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Abstract

Recent advances in large language models
(LLMs) have led to impressive performance
on medical question-answering (QA) bench-
marks. However, the extent to which these
benchmarks reflect real-world clinical capabil-
ities remains uncertain. To address this gap,
we systematically analyzed the correlation be-
tween LLM performance on major medical QA
benchmarks (e.g., MedQA, MedMCQA, Pub-
MedQA, and MMLU medicine subjects) and
clinical performance in real-world settings. Our
dataset included 702 clinical evaluations of 85
LLMs from 168 studies. Benchmark scores
demonsrated a moderate correlation with clini-
cal performance (Spearman’s ρ = 0.59), albeit
substantially lower than inter-benchmark cor-
relations. Among them, MedQA was the most
predictive but failed to capture essential compe-
tencies such as patient communication, longitu-
dinal care, and clinical information extraction.
Using Bayesian hierarchical modeling, we esti-
mated representative clinical performance and
identified GPT-4 and GPT-4o as consistently
top-performing models, often matching or ex-
ceeding human physicians. Despite longstand-
ing concerns about the clinical validity of med-
ical QA benchmarks, this study offers the first
quantitative analysis of their alignment with
real-world clinical performance.1

1 Introduction

The rapid advancement of large language models
(LLMs), accelerated by the release of ChatGPT, has
continued into 2025. Open-source models such as
Llama 3.3, Phi-4, and DeepSeek-R1 are rapidly nar-
rowing the performance gap with proprietary mod-
els (Grattafiori et al., 2024; Abdin et al., 2024; Guo
et al., 2025). This progress is especially consequen-
tial in healthcare, where strigent privacy and secu-
rity requirments frequently necessitate on-premise

1The dataset and code are available at:
https://github.com/SiunKim/questioning-medqa.

deployment (Faray de Paiva et al., 2025; Gupta and
Pande, 2025).

Figure 1: Overview of our study assessing the align-
ment between medical QA benchmarks and real-world
clinical performance.

As LLMs attains expert-level performance on
both general and medical QA benchmarks, the lim-
itations of such benchmarks have become increas-
ingly apparent. For instance, OpenAI’s o1-preview
achieved 96% on MedQA and 99% on MMLU
Medical Genetics, outperforming human experts
(Nori et al., 2024; Liévin et al., 2024). However,
such benchmarks are thought to focus predomi-
nantly on static knowledge and structured reason-
ing, which may not fully reflect core competencies
essential for clinical practice (Nori et al., 2023;
Singhal et al., 2023), such as decision-making un-
der uncertainty (Han et al., 2011), patient commu-
nication (Barry and Edgman-Levitan, 2012), and
ethical reasoning (Kaldjian et al., 2005).

Although concerns over the limited clinical va-
lidity of existing medical QA benchmarks have
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been raised, there remains a lack of systematic evi-
dence. In this study, we address this gap through a
comprehensive meta-analysis evaluating how effec-
tively conventional medical QA benchmarks reflect
the real-world clinical performance of LLMs (Fig-
ure 1).

Our key contributions are as follows:

• Quantitative assessment of benchmark-
clinical alignment: We demonstrate a moder-
ate correlation (Spearman’s ρ = 0.59) between
medical QA benchmarks and real-world clini-
cal performance, highlighting significant limi-
tations in the current evaluation practices.

• Identification of clinical gaps in MedQA:
MedQA demonstrates strong alignment with
core competencies such as treatment, clini-
cal knowledge, and diagnosis. However, it
fails to adequately assess essential aspects of
real-world clinical practice, including patient
communication, longitudinal care, and clini-
cal information extraction.

• Bayesian modeling of representative clin-
ical performance: Using hierarchical
Bayesian models, we estimate the generalized
clinical capabilities of LLMs, suggesting that
models like GPT-4 and GPT-4o match or ex-
ceed human physician-level performance in
real-world clinical settings.

2 Related Works

MedQA—based on the USMLE Step 1 and 2 ex-
ams—has emerged as a de facto benchmark in the
medical domain, owing to its high-quality multiple-
choice questions (MCQs) and comprehensive topi-
cal coverage (Jin et al., 2021). As a representative
benchmark, improvements in MedQA performance
have frequently been interpreted as a proxy for
progress in medical LLMs (Singhal et al., 2025;
Saab et al., 2024).

MedMCQA, derived from Indian medical en-
trance exams (AIIMS and NEET PG), comple-
ments MedQA by offering broader topical diversity
and varied question types (Pal et al., 2022). In
contrast, PubMedQA focused on biomedical liter-
ature comprehension by requiring models to infer
answers from PubMed abstracts (Jin et al., 2019).

Despite their widespread use, these traditional
medical benchmarks primarily assess factual recall
and structured reasoning. They have been criticized
for failing to evaluate essential aspects of practical

clinical competence (Tang et al., 2023; Kim et al.,
2025; Liu et al., 2024).

In response, recent datasets aim to capture the
complexity of real-world clinical practice. Datasets
like Medbullet (Chen et al., 2024), MedExQA
(Kim et al., 2024), and MedXpertQA (Zuo et al.,
2025) introduce open-ended questions, expert-
written explanations, and multimodal data to facili-
tate more comprehensive evaluations. Furthermore,
integrated evaluation frameworks like MedAgent-
Bench (Tang et al., 2025) and MEDIC (Kanithi
et al., 2024) encompass multiple clinical tasks and
explicitly address ethical and safety concerns.

In parallel, agent-based evaluations have
emerged to assess interactive and dynamic reason-
ing. For instance, MedQA-CS adopts OSCE-style
clinical scenarios (Yao et al., 2024), while Agent-
Clinic (Schmidgall et al., 2024) evaluates LLMs
during simulated physician-patient dialogues.

Building on these developments, our study sys-
tematically examines the alignment between con-
ventional medical QA benchmarks and real-world
clinical evaluations. By identifying existing gaps,
we aim to inform the design of future benchmarks
that more accurately reflect practical clinical com-
petencies.

3 Methods

To evaluate the extent to which existing medical
QA benchmarks reflect real-world clinical perfor-
mance, we analyzed 168 published studies that
assessed at least three distinct language models
in clinical settings. Benchmark scores on both
medical QA and general-purpose benchmarks were
collected and standardized to ensure comparability.
To address the missing benchmark scores, multi-
ple imputation was applied. Correlations between
benchmark scores and clinical performance were
calculated using rank-based methods weighted by
sample size. Finally, we employed Bayesian hier-
archical modeling to estimate each model’s repre-
sentative clinical capability.

3.1 Literature Review for Collecting Clinical
Performance Data

We conducted a multi-stage literature review to
identify studies evaluating LLM performance in
real-world clinical settings (Figure 2). Using the
Semantic Scholar API, we first retrieved articles
published between January 1, 2023, and January 10,
2025, based on search queries designed to encom-
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pass a wide range of clinical scenarios (Appendix
A.1). Title-based filtering retained studies explic-
itly mentioning LLM-related terms, followed by
DOI-based deduplication. Abstract and full-texts
were retrieved via publisher and open-access APIs.

