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Abstract

We introduce PetEVAL, the first benchmark
dataset derived from real-world, free-text vet-
erinary electronic health records (EHRs). Pe-
tEVAL comprises 17,600 professionally anno-
tated EHRs from first-opinion veterinary prac-
tices across the UK, partitioned into training
(11,000), evaluation (1,600), and test (5,000)
sets with distinct clinic distributions to assess
model generalisability. Each record is anno-
tated with International Classification of Dis-
ease 11 (ICD-11) syndromic chapter labels
(20,408 labels), disease Named Entity Recog-
nition (NER) tags (429 labels), and anonymisa-
tion NER tags (8,244 labels). PetEVAL enables
evaluating Natural Language Processing (NLP)
tools across applications, including syndrome
surveillance and disease outbreak detection.
We implement a multistage anonymisation pro-
tocol, replacing identifiable information with
clinically relevant pseudonyms while establish-
ing the first definition of identifiers in veteri-
nary free text. PetEVAL introduces three core
tasks: syndromic classification, disease entity
recognition, and anonymisation. We provide
baseline results using BERT-base, PetBERT,
and LLaMA 3.1 8B generative models. Our
experiments demonstrate the unique challenges
of veterinary text, showcasing the importance
of domain-specific approaches. By fostering
advancements in veterinary informatics and epi-
demiology, we envision PetEVAL catalysing
innovations in veterinary care, animal health,
and comparative biomedical research through
access to real-world, annotated veterinary clini-
cal data.

1 Introduction

The growing availability of veterinary electronic
health records (vEHRs) from sources such as the
Small Animal Veterinary Surveillance Network
(SAVSNET) (Sánchez-Vizcaíno et al., 2015), Com-
panion Animal Veterinary Surveillance Network
(CAVSNET) (Sheng et al., 2022), and VetCompass

Figure 1: Example data for a single consult with a
unique consult, the free text clinical EHR, the ICD-
11 chapter multi-label classification and NER entities
for both anonymisation and disease extraction task

(Royal Veterinary College (RVC); McGreevy et al.,
2017) presents an unprecedented opportunity to
advance veterinary medicine. These datasets sup-
port disease surveillance, epidemiological research,
and clinical decision-making (Farrell et al., 2023b;
Bode et al., 2022; Radford et al., 2011; Sánchez-
Vizcaíno et al., 2017; Singleton et al., 2020). How-
ever, vEHRs differ from human biomedical records
in syntax, lexicon, and clinical expression (Davies
et al., 2024b), requiring adaptation of existing com-
putational tools. Additionally, first-opinion vEHRs
often contain diagnostic uncertainty due to limited
specialist access, resource constraints, and financial
considerations (Robinson et al., 2016).

Despite these challenges, vEHRs offer unique
advantages for biomedical research. Unlike human
records, which are tightly regulated under laws
such as HIPAA and GDPR, vEHRs face fewer le-
gal constraints (Sun et al., 2020), making them a
viable test bed for developing analytical methods.
Their relative accessibility enables researchers to
explore novel computational approaches without
the ethical and regulatory barriers associated with
human health data (Kol et al., 2015; Starkey et al.,
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2005; Trott et al., 2004).
Advancing natural language processing (NLP)

for vEHRs is critical for global health, support-
ing the World Health Organisation’s (WHO) One
Health initiatives in zoonotic disease surveillance
and antimicrobial resistance (AMR) monitoring
(Bidaisee and Macpherson, 2014; Radford et al.,
2011). Enhanced NLP tools improve threat de-
tection and trend analysis in animal populations,
strengthening public health responses across hu-
man, animal, and environmental health domains
(Kol et al., 2015; Robertson et al., 2000; Van Dui-
jkeren et al., 2004). Beyond public health, NLP-
driven solutions facilitate large-scale epidemiologi-
cal studies, identifying risk factors and treatment
outcomes that enhance companion animal welfare
(Lund, 2015; Farrell et al., 2023b).

Traditional veterinary disease surveillance relies
on manual coding or rule-based methods, which
are time-intensive and prone to human error (Hsia
et al., 2010; Miñarro-Giménez et al., 2018; Turchin
et al., 2006). In contrast, NLP-driven approaches
offer scalable, automated solutions for extracting
clinical insights from free-text records. Developing
these methods within veterinary medicine improves
animal welfare and contributes to the refinement
of computational tools that may later be adapted
to human bioinformatics research. Neural network
approaches to disease coding have evolved con-
siderably over time. Pioneering work introduced
DeepTag (Nie et al., 2018), establishing a foun-
dation that subsequently refined into the more ad-
vanced VetTag framework (Zhang et al., 2019). The
field has progressed significantly with recent inno-
vations leveraging pre-trained LLMs (Farrell et al.,
2023a; Boguslav et al., 2024). Complementary
research has expanded our understanding of gen-
erative models for veterinary entity extraction for
clinical signs (Wulcan et al., 2024) and for body
condition scoring (Fins et al., 2024).

