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Abstract

High-quality scientific article embeddings are
essential for tasks like document retrieval, cita-
tion recommendation, and classification. Tra-
ditional citation-based approaches assume ci-
tations reflect semantic similarity—an assump-
tion that introduces bias and noise. Recent
models like SciNCL and SPECTER2 have at-
tempted to refine citation-based representations
but still struggle with noisy citation edges and
fail to fully leverage textual information. To ad-
dress these limitations, we propose a hybrid ap-
proach that combines Finding-Citation Graphs
(FCG) with contrastive learning. Our method
improves triplet selection by filtering out less
important citations and incorporating finding
similarity relations, leading to better semantic
relationship capture. Evaluated on the SciRepE-
val benchmark, our approach consistently out-
performs citation-only baselines, showing the
value of text-based semantic structures. While
we do not surpass state-of-the-art models in
most tasks, our results reveal the limitations
of purely citation-based embeddings and sug-
gest paths for improvement through enhanced
semantic integration and domain-specific adap-
tations.

1 Introduction

High-quality scientific article embeddings are es-
sential for various downstream tasks, including ci-
tation recommendation, article retrieval, and classi-
fication (Cunningham and Greene, 2023). These ef-
fective representations accelerate research progress
by enhancing knowledge discovery. However, gen-
erating high-quality embeddings remains challeng-
ing, largely due to the limitations of existing meth-
ods that rely primarily on citation networks.

Traditional approaches use Large Language
Models (LLMs) to generate article embeddings
directly, but research shows this method often un-
derperforms compared to basic baseline models
like GloVe (Reimers and Gurevych, 2019). To en-

hance embedding quality, researchers have turned
to contrastive learning for refining document repre-
sentations (Cohan et al., 2020). This method uses a
triplet-based training framework, where each triplet
includes a query article, a similar article (positive
sample), and a dissimilar article (negative sample).
These triplets are typically drawn from citation
networks, based on the assumption that citation
relationships indicate semantic similarity.

Over the years, researchers have made vari-
ous improvements to optimize triplet selection.
SPECTER (Cohan et al., 2020) introduced a unidi-
rectional citation-based approach, using cited pa-
pers as positive samples and non-cited papers as
negative samples. However, this method created
inconsistencies in triplet generation, as the same
paper could be both a positive and negative sample
in different contexts. To address this issue, SciNCL
(Ostendorff et al., 2022) eliminated citation direc-
tionality and implemented graph embeddings and
k-nearest neighbors (KNN) sampling to identify
positive and negative samples. This change signif-
icantly improved embedding quality by reducing
triplet formation inconsistencies.

Recent advances have further refined this
pipeline. SPECTER2 (Singh et al., 2023) devel-
oped task-specific embeddings by generating a gen-
eral representation and then fine-tuning it for differ-
ent downstream tasks. Other approaches explore
multi-faceted embeddings, generating multiple rep-
resentations of a paper to capture various aspects
of its content (Zhang et al., 2023).

Despite these advances, current methods rely
solely on citation networks for triplet construction,
overlooking the many semantically similar articles
that lack direct citation links. This limitation cre-
ates biases in representation learning and constrains
the quality of scientific embeddings. To address
these challenges, we propose a hybrid approach
that enhances contrastive learning by combining
Finding-Citation Graphs (FCG) with text-based se-
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mantic relationships. Our contributions include:
• Filtering less important citations using an

LLM-based classification mechanism to re-
move noisy edges.

• Incorporating finding similarity relations to
establish meaningful connections between se-
mantically related papers.

We evaluate our approach on SciRepEval (Singh
et al., 2023), a benchmark for assessing scientific
embeddings across multiple tasks. Our method
outperforms citation-only baselines, demonstrating
the effectiveness of integrating text-based semantic
structures into contrastive learning. While it does
not surpass state-of-the-art models in all tasks, our
results highlight the importance of moving beyond
purely citation-based embeddings toward richer,
more semantically aware representations.

2 Related Work

Researchers have developed various models and
methodologies to improve scientific text repre-
sentation, ranging from traditional keyword-based
methods and vector space models to modern deep-
learning approaches. Beyond general-purpose tech-
niques, specialized approaches exist specifically
for scientific articles.

