methods to predict quantitative out-
comes or capture more nuanced aspects of phe-
notypic responses, moving beyond binary classi-
fication.

• Investigate more sophisticated prompting strate-
gies and model architectures for improved bio-
logical reasoning.

• Conduct in vitro validation of the model’s most
confident or novel predictions to assess real-
world utility.

• Develop systematic methods to analyze and pri-
oritize discrepancies between LLM predictions
and experimental outcomes to specifically flag
and investigate potentially novel biological hits.

• Compare LLM-derived embeddings against
other biological embedding methodologies for
a broader understanding of their representational
power for this task.

Ultimately, we aim to develop more robust and
interpretable LLM-based tools to further accelerate
biological discovery.

Ethics Statement

One potential ethical consideration is the availabil-
ity of our source data. We primarily use open ac-
cess data from BioGRID-ORCS. We additionally
manually curated CRISPR screen data from recent
publications. While one of the screens we curate
for the Difficult Benchmark is derived from a publi-
cation in Nature (PMID: 39567689), which may be
behind a paywall for some, the specific supplemen-
tal data containing the CRISPR screen results is
publicly accessible, and the full article is available
on PubMed Central. To the best of our knowl-
edge, we have provided comprehensive descrip-
tions, links to source code, and preprocessed data
necessary to reproduce our experiments, promoting
transparency and further research. Our software
and benchmark data are available at: https://
github.com/czbiohub-chi/immune-llm-acl.
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A Appendix

A.1 Additional Benchmarking Details

All Llama models were accessed through Hugging-
Face and served using vLLM’s OpenAI-like API
server. This enabled a unified pipeline for bench-
marking both Llama and OpenAI models via the
OpenAI client’s chat completions method. For
Llama models, we used the “instruct” fine-tuned
variants for Llama 3 and newer versions, and the
“chat” variants for Llama 2. To ensure reproducibil-
ity, a fixed random seed was used, and the temper-
ature parameter for LLM generation was set to 0.
When benchmarking CoT prompting, additional in-
structions were provided to the model to explicitly
use chain-of-thought reasoning to analyze the bio-
logical processes involved. For few-shot prompt-
ing, one or two manually constructed examples
(positive and/or negative outcomes) were provided.
These examples were interleaved between the main
instructions and the final query, using transition text
to clearly demarcate them as examples. For Ope-
nAI’s “o1” family of models, explicit CoT prompts
were omitted as these models are designed to im-
plicitly use CoT reasoning. All benchmarking of
Llama models was conducted on a system with 2x
NVIDIA A100 80GB GPUs.

A.2 Baseline Model

We compare our LLM-based approaches against
a random baseline. This baseline predicts “hit” or
“no-hit” outcomes randomly, with the probabilities
of predicting “hit” weighted by the overall pro-
portion of actual “hits” in the specific benchmark
dataset being evaluated. This provides a simple
lower-bound performance reference.

A.3 Additional Training Details for
Embedding-Based Classifier

For our embedding-based classifier models, we uti-
lized OpenAI’s text-embedding-3-large model
to compute 3072-dimensional embeddings for the
raw text or summarized descriptions of CRISPR
screen components (perturbation method, gene
symbol, cell line, and hypothesized phenotype).
For each data sample, these four embeddings were
concatenated, resulting in an input vector of 12,288
dimensions (3072 * 4) for our 5-layer MLP. Each
subsequent hidden layer in the MLP had half the
number of neurons as the preceding layer, with
a final classification layer for binary output. The
hidden layer dimensions were thus [6144, 3072,
1536, 768]. The MLP was trained using a binary
cross-entropy loss function. We used the AdamW
optimizer with an initial learning rate of 0.001 and
a weight decay of 0.01, a batch size of 8192, and a
learning rate scheduler to reduce the learning rate
if there was no improvement in validation loss after
5 epochs. Early stopping was triggered if valida-
tion loss did not improve for 15 consecutive epochs.
The model weights corresponding to the epoch with
the lowest validation loss were selected for the final
model. The model trained on raw term embeddings
converged after 4 epochs, while the model using
summarized term embeddings trained for 3 epochs.
All training was performed on a single NVIDIA
A100 80GB GPU and took approximately 13 GPU
hours in total for both models.
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A.4 Supplemental Tables