In this paper, we contribute the following:

1. PetEVAL: The first veterinary EHR bench-
mark – A publicly available free-text vEHR
dataset, establishing a standard for veterinary
NLP research.

2. Rigorous manual anonymisation – Every
record underwent manual anonymisation with
at least two independent reviews, including
verification by a veterinary clinician, ensuring
complete removal of sensitive data.

3. ICD-11 syndromic classification – Syndromic
labels were assigned using the ICD-11 frame-
work, supplemented with domain-specific an-
notations to ensure clinically relevant label-
ing.

2 Literature Review

The adoption of EHRs has revolutionised medi-
cal research, offering vast amounts of health data
for analysis (Gunter and Terry, 2005; Cowie et al.,
2017). While structured EHR data has been exten-
sively used in epidemiological studies (Krumholz
et al., 2014; Hamer et al., 2024; Hlatky et al., 2014;
Williamson et al., 2020), up to 80% of EHR infor-
mation exists in unstructured formats, primarily as
free-text clinical notes (Kong, 2019). These un-
structured notes capture clinical insights often lost
in structured formats (Birman-Deych et al., 2005;
Singh et al., 2004). Excluding this data from re-
search can significantly impact the validity of find-
ings (Ford et al., 2013; Jensen et al., 2017; Price
et al., 2016; Barak-Corren et al., 2017). However,
utilising unstructured data presents challenges in
patient privacy protection, particularly regarding re-
identification risks (Simon et al., 2019; Abouelme-
hdi et al., 2017; Dorr et al., 2006). Automated
EHR anonymisation has become a critical focus in
addressing these challenges. Benchmarks like the
i2b2/UTHealth corpus and MIMIC-3 database have
been established to evaluate de-identification mod-
els (Stubbs and Uzuner, 2015; Stubbs et al., 2017;
Meystre et al., 2010; Aberdeen et al., 2010). Ap-
proaches range from rule-based systems (Cao et al.,
2003) to neural networks (Liu et al., 2019) and pre-
trained language models (Yoon et al., 2023; Chen
et al., 2021). Recent advancements in learning-
based methods show promise in automating de-
identification (Leevy et al., 2020; Lee et al., 2022).
However, these methods face challenges with per-
formance instability when applied to heterogeneous
real-world data (Abu-El-Rub et al., 2022; Yang
et al., 2019). Deep learning approaches have been
proposed to address these issues, but their effective-
ness is limited by small training datasets and per-
formance degradation on out-of-distribution EHRs
(Syed et al., 2022; Lee et al., 2021; Jiang et al.,
2017).
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3 PetEVAL

3.1 The SAVSNET Dataset

We utilise data from the Small Animal Veterinary
Surveillance Network (SAVSNET), a sentinel net-
work of 253 volunteer first-opinion veterinary prac-
tices across the United Kingdom that have col-
lected vEHRs since March 2014. This network
has accumulated over 12 million EHRs, with par-
ticipating practices selected based on their prac-
tice management software compatibility with the
SAVSNET data exchange system. During each con-
sultation with a clinician or nurse, comprehensive
data includes species, breed, sex, neuter status, age,
owner’s postcode, insurance and microchipping sta-
tus, and a detailed free-text clinical narrative. These
narratives may contain information about symp-
toms, diagnoses, treatments, procedures, or other
clinical matters. Owners can opt out of data collec-
tion during any consultation. The SAVSNET group
operates under ethical approval from the University
of Liverpool Ethics Committee (RETH001081), en-
suring adherence to established ethical standards.
Figure 1 provides a sample data point in JSON
format.

3.2 Tasks

3.2.1 Task 1 - Anonymisation
Ensuring the privacy and security of EHRs is cru-
cial for safeguarding the personal information of
pet owners and facilitating the easy sharing of data
use in clinical and academic research. The dataset
is labelled with NER entities and spans applied to
pseudo-anonymised contextual placeholders. The
objective is to maintain the integrity and utility of
clinical information within the EHR while effec-
tively anonymising various types of personal data.
This includes names (both animal and human), lo-
cation details (such as city, town, and addresses),
organisation names (including attending veterinary
practices, referral hospitals, kennels, and labora-
tories), contact details (emails, phone numbers),
id-numbers (passport numbers, insurance policy
numbers, MRCVS codes), and any other explicit
identifiers. The anonymisation is compliant with
the HIPPA Safe Harbour (Sun et al., 2020).

3.2.2 Task 2 - Syndromic Disease
Classification

Given the critical role of monitoring national dis-
ease outbreaks in public health, effective surveil-
lance systems can provide invaluable insights, such

as in informing clinicians of key symptoms to ob-
serve, enabling researchers to identify aetiological
agents, and establishing an automated reporting
mechanism for public health agencies to facilitate
swift notification of changes in disease occurrence.
However, the task is not straightforward, partic-
ularly when dealing with novel diseases or syn-
dromes with unknown symptoms. Effective out-
break reduction strategies hinge on the ability to
detect outbreaks with minimal cases. To address
these challenges, the dataset is provided with ICD-
11 chapters (World Health Organisation (WHO),
2022), which includes contextual discussions such
as symptoms and diagnoses. The task is structured
as a multi-label classification problem, as a con-
sult or condition may cover a range of presenting
symptoms. Performance is evaluated using multi-
label classification metrics, including precision and
recall, macro-average F1-Score, and weighted F1-
Score.