General-Purpose Methods Early scientific ar-
ticle representations relied primarily on word-
level features. The Bag-of-Words (BoW) model
represented documents as vectors of word fre-
quencies—a simple but limited approach that suf-
fered from sparsity and lost semantic relationships
(Salton et al., 1975). Latent Semantic Analysis
(LSA) addressed these limitations by introducing
dimensionality reduction and capturing latent word
relationships (Deerwester et al., 1990). The field
then progressed to probabilistic topic modeling
with Latent Dirichlet Allocation (LDA), which ef-
fectively modeled texts as mixtures of latent topics
(Blei et al., 2003). LDA became particularly valu-
able in scientific literature analysis by enabling re-
searchers to extract thematic structures from large
document collections.

A major breakthrough came with word embed-
ding techniques like Word2Vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014), which
transformed scientific text representation through
dense vector spaces. These models excel at captur-
ing semantic relationships, leading to improved in-
formation retrieval and document clustering. How-
ever, they face limitations in handling polysemy

and contextual variations.
The field has recently advanced further with

transformer-based models, notably BERT (De-
vlin et al., 2019) and SciBERT (Beltagy et al.,
2019)—models specifically trained on scientific
corpora. These architectures have dramatically im-
proved contextual representation and now power
various tasks including citation prediction, summa-
rization, and scientific question answering. SciB-
ERT stands out by outperforming generic language
models in domain-specific applications, demon-
strating the value of domain-adapted pretraining.

Scientific-Specific Methods Most methods for
associating embeddings to scientific papers rely
on citation networks, which represent articles as
nodes connected by citation links to analyze in-
fluence patterns and research trends (Page et al.,
1999). Several approaches have developed uni-
versal embeddings for articles, such as SPECTER
(Cohan et al., 2020) and SciNCL (Ostendorff et al.,
2022), as discussed in Section 1. Other approaches
generate multiple embeddings for scientific arti-
cles, each serving a distinct purpose. For in-
stance, SPECTER2 (Singh et al., 2023) creates
task-specific embeddings, producing four different
representations per article for tasks like classifi-
cation, regression, ad-hoc search, and proximity.
Similarly, ASPIRE (Mysore et al., 2022) generates
aspect-specific embeddings for each article, such as
method embeddings and finding embeddings. De-
spite the noise in citation networks, these models
outperform traditional embeddings by leveraging
citation relationships, resulting in improved down-
stream performance in retrieval, classification, and
clustering tasks.

3 Methodology

Our goal is to learn citation-informed and text-
informed representations for scientific documents.
Given a document’s textual content d, we aim to
generate a dense vector representation e that ef-
fectively encodes both the document’s information
and the citation’s information for downstream tasks.
Following previous work (Cohan et al., 2020; Os-
tendorff et al., 2022; Singh et al., 2023), we devel-
oped an information-enriched network combining
citation networks with finding similarity relations.
Using this network, we sample triplets to learn doc-
ument embeddings through contrastive learning. In
the following subsections, we describe the creation
of the information-enriched network, the triplet
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sampling approach, and the contrastive learning
approach.

3.1 Information-Enriched Network
Construction

To enhance the semantic similarity of the citation
network, we combined citation networks with find-
ing similarity relations to create an information-
enriched network. We improved semantic accuracy
by filtering out less important citations—those that
contribute minimally to the new study. We estab-
lished new relations between articles with simi-
lar findings based on the Finding-Citation Graph
(FCG) (Liang et al., 2024). The resulting network
contains links—both citations and finding similar-
ity relations—that better represent semantic rela-
tionships beyond simple citations.

3.1.1 Citation Filtering
Although citation networks form the foundation of
many scientific embedding models, they can intro-
duce noise since not all citations reflect meaningful
content similarity (Ostendorff et al., 2022). To ad-
dress this issue, we implemented a large language
model (LLM)-based filtering mechanism that eval-
uates citations by assessing their contribution to the
citing study, thereby determining their relevance.

Due to the lack of open-source datasets for this
task, we used Mistral-7B-Instruct (Jiang et al.,
2023) with few-shot in-context learning to classify
citations into three categories: Highly Important,
Moderately Important, and Less Important. Our
analysis of citation importance considered three
key elements: the citation sentence, the abstract of
the citing paper, and the title of the cited paper. The
prompt can be seen in Appendix A. Less relevant
citations were removed from the network to reduce
noise and improve the quality of triplet selection.

