
Proceedings of the 24th Workshop on Biomedical Language Processing (BioNLP 2025), pages 328–340
August 1, 2025 ©2025 Association for Computational Linguistics

Overcoming Data Scarcity in Named Entity Recognition: Synthetic Data
Generation with Large Language Models

Tuan An Dao1,2 Hiroki Teranishi2 Yuji Matsumoto2

Florian Boudin3 Akiko Aizawa4,2

1The University of Tokyo, Tokyo, Japan
2RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan

3JFLI, Nantes Université, France
4National Institute of Informatics, Tokyo, Japan

dtan@g.ecc.u-tokyo.ac.jp, {hiroki.teranishi, yuji.matsumoto}@riken.jp,
florian.boudin@univ-nantes.fr, aizawa@nii.ac.jp
Abstract

Named Entity Recognition (NER) is crucial for
extracting domain-specific entities from text,
particularly in biomedical and chemical fields.
Developing high-quality NER models in spe-
cialized domains is challenging due to the lim-
ited availability of annotated data, with manual
annotation being a key method of data con-
struction. However, manual annotation is time-
consuming and requires domain expertise, mak-
ing it difficult in specialized domains. Tradi-
tional data augmentation (DA) techniques also
rely on annotated data to some extent, further
limiting their effectiveness. In this paper, we
propose a novel approach to synthetic data gen-
eration for NER using large language models
(LLMs) to generate sentences based solely on
a set of example entities. This method simpli-
fies the augmentation process and is effective
even with a limited set of entities. We evaluate
our approach using BERT-based models on the
BC4CHEMD, BC5CDR, and TDMSci datasets,
demonstrating that synthetic data significantly
improves model performance and robustness,
particularly in low-resource settings. This work
provides a scalable solution for enhancing NER
in specialized domains, overcoming the limi-
tations of manual annotation and traditional
augmentation methods.

1 Introduction

Named Entity Recognition (NER) is a fundamental
task in Natural Language Processing (NLP) aiming
at identifying and classifying named entities in text.
The primary goal of NER is to extract specific en-
tities such as people, organizations, locations, and
specialized terms (e.g., chemicals, diseases) from
unstructured text. Effective NER is vital in many
fields, particularly in the biomedical and chemical
domains, where accurate entity recognition sup-
ports applications such as drug discovery, literature
mining, and patent analysis.

One significant challenge in developing high-
quality NER models is the scarcity of annotated

data, particularly in specialized domains and low-
resource scenarios. Recent advancements in data
augmentation for NER have explored diverse strate-
gies to tackle data scarcity, especially in low-
resource settings. Techniques range from simple
methods like synonym replacement (Dai and Adel,
2020; Sabty et al., 2021; Chen et al., 2021; Yaseen
and Langer, 2021; Phan and Nguyen, 2022; Su-
tiono and Hahn-Powell, 2022) and random noise
introduction (Issifu and Ganiz, 2021; Liu et al.,
2023) to more complex approaches such as cross-
domain transformation and leveraging large lan-
guage models (LLMs) (Liu et al., 2022; Ye et al.,
2024). These methods help to generate additional
training examples but often still rely on existing
labeled data, which can limit their effectiveness in
highly specialized domains where labeled exam-
ples are scarce or non-existent.

To overcome these limitations, we propose an
approach for synthetic data generation using LLMs
that generates sentences based solely on a set of
example entities, without relying on pre-existing
annotated data. Our method (GenLLM) simpli-
fies the augmentation process by directly generat-
ing domain-relevant sentences while ensuring en-
tity correctness and contextual consistency. Un-
like traditional techniques, our approach does not
depend on manually annotated examples, making
it especially valuable for low-resource or highly
specialized domains where obtaining labeled data
is challenging. By leveraging LLMs, we can
produce diverse and contextually appropriate sen-
tences that reflect real-world entity occurrences
and relationships. We evaluate the effectiveness
of our approach by applying it to NER tasks using
BERT-based models on three datasets: the widely
used BC4CHEMD (Krallinger et al., 2015) and
BC5CDR (Li et al., 2016) datasets, along with
the TDMSci (Hou et al., 2021) dataset for task,
dataset, and metric entities. Our results show that
pretraining on synthetic data generated by LLMs
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consistently improves model performance, outper-
forming previous data augmentation methods that
combine synthetic data with the original training
data in both low and high-resource settings. We
explored using only synthetic data generated by
LLMs for training, which proved effective in low-
resource scenarios. However, human-annotated
data yielded better results as the dataset size in-
creased, emphasizing the value of expert annota-
tions in high-resource settings. GenLLM offers
a promising data augmentation solution for low-
resource domains, particularly when annotated data
is limited. The code, generated data, and trained
models used in this work are publicly available at
https://github.com/daotuanan/GenLLM_NER.