3.2.3 Task 3 - Disease Extraction
Identifying specific diseases is critical for down-
stream epidemiological studies, which aim to re-
veal novel risk factors, seasonality, and other trends.
This task is particularly challenging due to the pri-
vate healthcare nature of veterinary practices in the
UK and much of the world. Confirmation diag-
nostic tests are rare, as owners often wish to avoid
the inherent costs, opting instead to take the ad-
vice of clinicians or due to the lack of available
resources or expertise not found in first opinion
practice. Additionally, the presence of negations is
common within vEHRs, especially within the first
opinion setting, where it is estimated that 11% of
mentioned diseases are negated (Cheng et al., 2017)
which complicates the task further. In our study,
the dataset is labelled with the diagnostic disease
contained within it. This process is framed as NER
task using the IOB2 format, wherein the entity of
‘disease’ and its spans are provided. Evaluation
utilises SeqEval for precision, recall, and F1-score
(Nakayama, 2018).

4 Methods

4.1 Dataset Construction

Our dataset comprises three subsets: a training
set of 11,000 records, an evaluation set of 1,600
records, and a test set of 5,000 records. We selected
only consultations recorded before 2020 and re-
stricted the dataset to consultations involving only
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Table 1: Evaluation of NER performance on veterinary clinical text data anonymised according to HIPAA Safe
Harbor guidelines. The table presents entity type distribution across training, evaluation, and test splits, with
comparative performance metrics (precision, recall, F1-score) between ‘BERT-base-uncased’, ‘PetBERT’, and
LLaMA 3.1 8B models across identifier categories.

HIPAA Safe Harbor Examples Train/ Test NER BERT-base-uncased PetBERT LLaMA 3.1 8B
Eval Count Entity P R F1 P R F1 P R F1

(A) Names Pet, Owner, Vet Names 4790 1370 PER 0.84 0.93 0.89 0.93 0.70 0.80 0.71 0.65 0.68
(B) Geographic
subdivisions

City, Towns, Countries 311 94 LOC 0.95 0.98 0.97 0.97 0.97 0.97 0.78 0.83 0.80
Vet practices, hospitals, shelters 392 168 ORG 0.97 0.97 0.98 0.98 0.96 0.97 0.82 0.79 0.81

(C) Dates Day/month dates, appointments 425 162 TIME 0.94 0.96 0.95 0.93 0.94 0.93 0.76 0.81 0.78
(D) Telephone numbers Client/practice phone numbers 19 4

MISC 0.91 0.97 0.97 0.95 0.94 0.94 0.73 0.69 0.71

(E) Fax numbers n/a None None
(F) Email addresses Referral/client emails 9 3
(G) Social security numbers n/a None None
(H) Medical record numbers n/a None None
(I) Health plan numbers Insurance policy numbers 33 20
(J) Account numbers Microchip Numbers 299 35
(K) Certificate numbers MRCVS clinician codes 51 17
(L) Vehicle identifiers n/a None None
(M) Device identifiers n/a None None
(N) URLs Website urls None None
(O) IP addresses n/a None None
(P) Biometric identifiers n/a None None
(Q) Photographic images n/a None None
(R) Other identifiers Passport numbers 34 8

cats and dogs. To enhance generalisability, dataset
splits were performed based on a pre-compiled list
of veterinary practices, following the methodology
outlined in (Farrell et al., 2023a). Specifically, we
assigned distinct practices to training and testing
sets, ensuring that models trained on the training
set were evaluated on records from veterinary prac-
tices that did not contribute to training. This design
minimises the risk of models overfitting to stylistic
or institutional biases and provides more substan-
tial evidence of generalisability across UK veteri-
nary practices. We excluded empty records contain-
ing fewer than ten words or exceeding 350 words.
The median narrative length in the full SAVSNET
dataset is 287 words, while in PetEVAL, it is 226
words.

4.1.1 Annonymisation

Each record was manually reviewed twice, target-
ing the removal of all potential identifiers, includ-
ing names (owner, animal, and veterinary staff), lo-
cations (cities, countries, vet practices, referral hos-
pitals, rescue centres, kennels, crematoriums, labs),
dates (when they included specific years), times
(if overly specific), and unique identifiers such
as microchip codes, passport numbers, insurance
policy numbers, vet MRCVS codes, phone num-
bers, and email addresses. Flagged elements were
pseudonymised with context-appropriate place-
holders to maintain record coherence, and corre-
sponding spans and entity tags were generated for
these placeholders. Pseudonyms were derived from

separate lists for train and test splits,
For the anonymisation NER task, identifiers

were mapped to standard tags: ’LOC’ (cities,
towns, countries), ’PER’ (pet/owner/vet names),
’TIME’ (specific dates/times), ’ORG’ (veterinary
practices, rescue shelters, labs, groomers), and
’MISC’ (unique identifiers like microchips, insur-
ance codes, contact information). The counts for
each can be found within table 1. Non-clinical
brand names were removed but not included in
anonymisation metrics. No clinically relevant in-
formation was modified.