3.1.2 Finding Similarity Relations
Beyond citations, scientific findings provide a more
precise measure of content similarity between pa-
pers. To incorporate additional semantic relation-
ships, we utilized the Finding-Citation Graphs
(FCG). We used Contriever (Lei et al., 2023), a
dense retrieval model, to convert scientific findings
into embeddings. We then calculated pairwise co-
sine similarity between findings and added new
finding similarity edges to the network when pairs
exceeded a similarity threshold.

Through these two enhancements—removing noisy

citations and introducing new semantic edges—we
created an information-enriched citation network
that better reflects the true relationships between
papers.

3.2 Triplet Sampling

Contrastive learning relies on high-quality
triplets—sets of (query, positive, negative) samples
to train models to differentiate between similar
and dissimilar documents. To enhance our model’s
performance, we optimized triplet selection
by combining citation-based and finding-based
similarity measures. Following Ostendorff et al.
(2022), we trained node embeddings on the
combined network using PyTorch BigGraph (Lerer
et al., 2019). For each article dQ, we used the
k nearest neighbors (KNN) method to identify
similar (positive) and dissimilar (negative) articles.

For positive article sampling, following Wang
and Isola (2022) and Ostendorff et al. (2022), we se-
lected positive articles from locations distant from
the query. Specifically, we sampled c+ positive arti-
cles from a close neighborhood around the query ar-
ticle—those within the range (k+−c+, k+], where
k+ represents the k parameter in the KNN method.

For negative article sampling, we considered
two types of negative articles: easy negatives c−easy
and hard negatives c−hard. Easy negatives can be
obtained through simple random sampling. Hard
negatives are crucial for contrastive learning—the
more challenging the negative samples, the better
the model training becomes. We used a sampling
method similar to positive article sampling, select-
ing articles within the range (k−hard − c−hard, k

−
hard],

where k−hard represents the k parameter in the KNN
method.

3.3 Contrastive Learning

Once triplets are constructed, we train our embed-
ding model using contrastive learning with a triplet
margin loss function (Schroff et al., 2015). The
method’s core principle is to minimize the dis-
tance between similar (positive) samples in the la-
tent space while maximizing the distance between
dissimilar (negative) samples. To implement con-
trastive learning, we fine-tuned SciBERT (Beltagy
et al., 2019), a domain-specific transformer model
for scientific text, to generate embeddings for each
article.
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2
+ ξ, 0}

(1)

4 Experiment Setup

This section describes our experimental setup, de-
tailing the datasets, model training configurations,
and baseline comparisons.

4.1 Dataset

4.1.1 Training Dataset: Finding-Citation
Graph (FCG)

For training, we utilized the Finding-Citation
Graph (FCG) derived from the Europe PMC dataset
(Liang et al., 2024). This biological FCG encom-
passes 16 million nodes—consisting of 6 million
papers and 10 million findings—and 27 million
edges, comprising 17 million citations and 10 mil-
lion paper-finding generation relations. After pre-
processing the dataset to filter out noisy citations
and incorporate finding similarity relations, as de-
scribed in the methodology section, this enriched
network forms the foundation for our triplet sam-
pling strategy.

4.1.2 Evaluation Dataset: SciRepEval
For evaluation, we used SciRepEval (Singh et al.,
2023), the first large-scale benchmark for evalu-
ating scientific document embeddings. SciRepE-
val encompasses 24 tasks across four evaluation
formats—Ad-Hoc Search, Proximity, Classifica-
tion, and Regression—spanning multiple scien-
tific domains. We primarily used the "Out-of-
Train" datasets in SciRepEval. Table 1 provides
an overview of the dataset statistics and evaluation
metrics.

4.2 Model Training and Implementation

4.2.1 Input Network Variations
To assess performance, we generated different vari-
ations of the citation network through distinct pre-
processing methods.

• Citation – The original unprocessed citation
network.

• Citation (Filtered) F – Noisy citations re-
moved.

• Citation (Finding Similarity) T – New
finding-based relations added.

• Citation (Combine) FT – Both filtering and
finding similarity applied.