Screen ID Perturbation Cell Line Hypothesized Phenotype Genes Hits

1837 activation
primary CD4+
human T cells

increased TNF-alpha
secretion

423 140

1885 activation J774 macrophages phagocytic inhibition 343 139

1835 activation
primary CD4+
human T cells

increased IL2 secretion 243 76

1733 knockout
HeLa cervical
adenocarcinoma cells

increased RelA nuclear
translocation

166 130

Table 3: Simple Benchmark: screens sourced from BioGRID-ORCS. “Genes” refers to the count of unique genes
screened for the given phenotype in that screen after filtering for those with a significant effect, per our strict
definition. “Hits” refers to the count of gene perturbations resulting in the hypothesized phenotype.

PMID Perturbation Cell Line Hypothesized Phenotype Genes Hits

39567689 knockout
NG2-3112 mouse
glioblastoma cells

increased sensitivity to gliocidin and
subsequently glioblastoma cell death

881 73

39385035 knockout
3LL Lewis lung
carcinoma cells

increased resistance to PD1 blockade
and lung carcinoma cell survival

26 23

39567689 knockout
NG2-3112 mouse
glioblastoma cells

decreased sensitivity to gliocidin and
subsequently glioblastoma cell survival

881 808

39385035 knockout
3LL Lewis lung
carcinoma cells

decreased resistance to PD1 blockade
and lung carcinoma cell death

26 3

Table 4: Difficult Benchmark: screens derived from publications in late 2024 (Chen et al., 2024; Skoulidis et al.,
2024). “Genes” refers to the count of unique genes screened for the given phenotype in that screen after filtering for
those with a significant effect, per our strict definition. “Hits” refers to the count of gene perturbations resulting
in the hypothesized phenotype. The two screens with high hit counts (808 and 23) correspond to the inverted
phenotypes used for balancing, as described in Section 2.3.
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Line Role Message

1 System You are an expert in the fields of Immunology, Computational Biology, Genetics,
and Molecular Biology.

2 System Instructions: Carefully analyze the question and think through the biological process.
Using the chain of thought method to clearly outline your reasoning, provide a step-
by-step causal mechanistic explanation of the biological process. Give a final answer
that is either “Final Answer: Yes” or “Final Answer: No”. Do not give additional
comments after your final answer.

3 System Here is a positive example:
4 User Question: Does knockout of BRCA1 in MCF-7 cells causally result in increased

sensitivity to DNA-damaging agents?
5 Assistant To address this question, let’s break down the process step by step:

1. **Understanding BRCA1**: BRCA1 is a tumor suppressor gene that
plays a crucial role in maintaining genome stability. It is involved in the repair of
DNA double-strand breaks through homologous recombination (HR). When BRCA1
is functioning properly, it helps to repair DNA damage, thereby preventing mutations
that can lead to cancer.

2. **Role of BRCA1 in DNA Repair**: In the absence of BRCA1, cells
are more likely to rely on non-homologous end joining (NHEJ) for DNA repair,
which is error-prone and can lead to genetic mutations. This is because BRCA1-
deficient cells have impaired HR, making them more susceptible to DNA damage.

3. **Effect of BRCA1 Knockout on MCF-7 Cells**: MCF-7 cells are a
human breast cancer cell line. Knocking out BRCA1 in these cells would likely
impair their ability to repair DNA damage through HR, making them more reliant on
NHEJ. This would increase the likelihood of genetic mutations and chromosomal
instability.

4. **Sensitivity to DNA-Damaging Agents**: DNA-damaging agents, such
as chemotherapy drugs, work by inducing DNA damage in cancer cells. In cells with
impaired DNA repair mechanisms, such as those with a BRCA1 knockout, the DNA
damage caused by these agents would be more difficult to repair. As a result, these
cells would be more likely to undergo cell death, making them more sensitive to
DNA-damaging agents.