4.1.2 Syndromic Disease Classification

The dataset was curated to support syndromic dis-
ease surveillance through the assignment of ICD-11
labels. For this purpose, 20 ICD-11 chapter codes
were selected to capture a broad range of clini-
cally relevant syndromes observed in veterinary
practice. The full list of selected chapter codes is
provided in Table 2. To facilitate efficient and ac-
curate annotation, we employed a semi-automated
approach wherein initial fuzzy labels were gener-
ated using the PetBERT-ICD model, a previously
developed tool designed for assigning ICD-related
labels in veterinary contexts. This pre-annotation
step helped streamline the annotation process, re-
duce cognitive load for annotators, and minimise
potential errors. Annotators reviewed and refined
these suggested labels, ensuring alignment with
clinical documentation practices in first-opinion
vEHRs. To maintain the integrity of the evalua-
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tion, the test set was exempt from automated label
matching and underwent a full manual review by
two expert annotators. Records that an initial re-
viewer was unhappy to determine the presence of
a diagnosis were passed through an additional re-
viewer, and a consensus vote was taken. Finally, we
ensured that the disease extraction dataset aligned
with the syndromic dataset, an extracted disease
therefore has a linked syndromic label.

4.1.3 Disease Extraction
The dataset was developed to facilitate the evalu-
ation of disease diagnosis extraction models from
first-opinion vEHRs. Given the nature of primary
care veterinary records, confirmatory diagnoses are
rare, with most diagnoses being clinical assess-
ments rather than definitive results from diagnostic
testing. Therefore, any named condition mentioned
in a record was annotated as a diagnosis unless
explicitly negated. This includes confirmed diag-
noses, differential diagnoses, and syndromic de-
scriptions. Additionally, mentions of pathogens,
such as bacteria, viruses, and parasites, were anno-
tated as they typically are discussed as diagnoses
within the narratives. We extracted diseases coded
within the ICD-11 and veterinary-specific condi-
tions not represented in human medicine. Each
annotated diagnosis was linked to its correspond-
ing span within the text, with entity tags assigned to
support NER tasks. Records that an initial reviewer
was unhappy to determine the presence of a diag-
nosis were passed through an additional reviewer,
and a consensus vote was taken.

4.1.4 Baseline Models
For baseline results in PetEVAL, we evaluated
three pre-trained language models: ‘BERT-base-
uncased’ (Devlin et al., 2019), a general-purpose
encoder; ‘PetBERT’ (Farrell et al., 2023a), a vet-
erinary domain-adapted encoder; and ‘LLaMA 3.1
8B’ (Team and Meta, 2024), a generalist decoder
model. The encoder models were fine-tuned as to-
ken classification models using the IOB2 format
for the anonymisation and disease extraction tasks,
with training parameters including a mini-batch
size of 32, an initial learning rate of 2e-5, and the
AdamW optimiser. Early stopping was applied
based on evaluation loss. For syndromic classifi-
cation, both encoders were adapted for multi-label
classification across 20 ICD-11 chapter codes, em-
ploying a weighted binary cross-entropy loss func-
tion with sigmoid activation to address class imbal-

Figure 2: Distribution of the 15 most frequent dis-
ease entities extracted from veterinary electronic health
records in the Train/Eval and Test sets during Task 2
(Disease Extraction).

ance. Training followed the same hyperparameter
setup and typically converged beyond epoch 6. An
iterative threshold analysis was conducted, vary-
ing classification thresholds between 60% and 95%
in 5% increments, prioritising recall to minimise
false negatives. The final classifier applied an 80%
threshold and was evaluated on the test set. The
decoder model was prompted with few-shot exam-
ples selected from the training set, with multiple
prompt designs tested against the evaluation set
before application to the full test set.

4.1.5 Model Evaluation
We implemented a unified entity-level evaluation
framework to ensure fair comparison between en-
coder (BERT) and decoder (LLaMA) architectures
across anonymisation and disease extraction tasks.
For encoder models, we first converted token-level
IOB/BIO predictions into entity spans before ap-
plying the same entity-level F1 evaluation used for
decoder models. This approach follows CoNLL
methodology (Tjong et al., 2003), where all ex-
tracted entities undergo identical normalisation pro-
cedures before being exact-matched against ground
truth. For both model types and tasks, we calculate
precision as the ratio of correctly identified entities
to total predictions, recall as the ratio of correctly
identified entities to ground truth entities, and F1 as
their harmonic mean. The anonymisation task eval-
uates the identification of privacy-sensitive entities
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(LOC, PER, MISC, NAME), while disease extrac-
tion assesses the recognition of standardised dis-
ease mentions. By standardising evaluation across
architectural paradigms, we enable direct perfor-
mance comparison while maintaining methodolog-
ical rigour in assessing clinical information extrac-
tion capabilities.