4.2.2 Training Configuration
For filtering less important citations, we utilized
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) with
two-shot learning on a single NVIDIA GeForce
A100 GPU, processing each sample in approxi-
mately 0.8 seconds. To identify finding similarities,
we used Contriever (Lei et al., 2023) to generate
embeddings for all 10 million findings and per-
formed similarity searches, with each search taking
about 0.87 seconds.

For triplet generation and contrastive learning,
we closely replicated SciNCL’s training setup. We
implemented the KNN strategy using FAISS (John-
son et al., 2019) with a flat index and maintained
the same KNN parameters: k+ = 25 and k− =
4000. For contrastive learning, we used Hugging-
face Transformers (Wolf et al., 2020) and initial-
ized the model with SciBERT’s weights (Beltagy
et al., 2019), training it with triplet loss. The train-
ing process used the Adam optimizer (Kingma and
Ba, 2017) with weight decay and a learning rate
of λ = 2−5. The model was trained for 2 epochs
on a single NVIDIA GeForce RTX A100 (40G)
GPU with a batch size of 14, completing in approx-
imately 8 hours.

4.3 Baselines

We compared our method against two existing
contrastive learning-based scientific embedding
models: SciNCL (Ostendorff et al., 2022), and
SPECTER2 (Singh et al., 2023). Since these base-
lines were trained on multi-domain datasets, their
results serve as a reference point rather than di-
rect competitors. Our primary goal is to assess
whether removing noisy citations and incorporating
text-based similarity relations improves embedding
quality. Therefore, our true baseline is the unpro-
cessed citation network, which we used to generate
embeddings without any filtering or augmentation.

5 Overall Results

We evaluated our approach by building multiple
input networks using different preprocessing strate-
gies and comparing them to baselines. Our main
goal was to determine if filtering less important
citations and incorporating finding similarity re-
lations would enhance the quality of biomedical
article embeddings.

Table 2 presents the statistics of each network
variant. Due to time constraints, we analyzed ci-
tation importance and generated finding similarity
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Task Format Name Test Eval Metric Source
Out-of-Train

CLF Biomimicry 10,991 Binary F1 Shyam et al. (2019)
DRSM 7,520 S; 955 G Macro F1 Burns (2022)
SciDocs MAG 23,540 Macro F1 Cohan et al. (2020)
SciDocs MeSH Diseases 25,003 Macro F1 Cohan et al. (2020)

RGN Peer Review Score 10,210 Kendall’s T Singh et al. (2023)
h-Index of Authors 8,438 Kendall’s T Singh et al. (2023)
Tweet Mentions 25,655 Kendall’s T Jain and Singh (2021)

PRX S2AND X: 68,968 Y: 10,942 B3 F1 Subramanian et al. (2024)
Paper-Reviewer Matching Q:107 P: 1,729 P@5, P@10 Mimno and McCallum (2007)
RELISH Q: 3190 P: 191,245 nDCG Zhao et al. (2022)
SciDocs Co-view Q: 1,000 P: 29,978 MAP, nDCG Cohan et al. (2020)
SciDocs Co-read Q: 1,000 P: 29,977 MAP, nDCG Cohan et al. (2020)
SciDocs Cite Q: 1,000 P: 29,928 MAP, nDCG Cohan et al. (2020)
SciDocs Co-cite Q: 1,000 P: 29,949 MAP, nDCG Cohan et al. (2020)

SRCH NFCorpus Q: 323 P: 44,634 nDCG Boteva et al. (2016)
TREC-CoVID Q: 50 P: 69,318 nDCG Voorhees et al. (2021)

Table 1: Dataset statistics and evaluation metrics for different tasks in SciRepEval benchmark.

relations for only a subset of nodes—detailed infor-
mation is available in Appendix B. Table 3 summa-
rizes the performance in different evaluation tasks
in SciRepEval.

Table 3 shows that both removing less important
citations (F) and adding finding-based relations
(T) improved performance compared to the raw
citation network, with the combined approach (FT)
achieving the best results. Significantly, adding the
finding similarity relations proved more effective
than citation filtering alone, indicating that citation-
based embeddings do not fully capture the semantic
structure of scientific literature.

