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Abstract

Medical text summarization faces significant
challenges due to the complexity and domain-
specific nature of the language. Although large
language models have achieved significant suc-
cess in general domains, their effectiveness in
the medical domain remains limited. This limi-
tation stems from their insufficient understand-
ing of domain-specific terminology and diffi-
culty in interpreting complex medical relation-
ships, which often results in suboptimal sum-
marization quality. To address these challenges,
we propose MedSummRAG, a novel retrieval-
augmented generation (RAG) framework that
integrates external knowledge to enhance sum-
marization. Our approach employs a fine-tuned
dense retriever, trained with contrastive learn-
ing, to retrieve relevant documents for medical
summarization. The retrieved documents are
then integrated with the input text to gener-
ate high-quality summaries. Experimental re-
sults show that MedSummRAG achieves signif-
icant improvements in ROUGE scores on both
zero/few-shot and fine-tuned language models,
outperforming baseline methods. These find-
ings underscore the importance of RAG and
domain adaptation of the retriever for med-
ical text summarization. The source code
of this paper can be obtained from: https:
//github.com/guantingluo98/MedSummRAG

1 Introduction

Medical text summarization is a crucial task for
helping medical practitioners and patients, aiming
to distill complex and information-dense medical
documents into concise, accurate, and clinically
useful summaries (Xie et al., 2023). This task is par-
ticularly challenging due to the specialized nature
of medical language and the presence of domain-
specific terminologies (Chaves et al., 2022). Tradi-
tional summarization models often struggle in this
domain, as they may fail to generate satisfactory
summaries.

With the rise of large language models (LLMs),
significant advancements have been made in
general-domain summarization (Pu et al., 2023).
However, medical summarization presents unique
challenges, such as domain-specific terminology
and complex relationships, which generic LLMs
struggle to address effectively. LLMs trained on
broad-domain corpora tend to overlook key med-
ical concepts, misinterpret medical abbreviations,
and produce hallucinated content that could mis-
lead practitioners and researchers (Li et al., 2024;
Hosseini et al., 2024). These limitations highlight
the need for models that can effectively incorpo-
rate external domain knowledge. By leveraging
external knowledge documents, such as healthcare
question-answer pairs, models can better under-
stand domain-specific concepts, reduce errors, and
generate high-quality summaries.

In this work, we propose MedSummRAG (Medi-
cal Summarization with Retrieval-Augmented Gen-
eration), a novel retrieval-augmented generation
(RAG) framework designed specifically for med-
ical text summarization. By leveraging external
medical knowledge, MedSummRAG enhances the
quality of generated summaries. Our approach em-
ploys a fine-tuned dense retriever, trained using
contrastive learning (van den Oord et al., 2019), to
effectively identify domain-relevant documents.

The key contribution of our work is the novel
RAG framework for medical text summarization.
Our approach improves retrieval quality by lever-
aging contrastive learning that employs synthetic
positive samples generated using an LLM. This en-
ables the framework to effectively identify domain-
relevant documents, improving the overall quality
of generated summaries. We conduct experiments
to investigate the effectiveness of MedSummRAG.
Our results demonstrate consistent improvements
measured by ROUGE scores in multiple configu-
rations: both on zero/few-shot and fine-tuned lan-
guage models.
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Figure 1: Overview of our MedSummRAG framework. Black arrows indicate retrieving relevant documents by
sparse and dense retrievers. Blue dashed arrow represents the negative sample extraction, while solid blue arrows
show the generation of synthetic positive samples. Both positive and negative samples are used to fine-tune the
dense retriever. Orange arrows show the concatenation of medical text and the retrieved document as input to the
summary generator, producing the summary.

2 Related Work

Medical summarization has been a long-standing
research problem due to its critical role in sup-
porting clinical decision-making and healthcare
planning. With the rise of pre-trained language
models, significant progress has been made in med-
ical summarization. Pre-trained language models
have demonstrated the ability to generate medi-
cal summaries, such as doctor-patient conversation
summaries, by utilizing knowledge derived from
pretrained models (Zhang et al., 2021). Balde et al.
(2024) proposed MEDVOC, a dynamic vocabu-
lary adaptation strategy that optimizes pre-trained
language models’ vocabulary for medical text sum-
marization, achieving improvements in high Out-
Of-Vocabulary settings.