Literature Search: Google Scholar
19,322 papers

Title-based Screening
5,049 papers

DOI/Abstract Retrieval & PDF Acquisition
2,022 papers

Abstract Screening*
1,333 papers

Full-text Review*
263 papers

Final Curation & Dataset Construction
168 papers, 195 tasks,

85 LLMs, 702 performances

* Steps involving LLM assistance

Figure 2: Flowchart of literature review for collecting
LLM performances in real-world clinical settings.

Phi-4 model-assisted screening of abstracts and
full-texts identified studies that reported perfor-
mance for at least three distinct LLMs, enabling
correlation analyses (AppendixA.2). Manual re-
view was conducted to extract structured data, nor-
malized model names (Appendix A.3) and classi-
fied evaluation settings (Appendix A.4).

3.2 LLM Performance Collection in
Real-World Clinical Settings

To address overrepresentation issues caused by
redundant evaluations of similar model abilities
within a single study, we extracted one representa-
tive performance score for each task-model combi-
nation. Preference was given to the simplest infer-
ence setting (e.g., zero-shot without CoT). If multi-
ple measures existed for the same therapeutic area
and capabilities, we selected the most frequently
used metric, or averaged scores, if no dominant
measure was evident. Evaluations spanning multi-
ple therapeutic areas or distinct capabilities were
treated as a separate task.

Studies relying on readability metrics, inter-
model correlation analyses, or with fewer than 20
evaluation samples were excluded. Encoder-based
language models (e.g., BERT, RoBERTa) were also
excluded because the study focused solely on au-
toregressive LLMs.

Performance scores were normalized to a 0–100
scale using min-max scaling. Metrics indicating
better performance through lower values (e.g., pro-
portion of biased answers) were inverted by sub-
tracting from 100.

3.3 Benchmark Performance Collection
Benchmarks were divided into medical QA
benchmarks and general benchmarks. Medical
QA benchmarks included MedQA, MedMCQA,
PubMedQA, and six MMLU medical subsets
(Anatomy, Clinical Knowledge, College Biology,
College Medicine, Medical Genetics, and Profes-
sional Medicine). General benchmarks consisted of
MMLU, MMLU Pro, BBH, HumanEval, GSM8K,
and MATH.

Performance data were extracted from published
articles, technical reports, and model cards. Addi-
tional web searches supplemented version-specific
scores for widely used proprietary models (e.g.,
GPT, Claude, and Gemini).

We standardized benchmark performances by fo-
cusing on zero-shot without CoT. If multiple results
were available, averages were used. If zero-shot
data were unavailable, performance was estimated
through linear regression using reported results un-
der different inference settings, by considering few-
shot examples and CoT usage as covariates.

3.4 Benchmark Performance Imputation
While complete benchmark data are ideal for re-
liable correlation analyses, missing values were
inevitable as performance scores were compiled
through literature review rather than direct evalua-
tion. To systematically address missing values, we
employed Multiple Imputation by Chained Equa-
tions (MICE), which leverages observed interde-
pendencies within available data to estimate absent
benchmark performances.

Before imputation, we confirmed the Missing
at Random (MAR) assumption, a necessary con-
dition for reducing bias in estimation. Two im-
putation techniques were tested: Random Forest
(RF-MICE) for capturing non-linear dependencies
and Bayesian Ridge (BR-MICE) for small datasets
with collinearity. Imputation was performed sepa-
rately for each benchmark category.

We validated imputation accuracy through mask-
ing test, randomly removing and subsequently esti-
mating 10% of the observed values. To incorporate
uncertainty, multiple imputations were conducted,
and within- and between-imputation variance were
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estimated (Appendix A.5). Based on validation
results, we selected a final version of the imputed
dataset for downstream analysis.

3.5 Correlation Measurement
We evaluated correlations in two ways: benchmark-
to-benchmark and benchmark-to-clinical perfor-
mance.

Benchmark-to-benchmark correlation were cal-
culated based on the performance scores of models
that were evaluated on both. This analysis allowed
us to identify redundant benchmarks, assess the
quality of benchmark datasets, and set a correla-
tion baseline for subsequent benchmark-to-clinical
correlation analyses.

Benchmark-to-clinical correlations were com-
puted at the evaluation task level, weighted log-
arithmically by evaluation sample size to reflect
varying reliability across studies. Analyses uti-
lized imputed benchmark scores primarily, with
non-imputed data serving as sensitivity checks.

Although we measured rank-based (Spearman’s
rank correlation coefficient and Kendall’s tau) and
linear-based (Pearson’s correlation coefficient and
Lin’s concordance correlation coefficient) met-
rics, primary analyses used Spearman’s rank and
Kendall’s tau due to their suitability for handling
diverse evaluation scoring scales without assum-
ing linear relationships. Linear correlations were
calculated but used only as reference points.

3.6 Bayesian Modeling
To estimate representative clinical performance for
each language model independent of task-specific
biases, we employed Bayesian hierarchical mod-
eling. Given the limited number of model evalu-
ated per task (average 3.6 models), individual task
effects could not be directly estimated. Instead,
task-related variations were approximated using
metadata attributes including task type, data source,
and evaluation methods. Therapeutic areas were
excluded due to inconsistent categorization and
unclear impact on performance (Appendix A.6.1).
Furthermore, models for which performance data
were available for fewer than three distinct tasks
were excluded to enhance the reliability of model-
specific performance estimates, which served as
proxies for general clinical competence.

To further assess the robustness of the model-
specific estimates, connectivity measures were cal-
culated. Higher connectivity indicates stronger sup-
port from direct and indirect comparisons across

Table 1: Summary of clinical performance dataset and
evaluation settings.

Category Count (%)

Total samples 702 (100.0)

Task type
Diagnosis 183 (26.1)
Clinical Knowledge 182 (25.9)
Overall Management 111 (15.8)
Answering to Patients 83 (11.8)
Information Extraction 61 (8.7)
Treatment 48 (6.8)
Other 34 (4.8)

Data source
Clinical Vignettes 271 (38.6)
Quizzes 160 (22.8)
Board Examination 114 (16.2)
FAQs 74 (10.5)
Other 83 (11.8)

Therapeutic area
General Medicine 154 (21.9)
Oncology 77 (11.0)
Ophthalmology 60 (8.5)
Orthopedics & Musculoskeletal 58 (8.3)
Emergency Medicine 53 (7.5)
Neuropsychiatric 53 (7.5)
Others 247 (35.2)

Evaluation type
MCQs 463 (66.0)
Human Rating 239 (34.0)

models, thereby resulting in more stable and accu-
rate performance estimates (Appendix A.6.2).

4 Results and Discussion

4.1 Clinical Performance Dataset
Our dataset comprised 702 clinical performance
evaluations from 168 studies covering 195 distinct
clinical tasks. Evaluations involved 85 LLMs, pre-
dominantly from GPT (51.7%), LLaMA (10.3%),
and Gemini (8.8%) families. Task types included
diagnosis (26.1%), clinical knowledge assessment
(25.9%), and overall patient management (15.8%).
Data sources were primarily clinical vignettes
(38.6%) and quizzes (22.8%), with evaluations con-
ducted through MCQs (66.0%) and expert human
ratings (34.0%) (Table 1).