For the syndromic classification task, we assess
model performance using precision, recall, and F1
scores computed against ground truth labels pro-
vided by annotators. For encoder-based models,
classification uses a fine-tuned ICD-11 classifier
with an optimised threshold, ensuring a balance
between precision and recall for robust disease de-
tection. For generative models, we convert outputs
into a tabular format using a direct match approach
on uncased text. Similarity-based methods were
considered, but they yielded no performance gains,
so we adopted the least computationally intensive
approach. The predicted labels are transformed
into a one-hot encoded vector, applying the same
evaluation metrics as encoder models. Given the
importance of disease surveillance, we preferen-
tially select for recall to minimise false negatives,
as missing cases could lead to undetected outbreaks.
While this may increase false positives, these can
be further reviewed to ensure the detection of po-
tential health threats.

5 Results

5.1 Corpus Overview

The dataset consists of 675,935 words distributed
across the training (11,000 records), evaluation
(1,600 records), and test sets (5,000 records).
While demographic data is not included, 68% of
the records represent dogs, with a near 50-50 sex
split across both species. The dataset contains infor-
mation from 16,153 unique animals from various
regions across the UK.

For syndromic disease classification, annotations
were applied using a multi-label one-hot encod-
ing approach aligned with ICD-11 chapter heads.
Across the dataset, 9,510 annotations were made
in the training set and 4,714 in the test set. The
most frequent label, ’Certain infectious or para-
sitic diseases’, was prominent due to the high oc-
currence of conditions like parasitic infestations.
The median labels per class in the training set was
348, with an average of 0.9 labels per consultation.
Notably, 8,907 consultations received at least one
label, while those without a label typically repre-

sented routine checkups or non-syndromic cases.
The frequency distribution of extracted disease

entities across the train/eval and test datasets is pre-
sented in Figure 2. As expected, conditions readily
identifiable through visual examination, such as
gingivitis, conjunctivitis, and lipoma, exhibit high
representation. Furthermore, the extracted entities
encompass clinical language commonly used by
veterinary practitioners to indicate disease, includ-
ing terms like ’infection,’ ’fleas’ (for flea infesta-
tion), and ’dental disease’ (for unspecified dental
conditions). The train/eval datasets contain 3,907
unique extracted conditions, while the test dataset
comprises 2,899.

5.2 Inter-annotator agreement
Inter-annotator agreement was assessed on a subset
of 1,000 vEHRs from the test set focused on the
syndromic classification task. Two expert veteri-
nary clinicians independently annotated the records
using strictly predefined guidelines, with no com-
munication allowed at this stage to ensure unbiased
annotations. The resulting Cohen’s kappa statistic
was 0.722, indicating a substantial level of agree-
ment (McHugh, 2012). This value suggests strong,
though not perfect, alignment between the annota-
tors. Disagreements were systematically reviewed,
with the majority resolved through a collaborative
discussion. In cases where consensus could not
be reached, a third clinician provided a decisive
resolution.

5.3 Baselines
We conducted baseline experiments with ‘bert-
base-uncased’ and ‘PetBERT’ and a generative
model ‘LLaMA 3.1 8B’ to establish reference
points for evaluating more complex models. For
the anonymisation task, PetBERT consistently out-
performed BERT-Base across HIPAA Safe Harbor
entity categories, with notable improvements in
identifying names (F1: 0.80 vs. 0.89) and geo-
graphic subdivisions (F1: 0.97 vs. 0.98) (Table 1).
Both models achieved high performance in struc-
tured entity types such as dates (F1: 0.93 vs. 0.95)
and organisations (F1: 0.97 vs. 0.98). LlaMA 3.1,
using few-shot prompting (Appendix), was behind
with lower F1-scores across all categories, particu-
larly for names (F1: 0.68) and locations (F1: 0.80).

As shown in Table 1, fine-tuned PetBERT out-
performed BERT-base-uncased across most entity
types, achieving a higher precision (0.93 vs. 0.84),
recall (0.70 vs. 0.93), and F1-score (0.80 vs. 0.89)
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Table 2: Performance Metrics for BERT-base-uncased, PetBERT, and LLaMA 3.1 8B on ICD-11 Syndromic
Chapters. P = Precision, R = Recall, F1 = F1-score

ICD-11 Syndromic Chapter Train/ Test BERT-base-uncased PetBERT LLaMA 3.1 8B
Eval Count P R F1 P R F1 P R F1