2 Related Work

NER relies heavily on high-quality annotated
datasets, but in many specialized domains, such
as the biomedical and scientific domain, manually
labeled data are scarce. To address this issue, syn-
thetic data generation has emerged as an alternative
to enhance model performance (Xu et al., 2024).
Generating synthetic data for the NER task is chal-
lenging because it requires more than just produc-
ing natural-sounding sentences; it must also ensure
entity correctness, contextual consistency, and do-
main relevance. Unlike general text generation,
NER data must contain entities that are correctly
labeled and naturally embedded within the context,
reflecting real-world sentence structures.

2.1 Traditional Data Augmentation Methods
for NER

Traditional augmentation methods such as syn-
onym replacement, backtranslation, and cross-
domain adaptation have been used to enhance
NER performance, particularly in low-resource set-
tings (Dai and Adel, 2020; Sabty et al., 2021; Issifu
and Ganiz, 2021; Chen et al., 2021; Yaseen and
Langer, 2021; Phan and Nguyen, 2022). While
these techniques have proven effective, they of-
ten struggle to generate highly contextualized and
domain-specific entity mentions. For instance, ba-
sic methods like synonym replacement and random
insertion have shown improvements in biomedical
NER (Issifu and Ganiz, 2021), and backtransla-
tion has been particularly effective in low-resource
biomedical and materials science domains (Yaseen
and Langer, 2021). However, these methods typ-
ically fail to capture complex entity structures

and contextual dependencies required for domain-
specific tasks.

2.2 LLM-Based Approaches to Data
Generation

Recent advances in LLM-based synthetic data gen-
eration offer a more flexible and scalable alterna-
tive. LLMs can generate diverse, contextually rich
sentences while preserving entity correctness and
domain relevance. For example, prompting strate-
gies have been shown to significantly enhance NER
performance in low-resource scenarios, improving
F1 scores by over 40% (Liu et al., 2022). Tech-
niques like context similarity-based augmentation
(e.g., COSINER) and transformer-based data gen-
eration have demonstrated effectiveness in improv-
ing NER in both general and specialized domains,
such as biomedical texts (Bartolini et al., 2022,
2023; Yili and Haonan, 2023). Moreover, meth-
ods like TarGEN employ multi-step prompting and
self-correction to generate high-quality synthetic
datasets (Gupta et al., 2023). Despite the promise
of these approaches, challenges remain in ensuring
the scalability and quality of synthetic data, partic-
ularly in highly specialized domains like clinical
NER (Hiebel et al., 2023). However, a key lim-
itation of these studies is their focus on general
rather than specialized domains. The effectiveness
of synthetic data and pretraining methods might
not translate well to domain-specific applications,
such as biomedical or clinical NER.

3 Entity-Based Synthetic Data
Generation

Our approach leverages the LLMs to generate syn-
thetic sentences that incorporate specified entities
while maintaining contextual consistency. The
process consists of three main steps: entity selec-
tion 3.1, prompt construction 3.2, and sentence
generation 3.3.

3.1 Entity Selection

We begin by selecting a set of seed entities,
which serve as the foundation for sentence genera-
tion. These entities can be obtained from existing
datasets, knowledge bases, or domain-specific lex-
icons with relatively low effort compared to man-
ually creating fully annotated sentences. The se-
lection ensures that the generated data covers a
diverse set of entity mentions necessary for effec-
tive NER training. Entities are randomly combined
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You are an expert in the {domain} domain.

First entity: {entity1} of type {entity_type1}.

• {entity_type1} is defined as {entity_type1_description}.

• Mark this entity between <{entity_type1}> and </{entity_type1}> tags.

2. Second entity: {entity2} of type {entity_type2}.

• {entity_type2} is defined as {entity_type2_description}.

• Mark this entity between <{entity_type2}> and </{entity_type2}> tags.

…

Give the output between <start_sentence> and </end_sentence>.

Prompt

(a) Prompt structure.

You are an expert in the biomedical domain.

Generate a sentence that includes the following entities and their types.

First entity is “aspirin” of type “Chemical”. 

A chemical is a substance with a distinct molecular composition that is 
produced by or used in a chemical process.

Mark this entity between <Chemical> and </Chemical> tags.

Second entity is “flu” of type <Disease>.

A disease is a condition that impairs normal functioning and is typically 
characterized by specific symptoms.

Mark this entity between <Disease> and </Disease> tags.

Give the output between <start_sentence> and </end_sentence>.

Input

{<start_sentence> Taking <Chemical>aspirin</Chemical> can help alleviate 
symptoms of <Disease>flu</Disease>. </end_sentence>

LLM Output

(b) Example prompt instance.

Figure 1: Illustration of the example prompt used for
generating synthetic sentences with specified entities
and their types. The prompt includes the model’s role,
task instructions, and output formatting guidelines.

from different categories, with each sentence con-
taining one to three entities. For example, from the
categories CHEM (aspirin, lithium) and DISEASE
(lung carcinoma, flu), a possible combination could
be: aspirin, flu.

3.2 Prompt Construction
To generate high-quality synthetic sentences for
NER, we design a structured prompt that ensures
the inclusion of specific entities while maintain-
ing contextual coherence. Our prompt explicitly
defines the domain, entity types, and entity anno-
tations to improve generation accuracy and reduce
annotation errors.

