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Abstract
Accurate prediction of drug–target interactions
is critical for accelerating drug discovery. In
this work, we frame drug–target prediction
as a link prediction task on heterogeneous
biomedical knowledge graphs (KG) that inte-
grate drugs, proteins, diseases, pathways, and
other relevant entities. Conventional KG em-
bedding methods such as TransE and ComplEx-
SE are hindered by their reliance on computa-
tionally intensive negative sampling and their
limited generalization to unseen drug–target
pairs. To address these challenges, we pro-
pose Multi-Context-Aware Sampling (MuCoS),
a novel framework that prioritizes high-density
neighbours to capture salient structural patterns
and integrates these with contextual embed-
dings derived from BERT. By unifying struc-
tural and textual modalities and selectively
sampling highly informative patterns, MuCoS
circumvents the need for negative sampling,
significantly reducing computational overhead
while enhancing predictive accuracy for novel
drug–target associations and drug targets. Ex-
tensive experiments on the KEGG50k and
PharmKG-8k datasets demonstrate that Mu-
CoS outperforms baselines, achieving up to a
13% improvement in MRR for general relation
prediction on KEGG50k, a 22% improvement
on PharmKG-8k, and a 6% gain in dedicated
drug–target relation prediction on KEGG50k.

1 Introduction

Drug target discovery lies at the core of modern
therapeutic development, enabling the identifica-
tion of new biological targets, the prediction of
non-target effects, and opportunities for drug repur-
posing — while significantly reducing experimen-
tal costs and accelerating translational timelines
(Sachdev and Gupta, 2019). Recent computational
advances leverage knowledge graphs (KGs) to in-
tegrate heterogeneous biomedical data (e.g., drugs,
proteins, diseases, side effects, pathways) into uni-
fied networks where nodes represent entities and

edges capture relationships, essentially framing dis-
covery as a link prediction problem (Himmelstein
et al., 2017). For example, KG’s such as KEGG50k
(Mohamed et al., 2019) PharmKG-8k (Zheng et al.,
2021) and Hetionet (Himmelstein et al., 2017) pro-
vide comprehensive, structured representations of
biological components and their intricate associa-
tions.

Biomedical KGC methods, however, face a criti-
cal trade-off: structural embedding methods such
as ComplEx-SE (Mohamed et al., 2019) capture
explicit drug-target relationships but fail to gen-
eralize to unseen entities like novel drugs due to
rigid geometric constraints. Conversely, graph neu-
ral approaches like NeoDTI Progeni (Liu et al.,
2024) integrate probabilistic reasoning with GNNs
for state-of-the-art drug-target prediction but re-
main unevaluated on relation-centric benchmarks
like KEGG50k. Furthermore, none of these meth-
ods exploit the rich textual semantics embedded
in biomedical triples (e.g., "DRUG X → DRUG-
TARGET-GENE → GENE Z"), which could pro-
vide inductive signals for unseen entities by contex-
tualizing relationships beyond structural adjacency.

We posit that PharmKG-8k’s and KEGG50k’s
relational triples are inherently compatible with
textual encoding strategies and therefore believe
that we can leverage a language transformer model
like BERT’s bidirectional attention to jointly model
the explicit relationships through syntactic patterns
in entity-relation-entity chains. Moreover, we pro-
pose to exploit, (a) the rich contextual information
inherent in the graph’s structure such as neighbour-
ing entities and relations associated with a given
head entity and query relation, like GNNs do, and
(b) associated features such as node degrees and
connectivity that affect the performance of KG tech-
niques(Cattaneo et al., 2024).

We therefore propose MuCoS (Multi-Context-
Aware Sampling), a KG completion framework that
overcomes these limitations by aggregating filtered
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contextual information from adjacent entities and
their relationships, and then integrating this seman-
tically enriched context into a BERT model for
better prediction of relationships and entities. In
doing so, MuCoS advances drug target discovery
in the following key ways:

• Drug–Target Relation Prediction: By lever-
aging optimized neighbouring contextual in-
formation around nodes and relations, MuCoS
outperforms traditional models in predicting
general and drug–target relationships.