4.2 Benchmark Performance Imputation
The benchmark dataset contained a notable pro-
portion of missing values: 42.4% for medical
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Table 2: Average correlation coefficients of medical QA benchmarks with other benchmarks. The highest score in
each column is bold, and the second highest is underlined.

Medical QA Benchmarks Spearman Kendall
Medical QA General Medical QA General

MedQA 0.809 0.867 0.664 0.703
MedMCQA 0.808 0.855 0.651 0.693
MMLU Medical Genetics 0.835 0.748 0.684 0.607
MMLU Clinical Knowledge 0.851 0.820 0.714 0.664
MMLU College Medicine 0.822 0.784 0.683 0.618
MMLU Professional Medicine 0.849 0.789 0.705 0.632
MMLU College Biology 0.819 0.666 0.672 0.522
MMLU Anatomy 0.703 0.558 0.571 0.449
PubMedQA 0.484 0.441 0.333 0.318
Average 0.787 0.725 0.675 0.576

QA benchmarks (9 benchmarks, 138 models, 715
scores) and 40.6% for general benchmarks (6
benchmarks, 126 models, 449 scores).

Imputation accuracy, assessed through masking
tests, indicated RF-MICE outperformed BR-MICE.
Specifically, RF-MICE achieved lower mean ab-
solute error (MAE=2.04) and higher R² (0.98) on
medical QA benchmarks (Table 9). Variance anal-
ysis of multiple imputations further supported RF-
MICE due to lower total variance and improved
stability (Table 10). Consequently, RF-MICE was
utilized to generate the final imputed dataset.

4.3 Benchmark-to-Benchmark Correlation

Medical QA benchmarks showed strong internal
correlations overall, with MMLU Clinical Knowl-
edge and MMLU Professional Medicine exhibiting
particularly high correlations with other medical
QA benchmarks (Table 2). This is likely due to
their broad content coverage, encompassing topics
found in other MMLU medical subjects, thereby
forming a high-correlation block (Figure 6).

In contrast, PubMedQA and MMLU Anatomy
showed weaker correlations with other medical
QA benchmarks. PubMedQA’s lower correlations
may stem from its distinct task formulation, which
is more aligned with biomedical summarization
rather than clinical reasoning (Jin et al., 2019). Sim-
ilarly, MMLU Anatomy’s lower correlations likely
reflect its narrower content scope compared to other
benchmarks.

MedQA and MedMCQA demonstrated the high-
est correlations with general benchmarks among
medical QA benchmarks (Table 2, Figure 6). This
suggests that these two datasets not only assess
domain-specific knowledge but also required a

broad set of reasoning skills, many of which over-
lapped with general benchmarks.

Within general benchmarks, BBH (Spearman’s
0.891) and MMLU (0.853) exhibited the strongest
correlations with medical QA benchmarks (Table
11). This result also indicates logical reasoning ca-
pabilities and broad domain knowledge are closely
linked to solve medical problems. In contrast,
mathematics-focused benchmarks (i.e., GSM8K
and MATH) displayed weaker correlations, high-
lighting the distinct types of reasoning involved in
medical contexts.

4.4 Benchmark-to-Clinical Performance
Correlation

MedQA showed the strongest correlation with
real-world clinical performance, outperforming
general benchmarks in capturing actual clinical
competency (Spearman’s 0.588, Kendall’s 0.520;
Figure 3A). However, correlation strength was
notably lower than inter-benchmark correlations
(0.675–0.787; Table 2). These results suggest
MedQA remains the most representative current
benchmark for clinical tasks, although its ability
to predict comprehensive clinical performance re-
mains limited.

Further analysis across evaluation settings high-
lighted MedQA’s strengths and limitations (Fig-
ure 4). MedQA performed well predicting clinical
competency in tasks involving treatment, clinical
knowledge, and diagnosis (Figure 4A). In contrast,
it showed significantly weaker correlations in pa-
tient communication, overall patient management,
and information extraction.

Similarly, while MedQA strongly correlated
with performance derived from board examination-
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Figure 3: Comparison of correlation coefficients between benchmark and clinical performance.

style datasets, correlations with evaluations based
on clinical vignette or FAQ, which closely re-
semble real-world clinical practice, were consid-
erably lower (Figure 4B). These findings suggest
that while MedQA reliably evaluates core medical
knowledge and reasoning skills, it does not ade-
quately reflect the broader competencies required
in real-world clinical practice.

MMLU Medical Genetics, College Medicine,
Professional Medicine, Clinical Knowledge, and
MedMCQA displayed moderately high correla-
tions with clinical performance, outperforming gen-
eral benchmarks (Figure 3A). Conversely, Pub-
MedQA and MMLU Anatomy consistently under-
performed, indicating their limited suitability as
representative clinical evaluation tools (Figures 9,
10).

4.5 Representative Clinical Performances
Estimated through Bayesian Modeling

Representative clinical performances of 59 lan-
guage models were robustly estimated using
Bayesian hierarchical modeling across 717 perfor-
mance samples. Model convergence was strong,
indicated by effective sample sizes (ESS) above
300 and R-hat values below 1.02.

Among evaluated models, GPT-4 and GPT-4o
consistently demonstrated the highest clinical per-
formance, often exceeding the average perfor-
mance of medical professionals (labeled as ’hu-
man - doctor’) and substantially outperforming
both smaller open-source models and other pro-
prietary models (Figure 5). The strong and con-
sistent performance of the GPT family is further
supported by newly developed medical benchmark
studies (Olatunji et al., 2024; Yao et al., 2024; Zuo
et al., 2025), which similarly highlight their supe-
rior clinical reasoning capabilities.

Proprietary models (purple) generally outper-
formed open-source models (orange, Figure 5),
suggesting that commercially optimized systems
remain more reliable in clinical settings—though
this conclusion may shift with the rapid progress
of open-source LLMs in 2025.

Within the open-source category, Llama-3.1-8B-
instruct was the only model to surpass the mini-
mum threshold set for human-level performance
(labeled as ’human - cut-off’). Notably, however,
its lower connectivity implies that this performance
estimate should be interpreted with caution due to
high uncertainty.

Notably, language models fine-tuned for the
medical domain (marked with a star, ⋆) did
not show substantial improvements over general-
purpose models like Llama, despite having com-
parable model sizes (Figure 5). This may be
due to overfitting to the specific characteristics
of their training datasets—typically composed of
structured medical QA corpora or textbook-style
materials—which could limit their generalizabil-
ity in practical clinical contexts (Olatunji et al.,
2024). These findings are consistent with previous
results showing that biomedical models often un-
derperform on newer, more complex benchmarks,
and support concerns regarding their sensitivity
to dataset-specific biases and limitations (Olatunji
et al., 2024; Yao et al., 2024).