The prompt follows a template-based format that
guides the language model to generate a sentence
containing specified entities with correct annota-
tions. It consists of the following key components:

• Domain Specification: The model is in-
structed to act as an expert in a specific do-

main (e.g., biomedical sciences) to ensure
domain-relevant sentence generation.

• Entity Introduction and Definition: Each tar-
get entity is explicitly listed along with its type
and a brief description of that type. This helps
the model understand the contextual role of
the entity.

• Entity Annotation Instructions: The prompt
explicitly instructs the model to enclose en-
tities within predefined tags, ensuring clear
entity labeling in the generated sentence.

• Output Formatting: The generated sentence
is enclosed within <start_sentence> and
</end_sentence> tags to facilitate automatic
extraction and processing.

This prompt serves as the foundation for gener-
ating synthetic NER training data, ensuring both
entity correctness and contextual consistency in the
generated sentences. The prompt template is found
in Figure 1a. An example of this prompt format is
illustrated in Figure 1b, demonstrating how contex-
tual cues and entity definitions improve generation
accuracy. This prompt format can be used with any
popular LLM for generating synthetic data.

3.3 Sentence Generation

We use the LLaMA-3.2-3B-Instruct1 model to
generate synthetic sentences containing specified
named entities. This model was selected for its bal-
ance between generation quality and computational
efficiency. Unlike prior work that relies on propri-
etary and resource-intensive models such as GPT-4
or GPT-4o (Ye et al., 2024), our approach uses an
open-source, lightweight model that is more acces-
sible and cost-effective, making it better suited for
reproducible research and large-scale generation
in constrained environments. Once the LLM pro-
cesses the prompt, it generates a synthetic sentence
where the specified entities are correctly embed-
ded within a natural linguistic context. To maintain
consistency and avoid introducing unintended enti-
ties, we post-process the output by verifying entity
correctness and ensuring compliance with the anno-
tation format. To ensure that the generated output
adheres to the required annotation format, we apply
the following post-processing steps:

1https://huggingface.co/meta-llama/Llama-3.
2-3B-Instruct
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• Tag Validation: We verify that all entity tags
are correctly opened and closed. Each en-
tity must be enclosed within its respective
<entity_type> and </entity_type> tags to
maintain proper annotation structure.

• Sentence Formatting: We confirm that
the entire sentence is enclosed within
<start_sentence> and </end_sentence>
tags. This ensures the output remains struc-
tured and easily extractable for further pro-
cessing.

By enforcing these constraints, we ensure consis-
tency in the synthetic data before it is used for
training. After validating the output format, we
convert the annotated entities into the BIO (Begin-
Inside-Outside) tagging scheme. Each token in
the sentence is assigned a label based on its entity
type. This transformation ensures compatibility
with standard NER training pipelines.

The synthetic data is then incorporated into the
training set through pretraining, where the model
is first trained on the synthetic data before being
fine-tuned on gold-standard annotated data. This
approach helps the model learn general entity pat-
terns from the generated data, improving perfor-
mance, especially in low-resource or specialized
domains.

4 Experiment with Low-resource Setting

In this experiment, we explore the performance
of our method (GenLLM) in a low-resource set-
ting, where only a limited amount of manually an-
notated data is available. The aim is to evaluate
whether our method can outperform or complement
other state-of-the-art systems, such as LSMS(Dai
and Adel, 2020), LLM-DA(Ye et al., 2024), and
NuNER(Bogdanov et al., 2024), when trained with
a small amount of labeled data. We also investi-
gate how different data augmentation strategies and
pretraining methods impact the model’s ability to
generalize to unseen examples.

4.1 Experimental Setup

4.1.1 Dataset Construction
We conduct experiments using 3 datasets:
BC4CHEMD, BC5CDR, and TDMSci. Since we
use seed entities as the main input for the augmen-
tation process, it is important to note that obtaining
a large set of seed entities in real-world applica-
tions can be difficult, particularly in specialized

domains where annotated data is scarce. As a re-
sult, working with a smaller, more manageable set
of seed entities is often necessary. Our method,
which only uses seed entities for the augmentation
process, is designed to be effective even with this
limitation. In contrast, other methods like LSMS
and LLM-DA rely on gold-label data as input for
augmentation. We create a “Limited Dictionary”
setting to compare our method with these alterna-
tive approaches.

To construct the seed sets used for augmenta-
tion, we select the most frequent entities from the
training data for each entity type. For each dataset,
we define multiple settings with different values of
N (e.g., N = 5, 10, 15, 20, 50), where N denotes
the number of unique entities per type. The selec-
tion process involves counting and ranking entities
by frequency, then selecting the top N for each
type. We also ensure type balance by including an
equal number of sentences for each entity type (e.g.,
equal numbers for CHEMICAL and DISEASE in
BC5CDR).