• Target-tail Prediction: The method accu-
rately predicts potential target tails (such as
genes etc.) by incorporating contextualized
structural information derived from the head
entity and relationship.

• Efficient Multi-Context Sampling: By prior-
itizing informative structural patterns through
density-based sampling, MuCoS reduces com-
putational overhead while preserving high pre-
dictive accuracy.

• Elimination of Auxiliary Data Require-
ments: Operating effectively without reliance
on extensive entity descriptions or negative
sampling, MuCoS is particularly well-suited
for sparse biomedical datasets.

2 Related Work

Drug target discovery has been approached from
multiple computational perspectives. Similarity-
based methods quantify relationships by comput-
ing pairwise distances—often using Euclidean or
other metric functions—between drugs and their
target proteins (Shi and Li, 2018). These methods
typically rely on handcrafted similarity measures
to distinguish interacting pairs. Feature-based tech-
niques, predominantly employing support vector
machines (Zhang et al., 2017), formulate the prob-
lem as a binary classification or two-class cluster-
ing task to differentiate between positive and nega-
tive drug–target associations based on engineered
features.

Recent graph-based methods leverage hetero-
geneous networks that integrate multiple simi-
larity metrics—such as drug–drug, target–target,
and cross-modal associations—to exploit the ho-
mophily principle in biological systems (Ban et al.,
2019). These approaches infer missing links
by modelling complex interdependencies among

drugs, proteins, diseases, and pathways. In parallel,
the application of embedding-based techniques has
evolved considerably (Bordes et al., 2013; Yang
et al., 2014; Trouillon et al., 2016). For instance,
Mohamed et al. (Mohamed et al., 2019) intro-
duced ComplEx-SE, a variant of the ComplEx
KGE model that adopts a squared error-based loss
for enhanced accuracy. Recent works like NeoDTI
(Liu et al., 2024) combine graph neural networks
with probabilistic reasoning to achieve state-of-the-
art performance in drug–target prediction.

Despite these advances, current KGC methods
still face challenges in drug target discovery. Tra-
ditional embedding models depend on static, pre-
trained embeddings, which hinder their ability to
generalize to novel entities and interactions in
rapidly evolving biomedical data (Gul et al., 2024).
Text-based and large language model approaches
require rich and consistent annotations—a resource
often sparse in biomedical domains (Gul et al.,
2025). Additionally, the reliance on extensive neg-
ative sampling during training imposes significant
computational burdens, particularly for large-scale
datasets. These limitations motivate us to develop
MuCoS as a flexible, context-aware and computa-
tionally efficient model that integrates both struc-
tural and textual cues to drive the discovery of new
drug targets.

3 Methodology

MuCoS addresses two knowledge graph comple-
tion tasks: (1) Link Prediction (inferring missing
relations in triples like (h, ?, t)) and (2) Tail Predic-
tion (identifying missing tail entities in (h, r, ?)).
Both tasks are divided into general and drug-target-
specific subtasks to balance broad applicability
with a biomedical focus. Using the PharmKG-8k
and the KEGG50k dataset, general subtasks predict
relations/tails across all entities and relations, while
drug-target subtasks use a filtered subset to predict
specific relations.

MuCoS builds on the MuCo-KGC model (Gul
et al., 2025) to boost computational efficiency by
strategically sampling high-density contextual in-
formation (i.e., entities or relations that appear
most frequently) from both entity and relation-
neighbouring contexts before integrating it with
BERT for precise predictions. For the transformer
part of MuCoS, DistilBERT (base, uncased) has
been employed, which is a smaller model that helps
MuCoS run efficiently while still capturing context
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Figure 1: A concise overview of the MuCoS model pipeline, which is designed to predict general and drug-target relations and
tail entities. The boxes on the left show the input sequence to the BERT model, where (h) head, (Hc) head context, (t) tail, (Tc)
tail context, (r) relation, and (Rc) relation context. This integrated context is passed through the BERT model with a linear
classifier and softmax function to generate probabilities for relations and tail.

well. We selected DistilBERT for its efficiency,
retaining 95% of BERT’s performance while be-
ing 40% smaller, making it suitable for large-scale
knowledge graph tasks (Sanh et al., 2019). Figure 1
provides an overview of the MuCoS pipeline. The
subsequent sections detail the computations of the
contextual information and the sampling process in
the MuCoS pipeline.