5 Conclusion

This study demonstrates that existing medical QA
benchmarks posses only a moderate capacity to pre-
dict real-world clinical performance. Among them,
MedQA showed the strongest correlation with clin-
ical performance but was still insufficient for evalu-
ating practical clinical competencies such as patient
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Figure 4: Comparison of correlations between MedQA performance and individual outcomes measured in real-world
clinical settings across different task types, therapeutic areas, data sources, and evaluation methods.

interaction, longitudinal patient management, and
clinical information extraction. Bayesian hierarchi-
cal modeling further revealed that proprietary mod-
els—particularly GPT-4 and GPT-4o—consistently
outperformed open-source counterparts and, across
many versions, matched or exceeded the perfor-
mance of human experts in real-world clinical set-
tings. Notably, despite longstanding concerns re-
garding the validity of medical QA benchmarks,
this study provides the first systematic and quanti-
tative evidence evaluating the alignment between
medical QA benchmarks and actual clinical perfor-
mance.

Limitations

This study has several limitations. First, our analy-
sis is based on published studies, which inevitably
lag behind ongoing LLM advancements due to pub-
lication delays. Consequently, it does not account
for recent developments in LLMs, such as the emer-
gence of reasoning-based LLMs (Guo et al., 2025).

Second, although several medical benchmarks
have been introduced to better assess multifaceted
capabilities (Kim et al., 2024; Yao et al., 2024; Zuo
et al., 2025), we could not obtain sufficient model
performance results on these datasets to conduct
correlation analyses. To support future research,
we make our clinical performance dataset available
and encourage its use in validating how well these
newly proposed medical benchmarks reflect the
complexity of real-world medical tasks.

Lastly, despite employing statistical methods to
address missing data and selection biases, our find-
ings are inherently constrained by the incomplete-

ness and potential biases of literature-derived data.
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A Supplementary Methods

A.1 Search Query for Literature Review

Our literature search followed a systematic ap-
proach to identify studies at the intersection of large
language models (LLMs) and medical applications.
The search queries were structured using three es-
sential components: LLM-related terms, medical
terms, and evaluation terms (Table 3).

Each query was formulated as:

[LLM Term] AND [Medical Term]
AND [Evaluation Term]

where the medical terms were drawn from either
MedQA-related categories (e.g., "medical question
answering", "clinical reasoning") or clinical appli-
cation categories (e.g., medical specialties, clinical
documents, diseases, and procedures). The search
was restricted to publications from 2022 to 2025 to
ensure coverage of recent developments.

This combinatorial approach balanced coverage
and precision, ensuring that retrieved papers ad-
dressed all three aspects of our research focus (Ta-
ble 4).

A.2 Screening Process for Collecting
Performance data of LLM in Real-World
Clinical Settings

We conducted abstract screening and full-text re-
view based on LLM to refine selection process and
alleviated burden of manual curation. The LLM uti-
lized for this process was Phi-4 (14.7B), Q4_K_M
quantized, based on the Ollama framework (as of
March 18, 2025). The model was deployed locally
on a single RTX 4080 GPU.

A.3 Model Name Normalization

We normalized language model names by categoriz-
ing them into proprietary (Table 7) and open-source
models (Table 8). For proprietary models, specific
model names were often unspecified in papers, as
they were accessed via APIs. In such cases, we
assumed the most recent model available at the re-
search time: three months before the received date
for journal papers and six months before publica-
tion for conference papers. For open-source mod-
els, normalization was based on explicitly stated
model names, versions, and parameter sizes in bil-
lions (Table 8). If these details were insufficient,
we excluded the model from analysis.
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Table 3: Search Query Components for LLM Applica-
tions in Medical Research.

Query
Compo-
nent

Terms

LLM
Terms

“large language model”, “language
model”, “GPT-4”, “ChatGPT”

MedQA
Terms

“medical question answering”,
“USMLE”, “MedQA”, “medical
benchmark”, “clinical reasoning”

Clinical
Appli-
cation
Terms

Medical Specialties (31 terms): “in-
ternal medicine”, “surgery”, “pedi-
atrics”, “obstetrics”, “gynecology”,
. . .
Surgery Settings (10 terms):
“surgery”, “pediatric surgery”,
“breast surgery”, “colorectal
surgery”, “neurosurgery”, . . .
Clinical Settings (6 terms): “emer-
gency department”, “icu”, “operat-
ing room”, “outpatient”, “primary
care”, “trauma center”
Clinical Documents (11 terms):
“electronic health record”, “clinical
notes”, “discharge summary”, “med-
ical history”, “radiology report”, . . .
Common Diseases (34 terms):
“breast cancer”, “lung cancer”, “col-
orectal cancer”, “prostate cancer”,
“leukemia”, “lymphoma”, . . .
Clinical Procedures (6 terms):
“chemotherapy”, “radiation therapy”,
“transplantation”, “dialysis”, “venti-
lation”, “ecmo”
Age-Specific Care (7 terms): “new-
born care”, “child development”,
“growth disorders”, “birth defects”,
“falls prevention”, “memory disor-
ders”, “polypharmacy management”
Special Populations (6 terms): “ma-
ternal health”, “prenatal care”, “post-
partum care”, “women’s health”, “so-
cial determinants”, “medical ethics”

Evaluation
Terms

“evaluation”, “accuracy”, “bench-
mark”, “validation”, “application”

Table 4: Query Construction Pattern and Examples.

Query Pattern: [LLM Term] AND [Medical
Term] AND [Evaluation Term]

Medical Term Selection:
Either [MedQA Terms] OR [Clinical Applica-
tion Terms] based on research focus

Example Queries:
With MedQA Terms:
1. large language model” AND medical ques-
tion answering” AND evaluation”
2. ChatGPT” AND clinical reasoning” AND
benchmark”
With Clinical Application Terms:
3. GPT-4” AND electronic health record”
AND validation”
4. language model” AND internal medicine”
AND application”
5. GPT-4” AND breast cancer” AND “accu-
racy”

A.4 Classification of Evaluation Settings
We categorized the evaluation settings for language
models in clinical contexts based on four key cri-
teria: (1) task type, (2) therapeutic area, (3) data
source, and (4) evaluation method.

Task Type Task types represent the core capabil-
ities being assessed, classified into the following
six categories:

• Clinical Knowledge: General assessment
of fundamental clinical knowledge within a
given specialty, without a specific focus on
diagnosis, treatment, or prevention.

• Treatment: Evaluation of the model’s abil-
ity to recommend and assess treatment plans
based on a given clinical scenario.

• Diagnosis: Determining the correct diagnosis
based on the provided patient information.

• Answering to Patients: Providing responses
to common patient inquiries or explaining clin-
ical conditions in plain language understand-
able by non-experts.

• Overall Management: Beyond diagnosis and
treatment, evaluating long-term patient man-
agement and decision-making.

• Information Extraction: Extracting specific
clinical information from given texts.
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Table 5: Abstract Screening Prompt Template.