This choice of using frequent entities—rather
than randomly sampling or relying on external lex-
icons—is motivated by both practical and method-
ological reasons. First, frequent entities are more
likely to appear in natural, contextually appropri-
ate sentences, resulting in higher-quality and more
realistic generated data. Second, using a fixed set
of frequent entities leads to a more stable and re-
producible experimental setup. In contrast, ran-
dom sampling introduces variability and typically
requires multiple runs to obtain robust estimates.
Similarly, depending on external lexicons may in-
troduce domain mismatches or lead to unnatural
entity combinations. By relying on the internal
statistics of the training corpus, we ensure that the
selected entities are representative of the target do-
main and the actual model training distribution.

4.1.2 Comparison Methods
We consider the following baseline methods for
comparison purposes:

• Original (org): Training directly on the full
dataset without any augmentation.

• LSMS: Applying lexical-based sampling
and substitution strategies, including
replace-mention (RM), replace-token
(RT), shuffle-within-segments (SWS), and
synonym-replacement (SR).
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Dictionary Size 5 10 15 20 50

org 4.68 12.35 15.62 31.79 47.18
LSMS 32.85 46.03 44.35 48.34 57.76
LLM-DA 39.89 43.17 45.75 46.29 49.68
NuNER 21.24 28.29 40.11 44.31 52.49
Ours (GenLLM) 26.06 37.18 41.85 43.67 58.80

Table 1: Performance comparison on the BC4CHEMD
dataset across different dictionary sizes (N ).

• LLM-DA: Utilizing large language model-
based data augmentation at both the context
and entity levels, with noise injection.

• NuNER: Fine-tuning the pretrained NuNER-
v2.0 model on the gold annotations of the
datasets.2

For all methods except NuNER, we use BERT-
base-uncased as the base model. LSMS and LLM-
DA are trained for 10 epochs on the combination of
original training data and augmented data. NuNER
is fine-tuned for 10 epochs on gold data.

4.1.3 Proposed Method: GenLLM and
Training Setup

Our proposed method, GenLLM, generates syn-
thetic training data using LLM-based augmentation
techniques. It employs prompt engineering with
constraints to ensure data quality and entity control.
Training follows a two-stage approach: we first pre-
train the model on synthetic data for 3 epochs, then
fine-tune on the gold-annotated data for 10 epochs.
All experiments are conducted under reduced la-
beled data settings (N = 5, 10, 15, 20, 50 entities
per type), simulating low-resource environments.
We compare GenLLM’s performance against the
baselines introduced in Section 4.1.2.

Additional implementation details, including
training hyperparameters and hardware specifica-
tions, are provided in Appendix A.1.

4.2 Results and Analysis
The performance comparison across different meth-
ods on the BC4CHEMD, BC5CDR, and TDMSci
datasets is shown in Tables 1, 2, and 3, respectively.

Our method (GenLLM) consistently outper-
forms the org and NuNER, with significant im-
provements. On BC5CDR, GenLLM achieves the
highest performance at all dictionary sizes, out-
performing both LSMS and LLM-DA. On TDM-
Sci, GenLLM shows strong performance, compet-

2https://huggingface.co/numind/NuNER-v2.0

Dictionary Size 5 10 15 20 50

org 45.62 51.87 51.81 51.73 54.83
LSMS 51.28 57.19 60.66 60.97 68.42
LLM-DA 52.29 57.72 60.94 64.12 66.79
NuNER 40.70 43.45 50.17 50.86 46.87
Ours (GenLLM) 53.67 60.14 63.65 65.34 72.85

Table 2: Performance comparison on the BC5CDR
dataset across different dictionary sizes (N ).

Dictionary Size 5 10 15 20 50

org 17.02 23.21 26.59 26.90 42.77
LSMS 28.18 32.81 39.71 41.82 48.28
LLM-DA 17.28 27.12 33.92 37.21 39.90
NuNER 10.37 17.88 11.56 11.76 22.78
Ours (GenLLM) 25.64 35.05 41.20 45.60 51.23

Table 3: Performance comparison on the TDMSci
dataset across different dictionary sizes (N ).

ing well with LSMS and LLM-DA, only losing
to LSMS when N = 5. The low performance
of GenLLM at smaller dictionary sizes on the
BC4CHEMD dataset is likely due to the limited
diversity and insufficient augmentation with only a
few seed entities, which restricts the model’s abil-
ity to generalize effectively. As the dictionary size
increases, the synthetic data improves, leading to
better performance. Overall, our method outper-
forms previous methods like LSMS and LLM-DA,
offering a robust solution for low-resource settings
by leveraging synthetic data generation for better
generalization.

5 Experiment with High-Resource Setting

In this section, we evaluate our proposed method
in a high-resource setting, where we utilize the
full training data from three benchmark datasets:
BC4CHEMD, BC5CDR, and TDMSci. This set-
ting allows us to assess the performance of our ap-
proach when abundant annotated data is available,
providing a direct comparison with conventional
methods that rely on manually annotated corpora.