Given a head (h), tail (t), a relation (r) between
them, MuCoS first figures out the corresponding
neighbouring contexts, i.e., the head context (Hc),
the tail-context (Tc) or the relationship context
(Rc) and then selects out the high-density contexts.
Based on the task at hand, relevant contexts are then
concatenated and passed on to a BERT model with
a linear classifier and softmax function to generate
probabilities for relations or tails.

Head Context Hc : To extract the contextual
information for the head, i.e., Hc, we first identify
the relations associated with the head entity h, i.e.,
the relation neighbourhood R(h). If l relations are
associated with h from the set R of all relations ri
in the graph,G, then:

R(h) = Al
i=1 ({ri | (h, ri, ej) ∈ T , ej ∈ E})

(1)
where A(·) is the concatenation operation ∥, T is
the set of training triples, Et is the set of all tail
entities, and ri represents each relation associated
with h. Next, we find the tail entities e that are
neighbours (i.e., have a direct connection) with

the head entity h, i.e., tail neighbourhood E(h),
using the identified relations in R(h). Assuming
m neighbour tails, E(h) is expressed as:

E(h) = Am
i=1 ({ti | (h, rj , ei) ∈ T , rj ∈ R})

(2)
where E(h) is the set of all tail entities ti directly
associated with the h through some relation rj .

Sampling: While MuCo-KGC (Gul et al., 2025)
integrates R(h) and E(h) calculates the head con-
text, this study introduce a density-based sampling
for context calculation Hc, where the density ρ(e)
of an entity e ∈ E(h) is defined as its frequency of
appearance in T .

ρ(t) = |{(h, r, t) ∈ T }|, for any h, r (3)

ρ(t) denotes the density of the tail entity t, defined
as the number of times t appears as the tail in triples
(h, r, t). Using these density values, we select n en-
tities of highest density values and the relationships
between head h and these top-n selected entities:

topn(E(h)) = sort(E(h), by ρ(e))[: n] (4)

R∗(h) = An
i=1

(
{ri | (h, ri, ej) ∈ T ,

ej ∈ topn(E(h))}
)

(5)

topn(E(h)) selects the top n tail entities from E(h)
sorted by their density ρ(e). R∗(h) concatenates
the relations ri connected h and the selected top-n
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Figure 2: MuCoS Hc construction. The left graphical view illustrates one hop head h context, which consists of the set of
relations R(h) (r1, r2, r3, r4, r5, r6) and the set of neighbouring tail entities E(h) (e1, e2, e3, e4, e5, e6) associated with the
head entity h. The middle view shows the sampling process, where only the top-n (suppose n = 3) tail entities e are selected
and concatenated (∥) based on their density ρ(e), to calculate the optimized head context Hc.

tail entities. The optimized head context Hc is then
defined as:

Hc = R∗(h) ∪ topn(E(h)) (6)

Figure 2 illustrates this sampling process, highlight-
ing only a select subset of high-density neighbours
(shown in red border) used to compute the aggre-
gated context Hc. We follow the same procedure
to compute the tail context Tc (for a given tail) re-
quired along with head context Hc in the relation
prediction task.

Relation Context Rc : To acquire the relation
context Rc, we identify all entities (heads and tails)
associated with the operational relation r in the
knowledge graph G. This includes the set of heads
(e.g., drugs) ei and tails (e.g., genes) ej connected
by r:

E(r) = Ao
i,j=1 ({ei, ej} | (ei, r, ej) ∈ T }) (7)

E(r) is the concatenation of all head-tail entity
pairs (ei, ej) connected by the relation r in the
knowledge graph.

Sampling: From the set of entities in Ec, the
top-k elements with the highest density values ρ(e)
are selected to generate the optimized relationship
context Rc.