Prompt for abstract screening
Please analyze the following research paper’s title and abstract to extract information about LLM performance evaluation
in clinical settings. Present your analysis in the following structured format, maintaining exact quotes where possible.
Start your response with “ANALYSIS_START” and end with “ANALYSIS_END”. INPUT REQUIRED:

• Title: [paper title]

• Abstract: [paper abstract]

TASK: Analyze the title and abstract to extract the following information:
1. PAPER_TYPE: Classify the paper as one of the following:

• “Clinical LLM Performance Evaluation - Original”: Paper that conducts new experiments to evaluate LLM
performance in clinical tasks and reports original performance metrics/results.

• “Clinical LLM Performance Review”: Paper that summarizes or analyzes existing LLM clinical performance
evaluations without conducting new experiments or reporting new performance data.

• “Non-Clinical LLM Evaluation”: Paper not related to clinical LLM performance evaluation.

2. MODELS: Extract all LLM models mentioned in the abstract.

Format: [“model1”, “model2”, ...]
Return empty list if no specific models are mentioned.
3. MULTIPLE_MODELS_USAGE: For papers classified as “Clinical LLM Performance Evaluation -
Original” only.
Format: true/false/NA

• true: Paper clearly evaluates multiple LLMs.

• false: Paper clearly focuses on single LLM evaluation.

• NA: For non-original clinical LLM evaluation papers.

4. HUMAN_GROUPS: Extract all medical professional groups that underwent the same evaluation tasks
as the models for direct performance comparison.
Format: [“group1”, “group2”, ...]
Return empty list if no human groups underwent direct performance comparison.
5. EVALUATION_TASKS: Extract all clinical evaluation tasks.
Format:

[{"task_name_extractive": "exact task name",
"task_name_abstractive": "standardized name",
"task_description": "exact quote",
"metrics_extractive": ["metric1", "metric2"],
"metrics_abstractive": ["std_metric1", "std_metric2"]}, ...]

6. PERFORMANCE_RESULTS: Extract all reported performance metrics.
Format:

[{"value": "exact value with units",
"metric": "exact metric name",
"subject": "model/human group name"}, ...]
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Table 6: Abstract Screening Prompt Template (continued).

Prompt for abstract screening (continued)
INPUT EXAMPLE:
Title: A Comparison of LLMs in Clinical Triage: Brief Study
Abstract: We evaluated ChatGPT and GEMINI for triaging complex maxillofacial trauma cases at
a referral center. Using 10 standardized cases, we compared LLM recommendations against
center guidelines. Results showed ChatGPT achieved 70% accuracy in examinations while
GEMINI reached 50%. Additional metrics included diagnosis accuracy scores (GEMINI: 3.30,
ChatGPT: 2.30) and recommendation relevance (GEMINI: 2.90, ChatGPT: 3.50).

EXAMPLE OUTPUT:
ANALYSIS_START

<PAPER_TYPE>Clinical LLM Performance Evaluation - Original</PAPER_TYPE>

<MODELS>["ChatGPT", "GEMINI"]</MODELS>

<MULTIPLE_MODELS_USAGE>true</MULTIPLE_MODELS_USAGE>

<HUMAN_GROUPS>[]</HUMAN_GROUPS>

<EVALUATION_TASKS>
[{"task_name_extractive": "triaging complex maxillofacial
trauma cases",
"task_name_abstractive": "clinical trauma triage assessment",
"task_description": "triaging complex maxillofacial trauma cases at a referral center",
"metrics_extractive": ["accuracy in examinations", "diagnosis accuracy scores",
"recommendation relevance"],
"metrics_abstractive": ["examination accuracy", "diagnostic performance",
"recommendation quality"]}]

</EVALUATION_TASKS>

<PERFORMANCE_RESULTS>
[{"value": "70%", "metric": "accuracy in examinations", "subject": "ChatGPT"},
{"value": "50%", "metric": "accuracy in examinations", "subject": "GEMINI"},
{"value": "2.30", "metric": "diagnosis accuracy scores", "subject": "ChatGPT"},
{"value": "3.30", "metric": "diagnosis accuracy scores", "subject": "GEMINI"},
{"value": "3.50", "metric": "recommendation relevance", "subject": "ChatGPT"},
{"value": "2.90", "metric": "recommendation relevance", "subject": "GEMINI"}]

</PERFORMANCE_RESULTS>

ANALYSIS_END

Now analyzing the following paper:

• Title: [paper title]

• Abstract: [paper abstract]
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Prompt for full-text review
Please analyze the research paper to extract information about LLM performance evaluation in clinical settings. Present
your analysis in the following structured format, maintaining exact quotes where possible. Start your response with
“ANALYSIS_START” and end with “ANALYSIS_END”.
REQUIRED:

• Title: [paper title]

• Full Text: [full paper text]

TASK: Extract the following structured information from the paper:
1. PAPER_TYPE: Classify the paper as one of the following:

• “Clinical LLM Performance Evaluation - Original”: Paper that conducts new experiments to evaluate LLM
performance in clinical tasks and reports original performance metrics/results.

• “Clinical LLM Performance Review”: Paper that summarizes or analyzes existing LLM clinical performance
evaluations without conducting new experiments or reporting new performance data.

• “Non-Clinical LLM Evaluation”: Paper not related to clinical LLM performance evaluation.

Note: If the paper is not classified as “Clinical LLM Performance Evaluation - Original”, return empty values for all
subsequent sections.
2. BIBLIOGRAPHIC_DATES: Extract the paper’s submission and publication dates.

Format:

{"received_date": "YYYY-MM-DD",
"accepted_date": "YYYY-MM-DD",
"published_date": "YYYY-MM-DD"}

3. CLINICAL_DOMAIN: Extract the clinical specialty and context information.
Format:

{"specialty": "primary clinical specialty field",
"disease_treatment": "specific diseases or treatments in focus",
"mesh_terms": ["relevant MeSH term 1", "relevant MeSH term 2"]}

4. MODELS: Extract all LLM models mentioned in the paper.
Format:

[{"common_name": "most frequently used name in paper",
"full_name": "complete name including version",
"base_model": "base model name if fine-tuned, NA if not applicable"}]

5. EXPERIMENTAL_SETTINGS: Extract LLM inference settings.
Format:

{"llm_inference_temperature": "0.x",
"llm_inference_few_shot": "n-shot",
"llm_inference_CoT": true/false}

Table 6: Full-Text Review Prompt Template.
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Table 7: Full-Text Review Prompt Template (continued).

Prompt for full-text review (continued)
6. HUMAN_GROUPS: Extract all medical professional groups that underwent the same evaluation tasks as the models.

Format:

["group1", "group2"]

7. EVALUATION_TASKS: Extract all clinical evaluation tasks.
Format:

[{"task_name_extractive": "exact task name",
"task_name_abstractive": "standardized task name",
"reference_sentence": "exact quote describing the task",
"metrics": [{"metric_name_extractive": "exact metric name from text",

"metric_name_abstractive": "standardized metric name",
"value_range": [min, max],
"higher_better": true/false,
"reference_sentence": "exact quote describing the metric"}],

"sample_size": integer,
"sample_size_reference_sentence": "exact quote mentioning sample size",
"data_source_extractive": "exact quote of data source",
"data_source_abstractive": "standardized description of data source"}]

8. PERFORMANCE_RESULTS: Extract all reported performance metrics.
Format:

[{"value": "exact performance value with units/confidence intervals",
"metric": "exact metric name from EVALUATION_TASKS metrics_extractive",
"subject": "model name or human group name",
"reference_sentence": "exact quote reporting this result"}]
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Table 7: Proprietary Language Models Release Timeline.