5.1 Experimental Setup
We conduct experiments using the full training
datasets of BC4CHEMD, BC5CDR, and TDMSci.
The models are trained using the standard dataset
splits provided in prior studies to ensure compara-
bility. All models are trained for 3 epochs. LSMS
and LLM-DA also use the combination of origi-
nal training data and augmented data generated by
these methods. For our method (GenLLM), we
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Dataset BC4CHEMD BC5CDR TDMSci

Org 87.19 83.27 55.19
LSMS 86.58 84.04 58.32
LLM-DA 86.58 82.40 52.79
NuNER 85.88 81.10 48.19
Ours (GenLLM) 86.85 83.74 58.70

Table 4: Performance (F1-score) comparison across
different methods on the BC4CHEMD, BC5CDR, and
TDMSci datasets on high-resource setting.

use the “pretraining” approach, first fine-tuning the
model on synthetic data for 1 epoch, followed by
fine-tuning on gold data for 3 epochs. For synthetic
data, due to the cost of generating additional data,
we reuse the data generated in the low-resource
setting and combine the generated data of all sizes
from that setting. Additional implementation de-
tails, including training hyperparameters and hard-
ware specifications, are provided in Appendix A.1.

5.2 Results and Analysis

Table 4 presents the F1-score performance of vari-
ous methods on the BC4CHEMD, BC5CDR, and
TDMSci datasets in a high-resource setting. The ex-
perimental results in a high-resource setting show
that different methods exhibit varying effectiveness
across datasets. On BC4CHEMD, without augmen-
tation (org) outperforms all other methods with an
F1-score of 87.19, followed closely by GenLLM
(86.85). LSMS and LLM-DA show similar per-
formance, while NuNER lags slightly behind. On
BC5CDR, LSMS achieves the highest F1-score
(84.04), with GenLLM coming second (83.74),
slightly outperforming LLM-DA and NuNER. Gen-
LLM generally performs competitively or better
than other methods in high-resource settings, with
the best performance on TDMSci and close results
on BC4CHEMD and BC5CDR. It becomes much
harder to significantly improve performance with
augmentation when the training data size is large,
as seen in the BC4CHEMD and BC5CDR datasets.

6 Analysis and Discussion

6.1 Quality of Synthetic Data

In this experiment, we investigate whether a model
can be effectively trained using only synthetic data
generated by LLMs, without any manually anno-
tated data. The primary objective is to assess the
feasibility of LLM-generated sentences as a stan-
dalone training resource in specialized domains.
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(a) BC4CHEMD dataset.
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(b) BC5CDR dataset.

Figure 2: F1 Score Comparison between BERT-
base-uncased trained on human-annotated data and
trained on synthetic data varying training sizes for the
BC4CHEMD and BC5CDR datasets.

While synthetic data provides diversity, it may in-
troduce hallucinated entities, ambiguous contexts,
or annotation errors, leading to noisy supervision.
Additionally, LLMs, trained on general-domain
corpora, may struggle with domain-specific termi-
nology, impacting performance.

6.1.1 Data Sampling
Human-Annotated Setting: In this setting, we
randomly select gold sentences from the training
data of each dataset (BC4CHEMD and BC5CDR).
These sentences are manually annotated and serve
as the ground truth for model training.

GenLLM Setting: For the GenLLM approach,
we provide the model with a list of 10 entities from
each type in the dataset (e.g., chemicals, diseases)
and instruct it to generate 1000 synthetic sentences.
The goal is to use these synthetic sentences to train
the model in the absence of human-annotated data.
The models are then evaluated on the full test data
of each dataset to assess their performance.

Findings Figures 2a and 2b help to understand
the effectiveness of using LLM-generated synthetic
data for training NER models and compare its per-
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Dictionary Size 5 10 15 20 50

Simple Prompt 24.66 35.05 40.45 45.60 51.23
+ filter 13.00 22.00 27.52 24.97 30.45
+ no-new-entity 25.64 32.92 41.20 43.65 50.37
+ COT 21.68 26.98 38.34 41.01 51.59

Table 5: F1 Score Comparison of Different Prompting
Methods Across Training Sizes on TDMSci Test set.

formance to using human-annotated data. When
fewer than 300-400 sentences are annotated, the
synthetic data approach (from GenLLM) yields
better performance. This suggests that synthetic
data might be more effective in low-resource sce-
narios where manual annotation is costly or time-
consuming, and small training sets are available.
However, as the annotated data size grows beyond
this point, human-annotated data consistently pro-
vides better results.

6.2 Different Prompting Methods
In this ablation study, we examine how different
prompting strategies influence the quality of the
generated synthetic data and the performance of
the trained NER model. We evaluate the following
four prompting methods:

• Simple Prompt: The model is provided with
a plain list of entity names and their types,
without any additional constraints or filtering
(Figure 1a).

• Simple Prompt + filter: In this approach,
we filter out generated sentences that intro-
duce new entities not present in the seed list.
This aims to ensure that only relevant entities
appear in the synthetic data, reducing entity
drift.

• Simple Prompt + no-new-entity: The
prompt explicitly instructs the model to avoid
introducing new entities beyond the provided
list (Figure 3).