Rc = topk(E(r)) = sort(E(r), by

(ρ(ei) + ρ(ej)))[: k] (8)

Rc therefore provides a focused global perspective
on r’s patterns, enhancing generalization without
excessively raising the time complexity. Figure 3
depicts the sampling process involved in comput-
ing Rc, highlighting the selection of k high-density

entity pairs (shown in red border) involved with
the relation r to form the optimized relationship
context. Following the extraction of contextual
information via density-based sampling, MuCoS
integrates these contexts into a BERT-based frame-
work for prediction. The process for each subtask,
leveraging the KEGG50k dataset and its filtered
drug-target subset, is detailed below:

• For task (1), link prediction, which includes
two subtasks: General link prediction (h, ?, t):
The concatenated representations Hc (head
context) and Tc (tail context) are combined
with the head entity h and tail entity t to
form the input sequence [h,Hc, t, Tc]. This
sequence passes through BERT’s transformer
layers, generating a contextualized represen-
tation for each token. A classification layer
then predicts the relation r, with a softmax
function calculating the probability distribu-
tion over all relations:

P (r | h, t) =
softmax(W · BERT(h,Hc, t, Tc))

(9)

Drug-target link prediction (h, ?, t): Follow-
ing Mohamed et al (Mohamed et al., 2019)
in this case, we filter the dataset to consider
drug-target relations only. Other than that, we
follow the same methodology as above, where
the input sequence [h,Hc, t, Tc] is processed
by BERT to predict the drug-target-specific
relations r.

• For task (2), tail prediction, which includes
two subtasks: General tail prediction (h, r, ?):
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Figure 3: Rc construction. The left view illustrates the relationship r1 and entities (head, tail) connected by r1. The graph in
the middle depicts optimization, selecting the top k (suppose k = 2) entities based on density ρ, retaining pairs such as (e2, e3)
and (e6, e7) The optimized context Rc is aggregated using concatenation (∥), as shown in the right section.

The concatenated representations Hc (head
context) and Rc (relation context) are com-
bined with the head entity h and relation r to
form the input sequence [h,Hc, r, Hc], using
the full KEGG50k dataset. BERT processes
this sequence, and a classification layer pre-
dicts the tail entity t:

P (t | h, r) =
softmax(W · BERT(h,Hc, r,Rc))

(10)

Drug-target tail prediction (h, r, ?): Follow-
ing above, we use a filtered drug-target subset
of the KEGG50k dataset, to predict the tail
entity t.

We train the model using cross-entropy loss. For
link prediction, Equation 11 defines the loss with
yi as the one-hot true label for relation ri and
P (ri | h, t) as the predicted probability. For tail
prediction, Equation 12 defines the loss with yi as
the true label for tail entity ti and P (ti | h, r) as its
predicted probability.

(a) L = −
N∑

i=1

yi logP (ri | h, t), (11)

(b) L = −
N∑

i=1

yi logP (gi | h, r) (12)

where yi is the true label for the relation ri, and
P (ri | h, t) is the predicted probability of the rela-
tion given h and t. On the other hand, P (ti | h, r)
is the predicted probability of the tail given h and
r.

3.1 Computational Advantage of MuCoS over
MuCo-KGC

Compared to MuCo-KGC (Gul et al., 2025), Mu-
CoS reduces computational complexity by sam-
pling only the most significant neighbours (based

on density) from the full entity and relation con-
texts. MuCoS employs two sampling thresholds:
n for the head entity context Hc and k for the re-
lation context Rc. To compute the complexities,
we first define two terms: (i) the average density
(avg_density) as the average number of neigh-
bours per entity in the knowledge graph, and (ii)
average appearance (avg_appearance) of a rela-
tion r in the dataset.

avg_density =
|T |
|E| ,

avg_appearance =
|T |
|R|

(13)

where |T | is the total number of triples, |E| enti-
ties, and |R| unique relations.