Despite the progress enabled by pre-trained mod-
els in medical summarization, their pre-trained
knowledge may be insufficient for handling specific
downstream tasks. RAG offers a promising solu-
tion by integrating external knowledge to enhance
the overall quality of generations (Fan et al., 2024).
Recent studies have demonstrated the potential of
RAG in various domains, such as decision-making
tasks (Lee et al., 2024); question answering (Jeong
et al., 2024); and radiology report generation (Xia
et al., 2024). Although RAG has demonstrated
success in various domains, its application to med-
ical summarization remains underexplored. Our
work aims to propose a RAG framework specifi-
cally adapted for medical summarization to gener-
ate high-quality summaries.

3 Proposed Method

The overall workflow of our approach is illustrated
in Figure 1. The proposed method consists of doc-
ument retrieval (Section 3.1) and summary genera-
tion (Section 3.2). For improving the retrieval step
to adapt to the medical domain, we employ con-
trastive learning with synthetic data (Section 3.3).

3.1 Document Retrieval

We employ the BM25 (Robertson et al., 2009; Lù,
2024) ranking function to retrieve an initial set of
candidate documents based on lexical similarity to
the input text. This sparse retrieval method serves
to reduce the computational cost of subsequent
dense retrieval by narrowing down the search space
to a manageable set of candidate documents.

A dense retriever then re-ranks the highly-ranked
documents retrieved by the sparse retriever and
selects the most relevant document for the gen-
eration stage. This step should ensure that the
retrieved document is lexically and semantically
aligned with the input text to provide useful knowl-
edge for summarization.

3.2 Generation

The generation stage produces summaries based on
the input text and the retrieved document. Follow-
ing the approach of Lewis et al. (2020), we simply
concatenate the retrieved document with the input
text and feed the combined input into a language
model. The generator is expected to produce coher-
ent and factually accurate summaries, leveraging
both the input text and the external knowledge pro-
vided by the retrieved document.
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You’re a retrieval augmented generation as-
sistant, skilled in generating retrieval targets
for auto summarization via RAG. Here is the
input-summary pair from a training set:
INPUT: {Train set input text}
SUMMARY: {Train set summary}
Please help me with generating one fake re-
trieved question-answer document that would
be useful for training a dense retrieval model
for automatic summarization via retrieval aug-
mented generation. The fake retrieved docu-
ment should have this kind of format:
QUESTION:
ANSWER:

Table 1: Promt for synthetic sample generation

3.3 Domain Adaptation of Retriever

The retrieval stage aims to identify the most rel-
evant document from a knowledge base to en-
hance the summarization process. Although ex-
isting RAG methods have shown great success in
question-answering tasks (Asai et al., 2023; Xiong
et al., 2024), they often struggle to identify docu-
ments that are truly useful for medical text summa-
rization. This is because pre-trained dense retriev-
ers lack the ability to understand what document
structures and content are beneficial for enhancing
summarization in the medical domain.

The key challenge in fine-tuning retrievers for
medical summarization is the lack of training data.
To address this challenge, we leverage an LLM to
generate synthetic positive samples that capture the
structural and contextual patterns useful for sum-
marization. Specifically, for each text-summary
pair in a training set of summarization, we prompt
the LLM to generate a synthetic pair that may en-
hance medical summarization. Table 1 shows the
prompt we used.

We then fine-tune the dense retriever using con-
trastive learning, inspired by the work of Huang
et al. (2023), which improves its ability to retrieve
documents relevant to medical summarization. For
negative samples, we randomly select low-ranked
documents by the sparse retriever that should be
less relevant to the input text. We optimize the
retrieval model using the InfoNCE loss (van den
Oord et al., 2019).