Company Model Name Release Date Normalized Name

OpenAI ChatGPT/GPT-3.5 2022-12-30 gpt-3.5-turbo
gpt-3.5-0301 2023-03-01 gpt-3.5-0301
gpt-3.5-turbo-0613 2023-06-13 gpt-3.5-turbo-0613
gpt-3.5-turbo-1106 2023-11-06 gpt-3.5-turbo-1106
gpt-3.5-turbo-0125 2024-01-25 gpt-3.5-turbo-0125

GPT-4
gpt-4-0314 2023-03-14 gpt-4-0314
gpt-4-0613 2023-06-13 gpt-4-0613
gpt-4-1106-preview 2023-11-06 gpt-4-1106-preview
gpt-4-0125-preview 2024-01-25 gpt-4-0125-preview
gpt-4-turbo-2024-04-09 2024-04-09 gpt-4-turbo-2024-04-09

GPT-4o
gpt-4o updates 2024-05-13 gpt-4o-2024-05-13
gpt-4o updates 2024-08-06 gpt-4o-2024-08-06
gpt-4o updates 2024-11-20 gpt-4o-2024-11-20
GPT-4o Mini 2024-07-18 gpt-4o-mini-2024-07-18

Microsoft Bing Chat 2023-02-07
Rebranded as Copilot 2023-09-21 Based on latest GPT models
Bing Chat integration 2023-11-15 Based on latest GPT models
Copilot upgrade 2024-05-20 Based on latest GPT models

Claude Claude 1
Claude 1.0/Claude 1.1 2023-03-14 claude-1.0/claude-1.1
Claude 1.2 2023-08-09 claude-1.2
Claude 1.3 2023-04-18 claude-1.3

Claude 2
Claude 2.0 2023-17-11 claude-2.0
Claude 2.1 2023-11-21 claude-2.1

Claude 3
Claude 3 Haiku 2024-03-07 claude-3-haiku-20240307
Claude 3 Sonnet 2024-02-29 claude-3-sonnet-20240229
Claude 3 Opus 2024-02-29 claude-3-opus-20240229

Claude 3.5
Claude 3.5 Sonnet 2024-06-20 claude-3-5-sonnet-20240622
Claude 3.5 Haiku 2024-10-22 claude-3-5-haiku-20241022
Claude 3.5 Opus 2024-10-22 claude-3-5-opus-20241022

Claude 3.5 update 2024-12-03 claude-3.5-sonnet-20241203

Google Bard 2023-03-21 lamda
Bard upgrade 2023-05-10 palm-2

Gemini 1.0
Gemini 1.0 Nano 2023-12-06 gemini-1.0-nano
Gemini 1.0 Pro 2023-12-06 gemini-1.0-pro
Gemini 1.0 Ultra (Advanced) 2023-12-06 gemini-1.0-ultra

Gemini 1.5
Gemini 1.5 Flash (Basic) 2024-02-15 gemini-1.5-flash
Gemini 1.5 Pro 2024-05-23 gemini-1.5-pro-001
Gemini 1.5 Pro update 2024-09-24 gemini-1.5-pro-002

Gemini 2.0
Gemini 2.0 2025-01-22 gemini-2.0-flash-001
Gemini 2.0 Flash + Thinking 2025-01-22 Not used

Cohere Command 2024-02-07 command
Command R 2024-06-04 command-r
Command R+ 2024-04-30 command-rplus
Command R-08-2024 2024-08-28 command-r-2408
Command R+ 08-2024 2024-08-29 command-rplus-2408

Therapeutic Area For normalization and analy-
sis purposes, we predefined 22 therapeutic areas, in-

cluding cardiology, oncology, dentistry, and emer-
gency medicine. Depending on the analytical objec-
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Table 8: Open-Source Language Models Release Timeline.

Model Brand Model Name Release Date Normalized Name

LLaMA (Meta) LLaMA 1 2023-03 llama-1-7B, llama-1-13B, llama-1-30B,
llama-1-65B

LLaMA 2 2023-07 llama-2-7B, llama-2-13B, llama-2-70,
llama-2-7B-chat, llama-2-13B-chat

LLaMA 3 2024-04-18 llama-3-8B, llama-3-70B

LLaMA 3.1 2024-07-23 llama-3.1-8B, llama-3.1-70B, llama-3.1-
405B

LLaMA 3.2 2024-10 llama-3.2-1B, llama-3.2-3B, llama-3.2-
11B, llama-3.2-90B

LLaMA 3.3 2024-12 llama-3.2-70B, llama-3.2-405B

Phi (Microsoft) Phi-1 2023-06 phi-1-1.3B
Phi-1.5 2023-11 phi-1.5-1.3B
Phi-2 2024-02 phi-2-2.7B

Phi-3
Phi-3 Mini NA phi-3-mini-3B
Phi-3 Small NA phi-3-small-7B
Phi-3 Medium NA phi-3-medium-14B

Phi-3.5 2024-09 phi-3.5-3.8B

Phi-4 2025-01-20 Not used

Gemma (DeepMind) Gemma 2B 2024-02-21 gemma-1-2B
Gemma 7B 2024-02-21 gemma-1-7B
Gemma 1.1 2024-04-05 gemma-1.1

Gemma 2 (9B, 27B) 2024-06-27 gemma-2-9B, gemma-2-27B
Gemma 2 (2B) 2024-07-31 gemma-2-2B

Qwen (Alibaba) Qwen-7B 2023-08-03 qwen-7B
Qwen-14B 2023-09-25 qwen-14B
Qwen-72B 2023-11-30 qwen-72B
Qwen-2-7B-instruct 2024-05-16 qwen-2-7B-instruct
Qwen-2-72B-instruct 2024-10-18 qwen-2-72B-instruct
Qwen Max 2025-01-29 qwen-max

Mistral Mistral 7B
mistral-7B-instruct-v0.1 2023-09-27 mistral-7B-instruct-v0.1
mistral-7B-instruct-v0.2 2023-10 mistral-7B-instruct-v0.2
mistral-7B-instruct-v0.3 2023-11 mistral-7B-instruct-v0.3

Mistral Medium 2023-12 mistral-medium-2312
Mixtral 8x7B 2023-12-09 mixtral-8x7B
Mixtral 8x22B 2024-04-10 mixtral-8x22B

Mistral Large 2024-02-26 mistral-large-2402
Mistral Small NA mistral-small-2402

Mistral Large 24.07 2024-07-24 mistral-large-2707

Medical Domain Fine-tuned ClinicalCamel-1-70B NA clinicalcamel-1-70B
Med42-70B NA med42-70B
BioMistral-7B NA biomistral-7B
Meditron NA meditron-7B
MedLlama NA medllama-1-2

tives, these areas were further grouped into broader
categories.