For MuCo-KGC, the complexity of computing
the head context Hc and the relation context Rc

is based on full neighbourhoods without sampling.
The complexity of Hc depends on the number of
relations involving the head entity h, denoted as
|R(h)|, and the number of neighbouring entities
|E(h)|, both approximated by avg_density (see
Equation 15). The complexity of Rc is determined
by the number of entity pairs connected by relation
r, |E(r)|, estimated using avg_appearance (see
Equation 16). Therefore, the overall complexity
for context computation in MuCo-KGC is defined
equals:

O(2 · avg_density + avg_appearance) (14)

where, O(|Hc|) = O(|R(h)|+ |E(h)|)
= O(2 · avg_density)

(15)

and, O(|Rc|) = O(|E(r)|)
= O(avg_appearance)

(16)

For MuCoS, the head context Hc is computed by
selecting the top-n high-density neighbouring en-
tities and their corresponding relations, and the
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relation context Rc are computed by selecting the
top-k high-density entity pairs. The complexity of
Hc is O(n) for the sampled entities and O(n) for
the corresponding relations, and Rc is O(k) for the
sampled entity pairs. Thus, the overall complexity
for context computation in MuCoS is:

O(2 · n+ k) (17)

Since sampling threshold values n and k are much
smaller than avg_density and avg_appearance
in large datasets like KEGG50k, MuCoS achieves
a significant reduction in computational cost com-
pared to MuCo-KGC.

For example, in case of the KEGG50k dataset (
with triplets |T | = 63, 080, entities |E| = 16, 201,
and relations |R| = 9), avg_density ≈ 3.895,
and avg_appearance ≈ 7, 008.89. Therefore,
the complexity of MuCo-KGC on the KEGG50k
dataset is: O(2·3.895+7, 008.89) = O(7, 016.68).
For MuCoS ( with n = 15, k = 10: the complexity
is O(2 · 15 + 10) = O(40). This is a speed up
by a factor of ≈ 175.42 in context computation,
i.e., the process of extracting and aggregating rele-
vant neighbourhood information associated with a
given head entity and relation. Sampling the con-
text reduces the input token length, which further
contributes to the efficiency slightly. The primary
computational gains however arise from our selec-
tive sampling strategy, which significantly limits
the amount of nodes/relations processed for context
extraction.

Sampling size values of n at 15 and k at 10,
although empirical, are motivated from the ablation
studies on MuCo-KGC, suggesting that the head
context plays a greater role than the relationship
context in model performance (see Table 1 and
Table 3 for details).

3.2 Experimental Setup
We evaluate MuCoS on two prediction tasks us-
ing KEGG50k and PharmKG-8k datasets: link and
tail prediction. Each task is evaluated in two set-
tings: the full KEGG50k dataset and a drug-target
subset. In link prediction, we infer the missing
relation in (h, ?, t), with general and drug-target
variants. Similarly, in tail prediction, we predict
the missing entity in (h, r, ?) for both settings. Be-
low we provide the details of the dataset used in
our experiments, the hyperparameter settings, and
the evaluation criteria.

Datasets: KEGG50k 1 medical domain dataset,
1KEGG50k: https://shorturl.at/pWSJO

comprises 63,080 triples split into 57,080 training,
3,000 validation, and 3,000 testing instances (i.e. a
90:5:5 ratio split). Drug-target only triplet counts
are 10769, 585, and 650 for the train, valid, and test
sets. The dataset comprises 16,201 unique entities
E where (Ed∪Eg) ⊂ E and 9 distinct types of drug-
target relationships, enabling a comprehensive map-
ping of pharmacological interactions. PharmKG-
8k 2 comprises 400,788 training triplets, 49,536
testing triplets, and 50,036 validation triplets, cov-
ering 7,601 entities. These are categorized into
Chemical, Disease, and Gene types, integrating
data from DrugBank, TTD, OMIM, PharmGKB,
and GNBR.

Hyperparameters: The input sequence is to-
kenized with a maximum length of 128 tokens.
Training is conducted over 50 epochs using the
AdamW optimizer with a learning rate of 5× 10−5

and a batch size of 16. Experiments were per-
formed on an NVIDIA GeForce RTX 3090 GPU
with 24 GB of memory.

Evaluation: Model performance is assessed
using standard metrics, Mean Reciprocal Rank
(MRR) and Hits@k, as defined in Equations 18
and 19, to evaluate the accuracy of general and
drug-target relations and tail predictions:

MRR =
1

N

N∑

i=1

1

ranki
, (18)

Hits@k =
1

N

N∑

i=1

1(ranki ≤ k), (19)

MRR measures the average of the reciprocal ranks
of the correct item across all queries. A higher
MRR indicates better ranking performance. H@k
measures the proportion of queries where the cor-
rect item appears in the top k ranks. It provides a
metric for evaluating ranking quality at different
points.