4 Experiments

4.1 Evaluation Dataset & Knowledge Base

Evaluation Dataset: We use the CHQ-Summ
dataset (Yadav et al., 2022), which consists of con-
sumer health questions formulated by non-experts,
paired with brief summaries of the corresponding
questions. The questions are sourced from Yahoo!
Answers L6 corpus1. The dataset contains 1, 000
training samples, 107 validation samples, and 400
test samples. We evaluate the performance of our
method using ROUGE (Lin, 2004) scores, includ-
ing ROUGE-1, ROUGE-2, and ROUGE-L.
Knowledge Base: We construct the knowledge
base using Yahoo! Answers L6 corpus, which con-
tains more than 4 million question-answer pairs.
Each document in the knowledge base represents
a single question-answer pair. The content cov-
ered in this corpus extends far beyond the scope
of healthcare and medicine, encompassing a wide
range of topics. To prevent data leakage, we ex-
clude all question-answer pairs that overlap with
the CHQ-Summ dataset.

4.2 Implementation Details

We employed BM25 for sparse retrieval, which
retrieved the top 150 documents for each input text.
We employed the BGE-M3 (Chen et al., 2024)
model as the base dense retriever. For contrastive
learning, the positive samples were generated by
a frozen Qwen-2.5-7B-Instruct model2, while the
negative samples were constructed by randomly
sampling 3 documents from the BM25-ranked
documents in the range of positions 101 to 150 for
each training sample. The BGE-M3 model was
fine-tuned for 5 epochs with a total batch size of 8.
After fine-tuning, the BGE-M3 model re-ranked
the top 20 documents retrieved by BM25 and
selected the top 1 document for the generator.

4.3 Experiment Settings

To evaluate the effectiveness of our MedSumm-
RAG approach, we conducted four sets of experi-
ments with different generator settings: standard
fine-tuning, few-shot prompting, and Low Rank
Adapters (LoRA) (Hu et al., 2022) fine-tuning on
different language models. Specifically, we em-
ployed (1) BioBART-large (Yuan et al., 2022): the

1https://webscope.sandbox.yahoo.com/catalog.
php?datatype=l&did=11

2https://qwenlm.github.io/blog/qwen2.5/
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Base Model Setting ROUGE-1 ROUGE-2 ROUGE-L

BioBART-large
(Standard Fine-tuned)

Baseline 41.22 23.17 38.79
+ Naive RAG 42.19 22.95 38.79
+ Fine-tuned RAG 44.50 24.58 41.19

Qwen-2.5-7B-Instruct
(1-shot Prompting)

Baseline 34.97 13.85 32.82
+ Naive RAG 38.53 16.42 33.61
+ Fine-tuned RAG 39.45 17.59 34.60

Qwen-2.5-7B-Instruct
(2-shot Prompting)

Baseline 38.15 16.34 33.82
+ Naive RAG 39.89 18.00 35.28
+ Fine-tuned RAG 40.27 18.30 35.95

Qwen-2.5-7B-Instruct
(LoRA Fine-tuned)

Baseline 42.21 21.99 38.84
+ Naive RAG 42.56 21.80 39.32
+ Fine-tuned RAG 42.95 22.82 40.03

Table 2: Performance comparison of different base models on the CHQ-Summ dataset. Results demonstrate the
effectiveness of our method across various models, few-shot scenarios, and fine-tuning strategies.

model has shown its strong performance in medi-
cal text generation tasks. BioBART-large was first
fine-tuned using the training set without RAG, fol-
lowed by the second stage of fine-tuning with RAG.
Each fine-tuning consisted of 20 epochs with a
batch size of 8. We also experimented with (2)
Qwen-2.5-7B-Instruct with One-Shot Prompting,
(3) Qwen-2.5-7B-Instruct with Two-Shot Prompt-
ing, and (4) Qwen-2.5-7B-Instruct with LoRA Fine-
Tuning (Hu et al., 2022): the model was fine-tuned
using LoRA for 10 epochs with a batch size of 8.
LoRA fine-tuning was performed with a rank of
8, alpha of 16, and no dropout. The details of the
prompts are described in example A.1 and exam-
ple A.2

In all settings, the baseline is the corresponding
fine-tuned model or a few-shot prompted models
without RAG. In addition, we also compared to a
naive RAG where the retriever has not been fine-
tuned, i.e., without domain adaptation. All the
experiment was conducted on a single NVIDIA
A6000 48G GPU.