Data Source The source of evaluation data was
classified into four types:

• Board Examinations: Questions derived
from professional board certification exams
used to assess medical expertise.

• Quizzes: Clinical questions sourced from
textbooks, medical societies, or online edu-
cational platforms, excluding board exams.

• Frequently Asked Questions: Questions re-
flecting common patient inquiries in clinical
settings.

• Clinical Vignettes: Case-based questions de-
veloped using real patient data, publicly avail-
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able case reports, or LLM-generated simu-
lated patient scenarios.

Evaluation Method Evaluation methods were
divided into two main categories:

• Multiple-Choice Questions (MCQs): As-
sessing correctness based on predefined an-
swer choices.

• Human Rating: Clinical experts rating
model-generated responses according to struc-
tured evaluation guidelines. This includes
both closed-ended rating systems with pre-
defined criteria and open-ended assessments.

A.5 Benchmark Performance Imputation

The MICE framework was configured with opti-
mized settings to ensure stable imputation. Missing
values were initially imputed using the median of
observed values, followed by a maximum of 50
iterative updates with a convergence tolerance of
1× 10−6

For BR-MICE, posterior sampling was enabled,
and each missing variable was modeled using all
available predictors. The base random seed was set
to 42, with independent seeds assigned for multiple
imputations.

For RF-MICE, 100 trees were used with boot-
strap sampling enabled. The maximum tree depth
was set to 15, and feature selection per split fol-
lowed the square root of the total number of fea-
tures. BR-MICE regularization parameters were
optimized iteratively, with convergence determined
via evidence maximization.

To estimate the variance of imputed values, we
computed both the within-imputation variance (W )
and between-imputation variance (B) across m in-
dependent imputations. The total variance (T ) was
calculated using Rubin’s rules:

W =
1

m

m∑

j=1

S2
j

B =
1

m− 1

m∑

j=1

(Q̄j − Q̄)2

T = W +

(
1 +

1

m

)
B

where S2
j is the variance of the j-th imputed

dataset, Q̄j is the mean of the j-th imputation, and
Q̄ is the overall mean of all imputations. The final

imputed values were obtained by taking the me-
dian of all imputations to ensure robustness against
extreme values.

A.6 Bayesian Modeling
We implemented our hierarchical Bayesian model
usingNumPyro (v0.17.0) with a JAX (v0.5.0) back-
end. Posterior inference was conducted via the No-
U-Turn Sampler (NUTS), utilizing 1,000 warmup
iterations and 2,000 sampling iterations across 8
parallel chains. We assessed convergence using the
Gelman-Rubin diagnostic (R̂) and effective sample
size. The model specification is as follows:

A.6.1 Model Structure
We formulate our hierarchical Bayesian model as
follows: We begin by specifying half-normal hy-
perpriors for the standard deviations that govern the
variability of different components in our model:

σmodel ∼ HalfNormal(1)

σobs ∼ HalfNormal(1)

σtype ∼ HalfNormal(1)

σsource ∼ HalfNormal(1)

σeval ∼ HalfNormal(1)

These hyperpriors control the variation in model
effects, observation noise, task type effects, data
source effects, and evaluation method effects, re-
spectively.

The model effects component captures the in-
herent performance capabilities of each language
model:

µmodel ∼ Normal(0, 1)

βmodel,j ∼ Normal(µmodel, σmodel)

where j = 1, 2, . . . , nmodels, and βmodel,j represents
the effect of the j-th model. The parameter µmodel
serves as a global mean for model effects.

We model three task-related components:

βtype,k ∼ Normal(0, σtype)

βsource,l ∼ Normal(0, σsource)

βeval,m ∼ Normal(0, σeval)

where:

• k = 1, 2, . . . , ntask_types, with βtype,k repre-
senting the effect of the k-th task type

• l = 1, 2, . . . , ndata_sources, with βsource,l repre-
senting the effect of the l-th data source
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• m = 1, 2, . . . , nevaluation_methods, with βeval,m
representing the effect of the m-th evaluation
method

Each task-related effect is centered at zero, reflect-
ing our assumption that these effects represent de-
viations from an average difficulty level.

The predicted performance for each data point i
is given by:

µi = βmodel,model[i] + βtype,type[i] + βsource,source[i]

+βeval,eval[i] + ϵµ

where model[i], type[i], source[i], and eval[i] are
the indices for model, task type, data source, and
evaluation method for data point i, respectively, and
ϵµ ∼ Normal(0, 0.1) represents additional noise in
the prediction process.

Finally, we model the observed performance met-
rics using a normal likelihood:

yi ∼ Normal(µi, σobs)

where yi is the observed performance metric for
data point i on the normalized scale.

A.6.2 Centrality Measurement
Quantifying the connectivity of models within the
evaluation network is essential for understanding
their role and influence. Some models exhibit weak
connections to other major models, meaning they
contribute useful information to Bayesian modeling
but have limited relevance for downstream analy-
sis. By computing centrality scores, we classified
models based on their connectivity and excluded
the lower 50% from downstream evaluations.

The evaluation network was represented as a
bipartite graph G = (V,E), where the vertex set
V consisted of two disjoint subsets: models and
tasks. An edge (m, t) ∈ E was formed if and only
if model m was evaluated on task t. This structure
provided a basis for analyzing connectivity patterns
and assessing the relative importance of models
within the evaluation framework.

Model connectivity was quantified using three
centrality measures. Degree centrality (CD) cap-
tured the number of direct connections a model had,
normalized by the maximum possible connections:

CD(v) =
deg(v)

|V | − 1

where deg(v) represents the number of edges in-
cident to node v. Between-ness centrality (CB)

measured how often a model served as a bridge
along the shortest paths between other nodes:

CB(v) =
∑

s ̸=v ̸=t

σst(v)

σst

where σst is the total number of shortest paths from
node s to node t, and σst(v) is the number of those
paths passing through node v. Closeness centrality
(CC) assessed how close a model was to all other
nodes in the network:

CC(v) =
|V | − 1∑
u̸=v d(v, u)

where d(v, u) is the shortest-path distance between
nodes v and u. To integrate these measures into
a single ranking, a combined connectivity score
was computed by summing the three normalized
centrality values:

Combined Score(m) = CD(m)+CB(m)+CC(m)

Models were then ranked based on their com-
bined scores, and those below the Pth percentile
were classified as low-connectivity models:

Low Connectivity(m) =





True if Combined-
Score(m) < Pth

False otherwise
where Pth was set at the 50th percentile, identify-

ing the bottom 50% of models as low-connectivity.
For downstream analysis, only high-connectivity
models were retained. This ensured that subse-
quent evaluations focused on models with strong
integration within the network while still utilizing
all available information in Bayesian modeling.