3.3 Results and Discussion

Link Prediction: Table 1 demonstrates that Mu-
CoS outperforms state-of-the-art baselines on the
KEGG50k dataset. It achieves an MRR of 0.65
for general link prediction across all relations, a
13% improvement over ComplEx-SE’s 0.52, and its
Hits@1 score of 0.52 exceeds ComplEx-SE’s 0.45
by 7%. Moreover, Hits@3 and Hits@10 scores of
0.60 and 0.86 further underscore the robust rank-
ing performance of MuCoS. Although MuCo-KGC

2PharmKG-8k: https://zenodo.org/records/4525237
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Table 1: Relationship prediction results over the KEGG50k dataset on both general links and drug target links only.

Model General link prediction Drug-target link prediction
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE (Bordes et al., 2013) 0.46 0.38 0.50 0.63 0.75 0.69 0.79 0.86
DistMult (Yang et al., 2014) 0.37 0.27 0.42 0.57 0.61 0.50 0.69 0.81
ComplEx (Trouillon et al., 2016) 0.39 0.31 0.43 0.57 0.68 0.61 0.71 0.82
ComplEx-SE (Mohamed et al., 2019) 0.52 0.45 0.56 0.68 0.78 0.73 0.81 0.88
MuCoS- (Hc Only) 0.52 0.44 0.55 0.69 0.75 0.65 0.77 0.1
MuCoS (Tc Only) 0.45 0.37 0.51 0.61 0.70 0.59 0.70 0.1
MuCo-KGC (Gul et al., 2025) 0.79 0.58 0.73 0.92 0.94 0.91 0.96 1
MuCoS 0.65 0.52 0.60 0.86 0.84 0.74 0.84 1

(Gul et al., 2025) achieves state-of-the-art perfor-
mance, MuCoS offers a significant computational
advantage with a small reduction in accuracy.

In drug–target prediction,which focuses on iden-
tifying relationships between drugs and their tar-
gets (e.g., genes), MuCoS achieves an MRR of
0.84—a 6% improvement over ComplEx-SE’s
0.78—demonstrating the benefit of contextual
head/tail information. It also records Hits@1 of
0.74 (vs. 0.73), Hits@3 of 0.84 (a 3% gain), and a
perfect Hits@10 of 1.00 (12% improvement), out-
performing TransE, DistMult, and ComplEx. Al-
though MuCo-KGC attains higher accuracy (e.g.,
an MRR of 0.94), its prohibitive computational cost
limits scalability. MuCoS, by offering competitive
performance with substantial efficiency gains, pro-
vides a scalable solution for real-world, large-scale
drug discovery.

Table 2 shows that MuCoS achieves state-of-
the-art performance on PharmKG-8k. It attains
an MRR of 0.452, compared to NC-KGE’s 0.228,
and a Hits@1 of 0.258 versus 0.145. Additionally,
MuCoS records Hits@3 and Hits@10 scores of
0.602 and 0.676, respectively.

Tail Prediction: Table 3 compares tail prediction
performance between MuCoS and MuCo-KGC un-
der both general and drug-target settings. While
MuCo-KGC (without sampling) achieves higher
MRR, Hits@1, and Hits@3 in the general sce-
nario, MuCoS (sampling-based) excels in drug-
target cases, particularly in Hits@10. Thus, sam-
pling enhances prediction accuracy for drug targets
at a slight cost in the general scenario, and MuCoS
offers a significant computational advantage while
outperforming other models on KEGG50k.

4 Ablation Study

We analyze the contributions of the Head Context
(Hc) and Tail Context (Tc) components for relation

Table 2: PharmKG8k-28 Results for Link Prediction
Task.The symbol 2 denotes that the results are taken
from Paper (Zheng et al., 2021), while the symbol △
results are taken from Paper (Fan et al., 2023). R2N
results are reported from (Diligenti et al., 2023).