Certain infectious or parasitic diseases 1549 1321 0.74 0.31 0.44 0.78 0.45 0.57 0.65 0.28 0.39
Neoplasms 774 499 0.85 0.77 0.81 0.90 0.81 0.85 0.77 0.65 0.70
Diseases of the blood or blood-forming organs 90 47 0.66 0.35 0.45 0.63 0.31 0.41 0.55 0.23 0.32
Diseases of the immune system 512 429 0.80 0.54 0.64 0.84 0.51 0.64 0.68 0.41 0.51
Endocrine, nutritional or metabolic diseases 572 305 0.67 0.60 0.64 0.69 0.60 0.64 0.58 0.45 0.51
Mental, behavioral or neurodevelopmental disorders 1121 469 0.76 0.34 0.46 0.79 0.38 0.51 0.64 0.27 0.38
Diseases of the nervous system 233 150 0.54 0.58 0.56 0.71 0.54 0.61 0.48 0.42 0.45
Diseases of the visual system 905 634 0.85 0.81 0.83 0.90 0.80 0.85 0.73 0.68 0.70
Diseases of the ear or mastoid process 700 513 0.83 0.77 0.80 0.88 0.78 0.83 0.71 0.65 0.68
Diseases of the circulatory system 276 181 0.67 0.33 0.45 0.71 0.46 0.55 0.55 0.29 0.38
Diseases of the respiratory system 459 346 0.80 0.54 0.64 0.84 0.57 0.68 0.68 0.45 0.54
Diseases of the digestive system 671 259 0.81 0.55 0.66 0.79 0.62 0.69 0.67 0.46 0.55
Diseases of the skin 1377 1018 0.81 0.62 0.70 0.88 0.60 0.71 0.69 0.51 0.59
Diseases of the musculoskeletal system or connective tissue 1171 722 0.79 0.73 0.76 0.83 0.70 0.76 0.67 0.61 0.64
Diseases of the genitourinary system 569 334 0.76 0.59 0.66 0.79 0.67 0.73 0.65 0.49 0.56
Pregnancy, childbirth or the puerperium 65 36 0.42 0.17 0.24 0.74 0.12 0.21 0.36 0.10 0.16
Certain conditions originating in the perinatal period 39 27 0.50 0.08 0.13 0.00 0.00 0.00 0.38 0.05 0.09
Developmental anomalies 191 95 0.59 0.19 0.28 0.70 0.30 0.42 0.47 0.15 0.23
Injury, poisoning or certain other consequences of external causes 1113 636 0.67 0.67 0.67 0.73 0.70 0.71 0.58 0.55 0.56
micro average 0.76 0.58 0.66 0.81 0.61 0.70 0.65 0.47 0.55
macro average 0.71 0.50 0.57 0.74 0.52 0.60 0.60 0.41 0.48
weighted average 0.76 0.58 0.65 0.81 0.61 0.69 0.65 0.47 0.54

for identifying personal names (PER) such as pet,
owner, and vet names. In contrast, LLaMA 3.1
achieved lower performance across all entity types,
with an F1-score of 0.68 for names. For location
(LOC) and organisation (ORG) entities, PetBERT
outperformed BERT-base-uncased, achieving F1-
scores of 0.97 and 0.97, respectively, compared to
BERT-base’s 0.97 and 0.98. LLaMA 3.1 showed
lower performance in both entity types, with an F1
of 0.80 for LOC and 0.81 for ORG. The compari-
son highlights PetBERT’s superior ability to pro-
cess veterinary clinical text, particularly for iden-
tifying personal and organisational entities, while
Llama 3.1’s performance in entity recognition re-
mained behind.

PetBERT outperformed both BERT-Base and
Llama 3.1 for the disease extraction task, achieving
a precision of 0.90, recall of 0.85, and F1-score
of 0.87 (Table 1). BERT-Base trailed with 0.70
precision, 0.55 recall, and an F1 of 0.60, while
Llama 3.1, using a few-shot prompt (Appendix),
performed worst (precision: 0.60, recall: 0.35, F1:
0.40).

6 Discussion

In veterinary first-opinion clinical practice, the
challenge of extracting meaningful insights from
vEHRs is compounded by several notable factors.
Among these is the absence of standardised data
conventions within free-text inputs, and inconsis-
tencies in spelling and abbreviations used by differ-
ent clinicians (Davies et al., 2024b). This is ampli-

fied by the ambiguity surrounding the interpretation
of consultation events. Specifically, the lack of di-
agnostic details in these narratives introduces addi-
tional layers of complexity. The moderate Cohen’s
kappa score of 0.7, observed between two annota-
tors—both qualified veterinary clinicians - under-
scores the inherent difficulties in annotating such
unstructured data. Veterinary EHRs are packed
with ambiguous language, clinician-specific abbre-
viations, and varying documentation styles, inhibit-
ing the ability to extract information from them
effectively. Even among active clinicians, the inter-
pretation of nuanced first-opinion notes can differ,
primarily due to diagnostic uncertainties, incom-
plete patient histories, and the lack of standardised
terminology. Despite these obstacles, the intrinsic
value embedded within these clinical narratives is
undeniable, with applications spanning disease out-
break detection and improving public health and
animal welfare standards (Davies et al., 2024a; Far-
rell et al., 2023a).