A.7 Correlation Measurement

To evaluate the relationship between LLM per-
formance on different benchmarks and in clinical
settings, we computed four correlation measures:
Pearson’s correlation coefficient, Spearman’s rank
correlation coefficient, Kendall’s tau, and Lin’s con-
cordance correlation coefficient (CCC). Among
these, Spearman’s and Kendall’s correlations were
used as the primary measures, as they better cap-
ture rank-based relationships given the diversity of
evaluation methodologies.

Pearson’s correlation coefficient (r) measures
the strength of the linear relationship between two
continuous variables. It is computed as:
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r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2

where xi and yi are individual data points, and
x̄ and ȳ are their respective means.

Spearman’s rank correlation coefficient (ρ) as-
sesses the monotonic relationship between two vari-
ables by comparing their rank orders rather than
raw values. It is given by:

ρ = 1− 6
∑

d2i
n(n2 − 1)

where di is the rank difference for each pair of
observations, and n is the number of observations.

Kendall’s tau (τ ) quantifies the ordinal associ-
ation between two variables based on concordant
and discordant pairs:

τ =
C −D

1
2n(n− 1)

where C is the number of concordant pairs, and
D is the number of discordant pairs.

Lin’s CCC (ρc) evaluates both correlation and
agreement between two variables by incorporating
measures of precision and accuracy:

ρc =
2rσxσy

σ2
x + σ2

y + (µx − µy)2

where r is Pearson’s correlation coefficient, σx
and σy are standard deviations, and µx and µy are
means of the two variables.

B Supplementary Results

B.1 Benchmark Performance Imputation

Table 9 presents the imputation accuracy of bench-
mark models evaluated through a masking test
across both general and medical QA domains.

Table 9: Imputation accuracy on masking test for bench-
mark performances.

Model MAE RMSE R2

General
RandomForest 4.21 8.17 0.89
BayesianRidge 5.63 8.14 0.89
Medical QA
RandomForest 2.04 3.18 0.98
BayesianRidge 4.14 6.81 0.90

Table 10: Within- and between- variance results from
multiple imputation.

Category Within Between Total
General Benchmarks (Overall Variance: 481.1)
RandomForest 1.1 204.5 215.7
(% of Overall) 0.2% 42.5% 44.8%
BayesianRidge 100.6 189.4 299.5
(% of Overall) 20.9% 39.4% 62.3%
Medical Benchmarks (Overall Variance: 390.5)
RandomForest 2.1 43.2 47.5
(% of Overall) 0.5% 11.1% 12.2%
BayesianRidge 67.5 40.0 109.5
(% of Overall) 17.3% 10.2% 28.0%

B.2 Benchmark-to-Benchmark Correlation
Table 11 summarizes the average correlation co-
efficients between general benchmarks and other
benchmarks, providing a comparative view across
domains and correlation metrics.

Figures 6, 7, and 8 further illustrate the inter-
nal correlations within each domain and the cross-
domain relationships.

B.3 Benchmark-to-Clinical Performance
Correlation

Figures 9 and 10 present the correlations between
benchmark performance and language model per-
formance in real-world clinical settings, with and
without imputed benchmark scores. The results are
reported using four correlation measures—Pearson
correlation coefficient, Spearman rank correlation
coefficient, Kendall’s tau, and Lin’s CCC—to en-
sure robustness from multiple statistical perspec-
tives.
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Table 11: Average correlation coefficients of general benchmarks with other benchmarks. The highest score in each
column is bold, and the second highest is underlined.

General Benchmark Spearman Kendall
Medical QA General Medical QA General

MMLU 0.853 0.715 0.690 0.576
MMLU Pro 0.851 0.773 0.679 0.628
BBH 0.891 0.725 0.736 0.573
HumanEval 0.838 0.764 0.671 0.618
GSM8K 0.816 0.756 0.645 0.599
MATH 0.785 0.625 0.618 0.502
Average 0.839 0.726 0.673 0.583
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Figure 6: Correlations within medical QA benchmarks.

293



M
M

LU

M
M

LU
 P

ro

BB
H

Hu
m

an
Ev

al

GS
M

8K

M
AT

H

Benchmark

MMLU

MMLU Pro

BBH

HumanEval

GSM8K

MATH

Be
nc

hm
ar

k

100.0
(116)

83.0
(56)

100.0
(65)

92.8
(59)

92.8
(28)

100.0
(60)

84.8
(66)

87.1
(41)

92.5
(48)

100.0
(68)

88.9
(84)

86.5
(38)

90.2
(51)

87.6
(64)

100.0
(86)

41.9
(51)

25.2
(40)

35.2
(38)

27.4
(50)

41.0
(49)

100.0
(54)

(A) Pearson Correlation

M
M

LU

M
M

LU
 P

ro

BB
H

Hu
m

an
Ev

al

GS
M

8K

M
AT

H

Benchmark

MMLU

MMLU Pro

BBH

HumanEval

GSM8K

MATH

Be
nc

hm
ar

k

100.0
(116)

82.5
(56)

100.0
(65)

94.6
(59)

92.7
(28)

100.0
(60)

87.0
(66)

87.2
(41)

92.2
(48)

100.0
(68)

89.1
(84)

81.2
(38)

90.5
(51)

89.6
(64)

100.0
(86)

88.6
(51)

80.5
(40)

86.2
(38)

78.3
(50)

77.7
(49)

100.0
(54)

(B) Spearman Correlation

M
M

LU

M
M

LU
 P

ro

BB
H

Hu
m

an
Ev

al

GS
M

8K

M
AT

H

Benchmark

MMLU

MMLU Pro

BBH

HumanEval

GSM8K

MATH

Be
nc

hm
ar

k

100.0
(116)

67.6
(56)

100.0
(65)

81.4
(59)

77.8
(28)

100.0
(60)

69.4
(66)

69.6
(41)

76.4
(48)

100.0
(68)

71.9
(84)

62.4
(38)

75.0
(51)

71.8
(64)

100.0
(86)

71.4
(51)

63.2
(40)

72.4
(38)

63.8
(50)

58.3
(49)

100.0
(54)

(C) Kendall's Tau Correlation

M
M

LU

M
M

LU
 P

ro

BB
H

Hu
m

an
Ev

al

GS
M

8K

M
AT

H

Benchmark

MMLU

MMLU Pro

BBH

HumanEval

GSM8K

MATH

Be
nc

hm
ar

k

100.0
(116)

23.5
(56)

100.0
(65)

89.3
(59)

43.6
(28)

100.0
(60)

58.1
(66)

61.1
(41)

71.8
(48)

100.0
(68)

76.1
(84)

35.6
(38)

83.8
(51)

78.1
(64)

100.0
(86)

20.3
(51)

11.8
(40)

20.5
(38)

21.0
(50)

30.7
(49)

100.0
(54)

(D) Lin's CCC

0

20

40

60

80

100

Benchmarks

Be
nc

hm
ar

ks

Figure 7: Correlations within general benchmarks.
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Figure 8: Correlations between general and medical QA benchmarks.
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Figure 9: Correlations between benchmark performance and language model performance in real-world clinical
settings with imputed benchmark scores.
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Figure 10: Correlations between benchmark performance and language model performance in real-world clinical
settings with non-imputed benchmark scores.
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