• Simple Prompt + COT (Chain-of-Thought):
The model is guided to generate sentences
step-by-step, ensuring logical coherence and
correct entity usage (Figure 4).

Table 5 presents the F1 scores for different
prompting methods across various training sizes.
The Simple Prompt baseline demonstrates strong
performance, particularly at 10 and 20 training ex-
amples, where it achieves the highest scores (35.05

Error Type Count

False Negative (Missing Entity) 54
False Positive (Spurious Entity) 2
Boundary Misalignment 12

Table 6: Error analysis of 100 manually checked TDM-
Sci samples.

and 45.60, respectively). However, adding a fil-
tering mechanism to remove sentences introduc-
ing new entities significantly reduces performance
across all training sizes. This suggests that while
filtering ensures strict entity control, it may also
remove valuable diverse contexts that contribute
to learning. The no-new-entity constraint, which
instructs the LLM not to introduce unseen entities
during generation, performs well in low-resource
settings (5 and 15 examples), surpassing the Sim-
ple Prompt in these cases. The Chain-of-Thought
(COT) prompting does not outperform the Simple
Prompt in all training scenarios. It achieves its high-
est score (51.59) at 50 examples, which is slightly
higher than the Simple Prompt’s 51.23. These re-
sults highlight the trade-offs between entity control,
data diversity, and reasoning-driven generation in
synthetic data creation for NER.

6.3 Error Analysis

In the process of using LLMs for tasks such as NER
and data generation, three common types of errors
may arise: False Negatives, False Positives, and
Boundary Misalignment. Understanding these
errors is crucial for improving the accuracy and
reliability of the generated sentences.

• False Negatives (Missing Entities) These oc-
cur when valid entities present in the sentence
are not recognized or labeled by the model, re-
sulting in under-annotation and potential loss
of critical information.

• False Positives (Spurious Entities)
In these cases, the model incorrectly identifies
and labels non-entity spans as entities, intro-
ducing noise into the training data.

• Boundary Misalignment
This error arises when the model detects the
correct entity type but assigns incorrect bound-
aries—either extending beyond or falling
short of the true entity span.
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To assess the quality of LLM-generated data, we
manually analyzed 100 synthetic samples from the
TDMSci dataset. The results of this error analy-
sis are summarized in Table 6. The most frequent
issue was False Negatives, which occurred in 54
cases. These typically happened because the LLM
introduced new entities not in the input seed list,
which distracted it from labeling the original seed
entities. Boundary Misalignment was observed
in 12 cases. This is often caused by inconsisten-
cies in annotation guidelines, such as whether to
include the word “dataset” or “task” in the entity
span for DATASET and TASK types. False Posi-
tives occurred in only 2 cases. They often resulted
from noisy or questionable input annotations. For
instance, in the TDMSci dataset, a seed entity like
“Arabic-English” is labeled as a TASK, although its
status as a task is ambiguous, potentially confusing
the model into tagging unrelated terms.

Table 7 shows example outputs from LLM-based
generation using seed entities from the biomedi-
cal domain, specifically the BC5CDR dataset. We
manually identified three main types of annotation
errors in these generated sentences. First, False
Negatives occur when entities from the seed list
are present in the generated text but are not la-
beled—such as “cocaine” and “tachycardia” in
the first example. This often happens when the
LLM adds new, related entities (e.g., “arrhythmia”),
which distracts the model from tagging the orig-
inal seed entities. Second, False Positives arise
when entities not included in the input seed list
are introduced and labeled in the output—such as
“phenytoin” and “temporal lobe epilepsy.” These
hallucinated entities may be contextually relevant
but were not intended to appear or be annotated
in the generated data. This is especially problem-
atic when using the generated sentences as training
data in a low-resource setting, where tight control
over entity inclusion is critical. Lastly, Boundary
Misalignment is illustrated by the example where
only “insulin” is labeled instead of the correct full
span “insulin resistance.” This type of span-level
error can be caused by the LLM misunderstanding
multi-word entity boundaries or inconsistencies in
annotation granularity during training. These exam-
ples highlight how generation errors can propagate
into downstream tasks if not properly filtered, and
emphasize the importance of post-processing and
validation when using LLMs for data augmentation
in biomedical NER.