4.4 Results

In this section, we highlight the key contribution
of our RAG-enhanced approach, demonstrating
its effectiveness across different models, few-shot
settings, and fine-tuning strategies. A consistent
performance gap between naive RAG and fine-
tuned RAG underscores the importance of domain-
adaptive retrieval. This contrast suggests that syn-
thetic examples play a key role in improving the
relevance of the retrieval and the overall quality of
the summary.

For the standard fine-tuned BioBART-large
model, our method significantly improves perfor-

mance. With naive RAG, only the ROUGE-1 score
shows a marginal improvement, while the ROUGE-
2 score slightly decreases, and the ROUGE-L score
remains unchanged. However, with MedSumm-
RAG, the BioBART-large model achieves a notable
increase in ROUGE scores, highlighting the effec-
tiveness of integrating external knowledge through
domain-adapted retriever.

For the Qwen-2.5-7B-Instruct model in few-
shot prompt settings, our method consistently en-
hances performance without fine-tuning the gen-
erator. Even with naive RAG, we observe mod-
est improvements in ROUGE scores. Fine-tuning
the RAG component further boosts performance,
demonstrating the effectiveness of our method even
when the generator is frozen. Additional prompt
examples also contribute to improved results.

For the LoRA fine-tuned Qwen-2.5-7B-Instruct
model, integrating naive RAG yields marginal im-
provements in ROUGE-1 and ROUGE-L, while
ROUGE-2 experiences a slight decline compared to
the baseline. In contrast, our domain-adapted RAG
enhances performance across all ROUGE metrics,
demonstrating the importance of optimizing the
retrieval process to effectively leverage external
knowledge in the LoRA fine-tuning setting.

5 Conclusion

Our experimental results highlight the effective-
ness of leveraging external knowledge for adapting
language models to medical summarization tasks,
addressing the challenge of domain adaptation in
specialized medical contexts. Future work includes
extending our approach to a larger-scale knowl-
edge base to further enhance retrieval effectiveness.
Additionally, beyond ROUGE-based evaluation, in-
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corporating human evaluation could provide deeper
insights into the quality of generated summaries.
Furthermore, exploring the application of our fine-
tuned RAG framework to other medical summariza-
tion tasks, such as radiology report summarization,
is another promising direction for advancing our
work.

Limitations

While our proposed method demonstrates promis-
ing results in improving medical text summariza-
tion, its generalizability remains to be validated.
Our experiments are conducted exclusively on the
CHQ-Summ dataset, which focuses on summariz-
ing customer health questions. While this dataset
provides a valuable benchmark for medical ques-
tion summarization, it does not fully represent the
diversity of medical texts, such as clinical notes, or
discharge summaries. In addition, while the Yahoo!
Answers L6 corpus offers broad coverage, it may
contain content of varying accuracy, which moti-
vates future exploration of more medically curated
sources to further reduce hallucination risks.
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A Appendix

This appendix shows the prompts used for sum-
mary generation methods described in this paper.

For few-shot learning setting we randomly select
samples from the training set. The example A.1
shows the prompt template we use for generating
medical summaries in one-shot setting.

Example A.1. You are a helpful assistant. Your
task is to summarize the given question based
on the provided question and possibly helpful re-
trieved document. The retrieved document may or
may not be useful for summarization.
Example:
QUESTION: {Example input text}
RETRIEVED DOCUMENT: {Example retrieved
document}
SUMMARY: {Example summary}
QUESTION: {Test set input text}
RETRIEVED DOCUMENT: {Test set retrieved
document}
SUMMARY:

The example A.2 shows the prompt template we
use for generating medical summaries in two-shot
setting.

Example A.2. You are a helpful assistant. Your
task is to summarize the given question based
on the provided question and possibly helpful re-
trieved document. The retrieved document may or
may not be useful for summarization.
Examples:
QUESTION: {Example input text}
RETRIEVED DOCUMENT: {Example retrieved
document}
SUMMARY: {Example summary}
QUESTION: {Example input text}
RETRIEVED DOCUMENT: {Example retrieved
document}
SUMMARY: {Example summary}
QUESTION: {Test set input text}
RETRIEVED DOCUMENT: {Test set retrieved
document}
SUMMARY:
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