Generative models, such as the LLaMA 3.1 8B
applied in our baseline, exhibited relatively poor
performance across tasks, particularly in NER. This
highlights the ongoing challenge of designing ef-
fective prompting strategies, requiring further re-
search. Additionally, generative models present
inherent difficulties in evaluation, as their flexible
outputs may not align precisely with gold-standard
annotations. While our strict direct match approach
may penalise performance, maintaining fidelity to
the intended identifier remains a priority. Over

347



time, we anticipate improvements in generative ar-
chitectures, which may eventually surpass the limi-
tations observed here. However, domain-adapted
encoder-based models like PetBERT demonstrated
superior performance across all tasks, aligning with
expectations given their targeted pretraining. Be-
yond accuracy, their efficiency also makes them
preferable for everyday deployments, especially in
resource-intensive applications such as continuous
disease surveillance. Given the significant environ-
mental cost of running large LLMs (Bashir et al.,
2024), there is a clear need for lightweight, domain-
specific solutions that can operate effectively on
consumer-level hardware, ensuring sustainability
and practical usability in real-world veterinary in-
formatics.

Strict privacy regulations in human healthcare
restrict many studies to single institutions, creat-
ing discrepancies between reported performance
and cross-site generalisability. PetEVAL collates
from over 250 UK practices with diverse clinical
approaches and provides substantial advantages
for robust model evaluation. While fewer than
23% of human healthcare ML studies utilise multi-
institutional data (McDermott et al., 2021), often re-
sulting in significant biases and performance degra-
dation when applied to external institutions (Barak-
Corren et al., 2021; Burns and Kheterpal, 2020), Pe-
tEVAL’s multi-institutional framework can capture
practice variability and thus offers an opportunity
to assess model robustness across institutions, ulti-
mately contributing to more accurate and equitable
AI-driven healthcare systems within and beyond
veterinary medicine.

7 Conclusion

PetEVAL is the first benchmark dataset for veteri-
nary EHRs, featuring expert-annotated resources
across ICD-11 syndromic classifications, dis-
ease entity recognition, and anonymisation labels.
Beyond addressing a critical gap in veterinary
medicine, PetEVAL facilitates valuable compar-
ative studies between animal and human health
domains, promoting cross-disciplinary insights. As
a foundational resource for veterinary informatics,
this dataset promises to catalyse advancements in
clinical decision support systems, enhance epidemi-
ological surveillance capabilities, and strengthen
WHO’s One Health initiatives, ultimately advanc-
ing animal welfare and public health research out-
comes.
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9 Limitations

Despite rigorous quality control, annotation errors
are unavoidable due to the dataset’s scale. Models
trained on first-opinion vEHRs are inherently lim-
ited by the availability and accuracy of recorded in-
formation, often lacking confirmatory diagnostics
due to financial constraints or resource limitations.
Our evaluation method enforces strict token-level
matching, penalising incomplete spans even when
semantically close to the ground truth. While this
is critical for anonymisation, it may be overly rigid
for disease extraction. Similarly, our classification
approach adheres strictly to predefined categories,
which, while justified by the prompt, may overlook
minor deviations. Future work could explore more
flexible evaluation metrics and incorporate referral-
level vEHRs to enhance diagnostic certainty.
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10 appendices

10.1 Task 1: Anonymisation Prompt

Prompt: Extract Named Entities from Veterinary
EHRs You are given short free-text veterinary elec-
tronic health records (EHRs). Your task is to extract
named entities mentioned in the text. Focus on iden-
tifying Names (NAME) locations (LOC), organiza-
tions (ORG), temporal expressions (TIME), and mis-
cellaneous named entities (MISC). Examples:

Input: "Raven GA castrate. Anaes: Premed
ACP/Meth. Induced propofol maint iso/02. Good
anaesthetic. Op: Routine open castrate. double lig-
ated 2-0 polysorb. Skin closed intradermal." Output:
RavenNAME = Raven LOC = ORG = TIME = MISC
= Input: "Waffle/MG - back end irritation. Owner re-
ports irritation round back end, rubbing bottom over
last 2-3 weeks." Output: NAME = Waffle LOC =
ORG = TIME = last 2-3 weeks MISC = Input: "Adv
routine haem/biochem (est £603) owner will discuss
with wife. - Prescription -. Date: Apr 3, 2002. Vet:
Reese, Qualifications: MRCVS." Output: NAME =
Reese LOC = ORG = TIME = Apr 3, 2002 MISC =

Guidelines: -Extract only named entities in the ap-
propriate categories:

NAME: Pet Names, Owner Names, Cliniain names
LOC: geographical locations, clinics, hospitals, ani-
mal shelters ORG: veterinary practices, laboratories,

pharmaceutical companies TIME: dates, time peri-
ods, durations, temporal references MISC: animal
names, medications, procedures, medical equipment,
qualifications - List each entity under its proper cate-
gory. - If multiple entities of the same type are men-
tioned, extract each one separately. - Maintain the
exact form as mentioned in the text.