Seed Entities (Types) and Generated Sentence with Error
Type
Seed Entities: tachycardia (Disease), cocaine (Chemical)
Generated Sentence: Chronic cocaine use has been associ-
ated with an increased risk of developing tachycardia, a type
of <Disease>arrhythmia</Disease>, which can lead to a range
of cardiovascular complications, including myocardial infarc-
tion and stroke.
(False Negatives: "cocaine" and "tachycardia" are not labeled.
False Positive: "arrhythmia" is introduced and labeled as
Disease but not in the seed list)
Seed Entities: lidocaine (Chemical)
Generated Sentence: The administration of <Chemi-
cal>lidocaine</Chemical> has been studied for its potential
to reduce <Disease>seizure frequency</Disease> in patients
with <Disease>epilepsy</Disease>, and its efficacy in this
context has been demonstrated through various clinical trials,
including a randomized controlled trial that compared the out-
comes of patients receiving <Chemical>lidocaine</Chemical>
versus those receiving <Chemical>phenytoin</Chemical> for
the treatment of <Disease>partial seizures</Disease> in adults
with <Disease>temporal lobe epilepsy</Disease>.
(False Positives: "phenytoin", "seizure frequency", "epilepsy",
"partial seizures", "temporal lobe epilepsy" are not in the
seed list but labeled. False Negative: "lidocaine" is correctly
labeled, others are missing from seed list)
Seed Entities: DSM - IV bipolar I (Disease), cisplatin (Chem-
ical), nicotine (Chemical)
Generated Sentence: Research on the efficacy and safety
of <Disease>DSM-IV bipolar I</Disease> (<Disease>bipolar
disorder</Disease>) has shown that patients with this condi-
tion often require <Disease>medication</Disease> manage-
ment, including the use of <Chemical>cisplatin</Chemical>
and <Chemical>nicotine</Chemical> as part of their treat-
ment regimen, which can lead to potential <Disease>side
effects</Disease> such as nausea, vomiting, and increased
heart rate.
(False Positives: "bipolar disorder", "medication", and "side
effects" are not in the seed list but labeled. Also reflects
questionable factual correctness)
Seed Entities: insulin resistance (Disease)
Generated Sentence: Patients with <Dis-
ease>insulin</Disease> resistance often exhibit symptoms of
metabolic syndrome, including obesity and hypertension.
(Boundary Misalignment: Only “insulin” is labeled, while
the full entity should be “insulin resistance”)

Table 7: Examples of generated sentences with seed
entities from BC5CDR (Chemical, Disease), along with
identified error types: False Negatives (missing entities),
False Positives (spurious entities), and Boundary Mis-
alignment (incorrect span).

7 Conclusion

In this study, we proposed GenLLM, a method for
data augmentation in low-resource settings using
large language models to generate synthetic sen-
tences containing specific named entities. Our ex-
periments demonstrated that GenLLM effectively
enhances performance compared to baseline mod-
els like LSMS, LLM-DA, and NuNER when lim-
ited labeled data is available. By leveraging syn-
thetic data generation with only seed entities, Gen-
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LLM outperforms or complements state-of-the-art
systems, especially in scenarios with constrained
resources Furthermore, we explored the feasibility
of training models using only synthetic data gener-
ated by LLMs, which proved to be effective in low-
resource scenarios. However, human-annotated
data still provided better results once the dataset
size grew large enough, highlighting the impor-
tance of expert-annotated data in high-resource set-
tings. GenLLM offers a promising solution for
data augmentation in low-resource domains, partic-
ularly when manually annotated data is scarce. Fu-
ture work can focus on further improving synthetic
data quality and exploring additional augmenta-
tion strategies to enhance model generalization in
diverse domains.

Limitations

One potential limitation of this paper is that the
quality of synthetic data generated by large lan-
guage models (LLMs) may be inconsistent, poten-
tially impacting model performance. To mitigate
this, we ran each experiment three times and report
the averaged results to ensure the robustness and
generalizability of our findings. Additionally, this
study focus on scienctific domains such as biomed-
ical, chemical, and computer science, which may
not generalize to other fields.
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A Appendix

A.1 Experimental Setting Details
Base NER model We employ a fine-tuned BERT
model for NER. The input sequences are first to-
kenized and then passed through BERT to obtain
contextualized embeddings. These embeddings are
fed into a linear classification layer followed by
a softmax activation to predict the entity type of
each token. For words that are split into multiple
subwords during tokenization, only the embedding
of the first subword is used for classification.

You are an expert in the {domain} domain.

First entity: {entity1} of type {entity_type1}.

• {entity_type1} is defined as {entity_type1_description}.

• Mark this entity between <{entity_type1}> and </{entity_type1}> tags.

Second entity: {entity2} of type {entity_type2}.

• {entity_type2} is defined as {entity_type2_description}.

• Mark this entity between <{entity_type2}> and </{entity_type2}> tags.

…

Do not introduce any new entities or types in the sentence.

Give the output between <start_sentence> and </end_sentence

Prompt: no-new-entity

Figure 3: Example of the Simple Prompt + no-new-
entity setup, where the prompt explicitly instructs the
model to generate a sentence using only the provided
entities and avoid introducing any new entities.

Hyperparameters. For all experiments, we use
the following settings unless otherwise specified:

• Learning rate: 1e-4

• Batch size: 32

• Optimizer: AdamW

• Max sequence length: 256

• Dropout rate: 0.1

• Weight decay: 0.01

All models are implemented using the Hugging-
Face Transformers library. To ensure reproducibil-
ity, we fix the random seed to 42 across all com-
ponents including NumPy, PyTorch, and Hugging-
Face Transformers. Training is conducted on a
single NVIDIA V100 GPU with 32 GB of memory.
Each run (including pretraining and fine-tuning
steps) takes approximately 30–90 minutes depend-
ing on the dataset and the size of the training set.