5. **Causal Relationship**: The knockout of BRCA1 in MCF-7 cells would
causally result in increased sensitivity to DNA-damaging agents because it would
impair the cells’ ability to repair DNA damage, making them more susceptible to the
effects of these agents.

Final Answer: Yes
6 System Now answer the following question following the instructions and example above.
7 User Question: Does {crispr_strategy} of {gene} in {cell_type} causally result in {pheno-

type}?

Table 5: Example prompt used for benchmarking LLMs, illustrating Chain-of-Thought (CoT) and 1-shot (pos-
itive example) prompting. The prompt is input to models using their respective chat templates. Placeholders
{crispr_strategy}, {gene}, {cell_type}, and {phenotype} are replaced with terms specific to each screen.
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Line Role Message

1 User Generate a summary for the human gene {gene}. Include any relevant functions,
pathways, cell types, interactions, or other important information regarding the gene.

Table 6: Example prompt used for summarizing CRISPR screen terms (specifically gene symbols in this example).
Similar prompts were adapted for summarizing CRISPR perturbation methodology, cell line characteristics, and
target phenotype descriptions when generating embeddings from summaries.

Model Alias Model Version

o1 o1-2024-12-17
o1-mini o1-mini-2024-09-12
GPT-4o gpt-4o-2024-11-20
GPT-4o-mini gpt-4o-mini-2024-07-18
GPT-4-turbo gpt-4-turbo-2024-04-09
GPT-4 gpt-4-0125-preview
GPT-3.5 gpt-3.5-turbo-0125
Llama-2-7B meta-llama/Llama-2-7b-chat-hf
Llama-2-13B meta-llama/Llama-2-13b-chat-hf
Llama-2-70B meta-llama/Llama-2-70b-chat-hf
Llama-3-8B meta-llama/Llama-3-8B-Instruct
Llama-3-70B meta-llama/Llama-3-70B-Instruct
Llama-3.1-8B meta-llama/Llama-3.1-8B-Instruct
Llama-3.1-70B meta-llama/Llama-3.1-70B-Instruct
Llama-3.2-1B meta-llama/Llama-3.2-1B-Instruct
Llama-3.2-3B meta-llama/Llama-3.2-3B-Instruct
Llama-3.3-70B meta-llama/Llama-3.3-70B-Instruct

Table 7: List of LLMs benchmarked, with their common short name (Model Alias) and the specific version or
identifier used in the experiments.

Model Few-shot CoT F1 FPR PPV NPV Sensitivity Specificity

GPT-4o 0-shot N 0.48 0.28 0.53 0.65 0.44 0.72
GPT-4o 1-shot (+) N 0.49 0.23 0.56 0.66 0.43 0.77
GPT-4o 1-shot (-) N 0.31 0.09 0.62 0.62 0.21 0.91
GPT-4o 2-shot (+/-) N 0.53 0.24 0.58 0.68 0.48 0.76
GPT-4o 2-shot (-/+) N 0.53 0.32 0.54 0.67 0.53 0.68
GPT-4o 0-shot Y 0.53 0.25 0.58 0.68 0.49 0.75
GPT-4o 1-shot (+) Y 0.50 0.23 0.57 0.66 0.44 0.77
GPT-4o 1-shot (-) Y 0.46 0.20 0.57 0.65 0.39 0.80
GPT-4o 2-shot (+/-) Y 0.44 0.18 0.58 0.64 0.36 0.82
GPT-4o 2-shot (-/+) Y 0.45 0.21 0.56 0.65 0.38 0.79
Random N/A N/A 0.47 0.36 0.47 0.63 0.46 0.64

Table 8: Detailed performance of GPT-4o (model version gpt-4o-2024-11-20) on the Simple CRISPR screen
benchmark across different prompting strategies. Metrics include F1 Score, False Positive Rate (FPR), Positive
Predictive Value (PPV, Precision), Negative Predictive Value (NPV), Sensitivity (Recall, True Positive Rate), and
Specificity (True Negative Rate). CoT indicates Chain-of-Thought prompting. (+)/(-) indicate positive/negative
examples for 1-shot; (+/-) or (-/+) indicate order for 2-shot.
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