Model MRR H@1 H@3 H@10
TransR 2 0.075 0.030 0.071 0.155
RESCAL 2 0.064 0.023 0.057 0.122
ConvE 2 0.086 0.038 0.087 0.169
ConvKB 2 0.106 0.052 0.107 0.209
RGCN 2 0.067 0.027 0.062 0.139
HRGAT 2 0.154 0.075 0.172 0.315
TransE △ 0.116 0.038 0.127 0.269
DistMult △ 0.218 0.152 0.237 0.335
ComplEx △ 0.124 0.064 0.128 0.244
TruckER △ 0.182 0.103 0.202 0.336
HRGAT △ 0.134 0.063 0.144 0.271
SACN △ 0.156 0.085 0.170 0.296
CompGCN △ 0.193 0.110 0.216 0.352
SE-GNN △ 0.206 0.120 0.232 0.374
R2N 0.215 0.145 0.234 0.342
NC-KGE △ 0.228 0.145 0.252 0.390
MuCoS 0.452 0.258 0.602 0.676

(link) prediction, and Head Context (Hc) and Rela-
tion Context (Rc) for the prediction of the tail. The
results are presented in Tables 1 and 3.

Relationship Prediction: Table 1 reports the re-
sults for both general link prediction and drug-
target link prediction scenarios. MuCo-KGC (Gul
et al., 2025), the earlier method, demonstrates
strong performance across all metrics, achieving
an MRR of 0.79 for general link prediction and
0.94 for drug-target link prediction. These results
highlight its ability to leverage both Hc (Head Con-
text) and Rc (Relation Context) effectively, ex-
celling particularly in Hits@1 (0.58 and 0.91) and
Hits@10 (0.92 and 0.1).

Tail Prediction: Table 3 presents the results for
both general tail prediction and drug-target-specific
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Table 3: Tail prediction results on the KEGG50k dataset were evaluated for both general and drug target scenarios
using methods with and without sampling.

Model
General tail prediction Drug-target tail prediction

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
MuCoS (Hc Only) 0.26 0.20 0.34 0.55 0.38 0.30 0.41 0.78
MuCoS (Rc Only) 0.21 0.15 0.28 0.39 0.31 0.19 0.36 0.69
MuCo-KGC 0.39 0.34 0.521 0.718 0.567 0.457 0.628 0.917
MuCoS 0.31 0.215 0.40 0.57 0.442 0.259 0.46 0.868

scenarios. MuCo-KGC (Gul et al., 2025) delivers
robust performance, achieving an MRR of 0.39 for
general tail prediction and 0.567 for drug-target
tail prediction. Its superior Hits@1 scores (0.34
and 0.457) and Hits@10 scores (0.71 and 0.917)
confirm its effectiveness in capturing complex rela-
tional patterns in the graph.

Across both prediction tasks, the Hc-Only con-
figuration consistently outperforms achieving an
MRR of 0.52 (general links) and 0.75 (drug-target
links) for relationships, and 0.26 (general tails) and
0.38 (drug-target tails) for tail predictions. This
highlights the critical role of localized contextual
information over global relational patterns, which
tend to underperform when used in isolation Tc-
Only MRR: 0.45 and 0.70 for links; Rc-Only MRR:
0.21 and 0.31 for tails).

5 Conclusion

The study introduces MuCoS, a multi-context-
aware sampling method that uses DistilBERT
to improve drug-target relation predictions and
tail entity predictions in biomedical knowledge
graphs. MuCoS employs a dual strategy combining
transformer-based textual modeling with context-
aware sampling to overcome limitations of exist-
ing models, such as poor generalization, negative
sampling, and the need for descriptive entity infor-
mation. It extracts and optimizes contextualized
information from the head, tail, and relation enti-
ties using density-based sampling and its lexical
semantics, capturing richer structural patterns and
reducing computational complexity. Experimental
results show superior performance over state-of-
the-art models, with improvements in MRR and
Hits@1 for general and drug-target relationship
prediction on both KEGG50k and PharmKG-8k
datasets. Future work could focus on adaptive
sampling to dynamically adjust n and k for sparse
KGs, and integrate multimodal data like protein
sequences or chemical structures to enhance drug-

target prediction.
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