10.2 Task 2: Syndromic Disease
Classification Prompt

You are given a free-text veterinary electronic health
records (EHRs). Your task is to assign a ICD-11 chap-
ter names based on the conditions, symptoms, and di-
agnoses mentioned in the text. Each assigned chapter
should correspond to the primary system or disease
category affected.
ICD-11 Chapters: 1. Certain infectious or parasitic
diseases 2. Neoplasms 3. Diseases of the blood or
blood-forming organs 4. Diseases of the immune sys-
tem 5. Endocrine, nutritional, or metabolic diseases 6.
Mental, behavioral, or neurodevelopmental disorders
7. Sleep-wake disorders 8. Diseases of the nervous
system 9. Diseases of the eye and adnexa 10. Dis-
eases of the ear and mastoid process 11. Diseases of
the circulatory system 12. Diseases of the respiratory
system 13. Diseases of the digestive system 14. Dis-
eases of the skin 15. Diseases of the musculoskeletal
system or connective tissue 16. Diseases of the gen-
itourinary system 17. Conditions related to sexual
health 18. Pregnancy, childbirth, or the puerperium
19. Certain conditions originating in the perinatal pe-
riod 20. Developmental anomalies 21. Symptoms,
signs, or clinical findings not elsewhere classified
22. Injury, poisoning, or certain other consequences
of external causes 23. External causes of morbidity
or mortality 24. Factors influencing health status or
contact with health services
Examples:
1. Input: "marked signs of renal failure. not eating
much. huge wt loss. not moving around much." Out-
put: Disease of the genitourinary system
2. Input: "Bilat OE. Mild, cleaned and wax removed,
no obvious sign mites. Start on ear drops, rv sooner
if concerned otherwise at next vaccination on 29th."
Output: Diseases of the ear and mastoid process
3. Input: "skin lesions, bloods for meds check. no-
ticed spot like skin lesions on forehead and side
of face. not rubbing/scratching. would like checked.
mass on R flank, slow growing, separated masses now
merged together. pulsing meloxaid for stomatogingvi-
tis." Output: Disease of the digestive system, Disease
of the skin, Neoplasms
Guidelines: - Assign at least one ICD-11 chapter
name that best represents the condition(s) described. -
If no condition is present then return ’None’ - If multi-
ple conditions from different systems are mentioned,
include multiple ICD-11 chapter names. - Ignore non-
diagnostic text (e.g., medication instructions or rou-
tine check-ups) unless relevant to a condition. - Main-
tain consistency in ICD-11 chapter naming as per the
official classification.

352

https://icd.who.int/en
https://icd.who.int/en
https://doi.org/10.3389/FVETS.2024.1490030/BIBTEX
https://doi.org/10.3389/FVETS.2024.1490030/BIBTEX
https://doi.org/10.3389/FVETS.2024.1490030/BIBTEX
https://doi.org/10.1186/S12911-019-0935-4/TABLES/4
https://doi.org/10.1186/S12911-019-0935-4/TABLES/4
https://doi.org/10.1186/S12911-019-0935-4/TABLES/4
https://doi.org/10.1038/s41746-023-00888-7
https://doi.org/10.1038/s41746-023-00888-7
https://doi.org/10.1038/s41746-023-00888-7
https://doi.org/10.1038/s41746-019-0113-1
https://doi.org/10.1038/s41746-019-0113-1
https://doi.org/10.1038/s41746-019-0113-1


10.3 Task 3: Disease Extraction Prompt

You are given a free-text veterinary electronic health
records (EHRs). Your task is to **extract the disease
names** mentioned in the text. Focus on identifying
diseases or conditions specifically mentioned, ignor-
ing general symptoms, treatments, or non-diagnostic
text.

Examples:

1. Input: "marked signs of renal failure. not eating
much. huge wt loss. not moving around much." Out-
put: renal failure

2. Input: "Bilat OE. Mild, cleaned and wax removed,
no obvious sign mites. Start on ear drops, rv sooner
if concerned otherwise at next vaccination on 29th."
Output: OE

3. Input: "skin lesions, bloods for meds check. no-
ticed spot like skin lesions on forehead and side
of face. not rubbing/scratching. would like checked.
mass on R flank, slow growing, separated masses now
merged together. pulsing meloxaid for stomatogingvi-
tis." Output: Skinskin lesions, stomatogingvitis, mass
on R flank

Guidelines: - Extract only disease names (e.g., "Re-
nal failure", "Otitis externa", "Neoplasm"). - Do not
include symptoms, treatment plans, or general find-
ings (e.g., "not eating much", "Start on ear drops"). -
If multiple diseases are mentioned, extract each dis-
ease separately. - Maintain consistency in naming
diseases and conditions as per medical terminology.
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