Node_Num Edge_Num
Citation 6,013,398 17,795,8624
Citation F 6,013,398 17,769,1665
Citation T 6,013,398 38,650,3618
Citation FT 6,013,398 38,624,0425

Table 2: Input network with different process methods

We also evaluated our model against two state-
of-the-art scientific embedding models—SciNCL
(Ostendorff et al., 2022) and SPECTER2 (Singh
et al., 2023)—both trained on multi-domain scien-
tific datasets. While our approach did not achieve
state-of-the-art performance in most tasks from Ta-
ble 3, it demonstrated competitive results in regres-
sion and search tasks, where semantic relationships
are particularly important.

6 Discussion

Our experimental results demonstrate that integrat-
ing finding similarity relations into citation net-
works improves the quality of scientific article
embeddings, particularly in search and regression
tasks. This section explores the implications of

these findings, addresses the limitations of purely
citation-based approaches, and discusses potential
avenues for further improvements.

6.1 The Limitations of Citation Networks for
Embedding Learning

Citation networks have traditionally been used to
model relationships between scientific articles, op-
erating on the assumption that citations indicate
semantic similarity. However, this assumption has
several fundamental flaws due to the diverse moti-
vations behind citations:

• Papers are often cited to provide background
context or build a research narrative, rather
than signifying true conceptual similarity.

• Many papers with strong semantic similarities
lack citation connections to each other.

• Citations are subject to various biases, includ-
ing popularity effects, disciplinary silos, and
self-citation patterns.

Our results demonstrate that simple citation-
based triplet selection produces suboptimal con-
trastive learning outcomes. The enhanced perfor-
mance we observed with finding similarity rela-
tions indicates that citation-based methods alone
inadequately capture content-based relationships,
highlighting the necessity for alternative similarity
measures in scientific document embeddings.

6.2 Effect of Citation Filtering and Finding
Similarity Relations

A key contribution of our work is demonstrating
how citations vary in their importance for learning

301



Task Metric SciNCL SPECTER2 citation citation F citation T citation FT
Out-of-Train

Classification
Biomimicry Wt. F1 50.22 53.20 48.50 48.51 49.13 49.29
DRSM Wt. F1 65.10 68.9475 62.32 62.78 66.23 66.01
SciDocs MAG F1 81.11 82.55 81.16 80.96 82.24 82.22
SciDocs MeSH F1 89 89.72 88.88 89.09 89.56 88.65
Proximity
Relish nDCG 90.67 91.65 91.22 91.22 91.05 91.18
S2AND B3 F1 93.98 92.8 95.6 95.4 95.3 95.67
Peer Reviewer Matching Avg 45.40 45.44 43.83 44.58 44.86 44.67
SciDocs Co-View MAP 85.28 84.68 82.15 82.18 83.25 83.71

nDCG 92.23 92.04 90.71 90.79 91.34 91.47
SciDocs Co-Read MAP 87.69 86.29 83.99 84.6 84.69 84.85

nDCG 94 93.36 92.14 92.57 92.51 92.6
SciDocs Cite MAP 93.55 94.08 84.07 83.89 85.93 87.14

nDCG 97.35 97.59 92.91 92.77 93.83 94.42
SciDocs Co-Cite MAP 91.66 90.58 88 88.13 88.23 88.79

nDCG 96.44 95.99 94.75 94.89 94.93 95.21
Regression
Review Score Avg 18.87 21.79 18.59 19.71 20.42 19.37
Max h-Index K Tau 11.3 12.83 12.26 13.13 14.14 12.63
Tweet Mentions K Tau 25.78 24.56 23.04 22.89 23.75 25.57
Search
NFCorpus nDCG 70.85 70.18 69.7 70.24 71.47 70.89
TREC CoVID nDCG 87.67 90.87 89.34 89.39 88.03 88.37
Average Exp. SciDocs - 56 57.23 55.4 55.8 56.4 56.4
Overall Average - 73.4 73.95 71.7 71.9 72.5 72.6

Table 3: Performance metrics across different methods and tasks. The columns labeled citation, citation F, citation
T, and citation FT show our experimental results. The SciNCL and SPECTER2 columns present experimental
results from (Ostendorff et al., 2022) and (Singh et al., 2023).

high-quality embeddings. By filtering out less im-
portant citations, we reduced noise and achieved
modest improvements. However, our most signif-
icant gains came from incorporating finding simi-
larity relations, which create direct links between
papers based on their research findings rather than
citations alone.