A.2 Prompts
A.2.1 Prompt: no-new-entity
This prompt is a controlled variation of the simple
prompt, extended with an explicit instruction: “Do
not introduce any new entities or types
in the sentence.” This modification aims to
address a common issue in LLM-based data gener-
ation—false negatives (missing entities)—where
the model may omit entities from the provided seed
list or introduce incorrect ones, resulting in incom-
plete or misaligned annotations. By enforcing this
constraint, we improve the alignment between the
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Think step by step.

1. First, analyze and describe the relationship between the entities.

2. Then, use that information to generate a contextually rich sentence

You are an expert in the {domain} domain.

First entity: {entity1} of type {entity_type1}.

• {entity_type1} is defined as {entity_type1_description}.

• Mark this entity between <{entity_type1}> and </{entity_type1}> tags.

Second entity: {entity2} of type {entity_type2}.

• {entity_type2} is defined as {entity_type2_description}.

• Mark this entity between <{entity_type2}> and </{entity_type2}> tags.

…

Give the output between <start_sentence> and </end_sentence>.

Prompt: COT

Figure 4: Example of the Simple Prompt + COT
(Chain-of-Thought) setup, where the model is guided
to generate the sentence in a step-by-step manner. This
approach promotes logical coherence and helps ensure
that the provided entities are used correctly in context.

prompt specification and the generated content, en-
suring better coverage and fidelity to the intended
entity set. An illustration of this prompt configura-
tion is shown in Figure 3.

A.2.2 Prompt: COT
Another variation is the Simple Prompt + Chain-
of-Thought (CoT) setup, where the model is
guided to reason step-by-step before producing the
final sentence. This format encourages logical co-
herence and helps the model better understand and
place the given entities in context. The intermediate
reasoning steps can reduce annotation mistakes and
improve entity boundary accuracy. An example of
this prompt structure is shown in Figure 4.

A.3 Datasets

We conduct experiments using three benchmark
datasets for biomedical and scientific NER:

BC4CHEMD The BC4CHEMD dataset focuses
on chemical entity recognition and is derived from
biomedical abstracts. It contains over 30,000 sen-
tences and nearly 900,000 tokens (see Table 11).
The dataset features one entity type (CHEM),
with 29,478 annotated chemical entities distributed
across 14,529 sentences (see Table 12).

BC5CDR BC5CDR includes annotations for
both chemical and disease entities, making it suit-
able for multi-type NER tasks. It comprises 4,560
sentences, with an average of 2.06 entities per sen-
tence. Table 8 shows how entity coverage increases
with larger subsets of annotated data, and general

dataset statistics are shown in Table 11. Additional
details on total entities and sentence coverage per
type are listed in Table 12.

TDMSci TDMSci is a scientific NER dataset that
includes three entity types: Task, Dataset, and Met-
ric. It contains 1,523 sentences and is more diverse
than the biomedical datasets in terms of entity types
and structure (see Table 10 and Table 11). Table 12
further breaks down the number of entities and
sentence distributions per type.

To simulate low-resource conditions, we create
reduced versions of each dataset by limiting the
number of unique entities used for training. These
settings vary from 5 to 500 entities per type, as
detailed in Tables 8, 9, and 10. These subsets are
used in conjunction with our “Limited Dictionary”
setup to test the effectiveness of data augmentation
strategies.

Dataset Size Chemical Disease
5 19 20

10 36 41
15 54 60
20 73 72
50 192 178

100 364 340
200 736 666
300 1146 985
400 1516 1336
500 1868 1665

Table 8: Entity counts per entity type for BC5CDR
dataset.

Dataset Size CHEM
5 16

10 29
15 41
20 57
50 160

100 344
200 669
300 972
400 1285
500 1618

Table 9: Entity counts per entity type for CHEMDNER
dataset.
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Dataset Size DATASET METRIC TASK
5 6 13 14

10 17 27 28
15 24 43 43
20 31 60 59
50 103 155 144

100 198 307 292
200 400 553 539
300 591 619 805
400 700 670 1056
500 732 681 1207

Table 10: Entity counts per entity type for TDMSci
dataset.
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Table 11: Dataset Statistics for NER Tasks

Dataset #Sentences #Tokens #Entity Types Avg. Entities/Sent. #Sent. w/o Entities

BC4CHEMD 30,812 872,932 1 (CHEM) 0.96 16,283
BC5CDR 4,560 118,170 2 (Chemical, Disease) 2.06 753
TDMSci 1,523 49,460 3 (TASK, DATASET, METRIC) 1.43 330

Table 12: Entity-Specific Statistics

Dataset Entity Type #Entities #Sentences w/ Entities

BC4CHEMD CHEM 29,478 14,529
BC5CDR Chemical 5,203 2,951

Disease 4,182 2,658
TDMSci TASK 1,219 920

DATASET 420 322
METRIC 536 358
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