6.3 How Does Our Method Compare to
Existing Models?

While our approach outperforms the baseline ci-
tation network, it does not surpass state-of-the-art
models like SPECTER2 in most tasks. This is
expected, as SPECTER2 and similar models are
trained on larger, more diverse datasets and ben-
efit from task-specific fine-tuning. However, our
findings suggest that incorporating additional se-
mantic relations—like findings, methodologies, or
co-authorship networks—could help close this per-
formance gap.

Notably, our method achieved competitive per-
formance in regression and search tasks, demon-
strating that text-based semantic relations comple-
ment citation-based embeddings effectively. This
strengthens our argument that citation networks
alone cannot fully capture the contextual and con-
ceptual relationships between scientific articles.

6.4 Limitations

Despite its benefits, our approach has some lim-
itations. First, due to computational constraints,
we applied citation filtering and finding similarity
generation to only a subset of the dataset. A more
comprehensive application across a larger scientific
corpus may yield even stronger improvements.

Additionally, we limited our exploration of text
similarity relations to research findings, excluding
other important aspects like methodology. While
we believe findings are the most crucial part of
scientific papers, examining other aspects could
yield valuable insights.

Furthermore, our approach of generating a single
universal embedding per article may result in the
loss of important information.

These limitations point to clear opportunities for
future improvements.

7 Conclusion

In this study, we introduced an enhanced approach
to biomedical article embedding by integrating
Finding-Citation Graphs (FCG) with contrastive
learning. Our method overcomes the limitations of
traditional citation-based embeddings by filtering
out less important citations and incorporating text-
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based semantic relationships into triplet selection.
This refined network improves the representation
quality of scientific documents, particularly in the
biomedical domain.

Our experiments show that removing noisy cita-
tions and leveraging finding similarity relations en-
hance contrastive learning performances. Though
our approach did not exceed state-of-the-art meth-
ods like SciNCL and SPECTER2, it consistently
performed better than the original citation network,
demonstrating the value of context-aware triplet
formation.

In conclusion, our work establishes a foundation
for enhancing scientific document representations
through a balanced approach that combines citation
analysis with semantic similarity. By improving
the construction of scientific embeddings, we de-
liver more accurate, domain-specific, and semanti-
cally meaningful representations—enabling better
information retrieval and knowledge discovery in
biomedical research.
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A LLM Prompt

The prompt to analyze the importance of each
citation can be seen here.

You are an AI language model tasked with
analyzing the importance of specific citations
within a research paper. Each citation is
provided with three pieces of information:
- Citation Sentence: The sentence shows why
and what the citation occurs.
- Abstract of the Citing Paper: A summary of
the research of the citing paper.
- Title of the Cited Paper: The title of the cited
paper.
Based on this information, your task is to
analyze and determine the importance of the
citation to the citing paper.
Your thinking logic chain should follow the
following diagram:
- Abstract Analysis: Identify key goals,
methods, and findings.
- Citation Sentence Analysis: Determine
citation context and purpose.
- Title Analysis: Check for alignment of scope
and key themes.
- Cross-Referencing: Is the cited work
foundational to methods, key concepts, or
outcomes? Does it appear crucial for the
execution of the citing study?
- Explanation: Provide a concise explanation
for the classification based on analysis.
- Importance Classification:
- Highly Important: Core foundation (meth-
ods, key framework).
- Moderately Important: Background, context,
secondary relevance.
- Less Important: General information,
historical context.

Here are some examples:
{Examples}

Just output the importance classification
result and explanation.

B Preprocessing Citation Network

For the citation filtering, we examined approxi-
mately 1.46 million citations, classifying 28.4% as
highly important, 44.8% as moderately important,
and 26.8% as less important. Since papers can cite
others multiple times using different citation sen-
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tences, the same citation pair sometimes receives
different importance classifications. In such cases,
we retained citations marked as less important if
they also appeared in the highly important category.
Ultimately, we removed only about 260,000 cita-
tions from the total of 1̃7 million citations, as we
only have those citation analysis results.

For the finding similarity relation, we searched
for similar findings for 392,505 (Total 10 mil-
lion) findings. When the two papers shared similar
findings, we created a new relation between them.
Through this process, we generated approximately
200 million relations between papers.
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