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Abstract

Antibiotic resistance identification is essential
for public health, medical treatment, and drug
development. Traditional sequence-based mod-
els struggle with accurate resistance prediction
due to the lack of biological context. To address
this, we propose an NLP-based model that inte-
grates genetic sequences with structured textual
annotations, including gene family classifica-
tions and resistance mechanisms. Our approach
leverages pretrained language models for both
genetic sequences and biomedical text, aligning
biological metadata with sequence-based em-
beddings. We construct a novel dataset based
on the Antibiotic Resistance Ontology (ARO),
consolidating gene sequences with resistance-
related textual information. Experiments show
that incorporating domain knowledge signif-
icantly improves classification accuracy over
sequence-only models, reducing reliance on
exhaustive laboratory testing. By integrating
genetic sequence processing with biomedical
text understanding, our approach provides a
scalable and interpretable solution for antibi-
otic resistance prediction.

1 Introduction

The prevalence of antibiotic resistance genes
(ARGs) has risen rapidly over the past decade, pos-
ing a severe threat to public health and medical
treatment strategies (Zhang et al., 2022). The emer-
gence of multidrug-resistant pathogens has further
complicated treatment options, increasing the ur-
gency of developing accurate methods for iden-
tifying and classifying ARGs. While traditional
antibiotic resistance screening relies on phenotypic
testing, these methods are time-consuming and re-
quire extensive laboratory resources. In contrast,
bioinformatics-based approaches enable in silico
prediction of resistance from genetic sequences,
offering a scalable and efficient alternative. The
primary computational approach for identifying

antibiotic resistance genes (ARGs) has been se-
quence alignment, which compares nucleotide se-
quences to known ARG databases (Bonin et al.,
2023). While effective, alignment-based methods
struggle with novel mutations and require substan-
tial computational resources. Alternative machine
learning-based strategies have been explored to ad-
dress these challenges but remain limited in cap-
turing broader sequence dependencies (Wood and
Salzberg, 2014; Eddy, 1998; McIntyre et al., 2017).
To overcome these limitations, recent studies have
applied natural language processing (NLP) models
to genomic or protein sequences, leveraging con-
textual embeddings for improved classification and
interpretability (Brandes et al., 2022; Ji et al., 2021;
Zhou et al., 2024).

Despite their advancements, existing classifi-
cation models predominantly focus on predict-
ing a single resistance label per gene sequence
(Kang et al., 2022). However, antibiotic resistance
databases such as CARD (Alcock et al., 2023; Jia
et al., 2017) and MEGARes (Bonin et al., 2023;
Doster et al., 2020) provide richer annotations be-
yond a single resistance label. In particular, two
critical attributes—Gene Family and Resistance
Mechanism—offer valuable insights into how re-
sistance manifests at a molecular level. These at-
tributes provide a higher-level understanding of
resistance beyond individual nucleotide variations,
but current sequence-based models do not leverage
this structured information. By incorporating Gene
Family and Resistance Mechanism into predictive
models, we can enhance interpretability and classi-
fication accuracy. In this work, we propose a novel
NLP-based model that integrates genetic sequence
data with structured textual annotations, specifi-
cally Gene Family and Resistance Mechanism, to
improve antibiotic resistance classification. Our
key contributions are as follows:

• We integrate biological knowledge with
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sequence-based models for more accurate re-
sistance prediction.

• We unify resistance classification by aligning
CARD and MEGARes annotation systems.

• We generate synthetic samples to improve
classification in rare resistance categories.

2 Related Work

Traditional methods for predicting antibiotic re-
sistance rely on sequence alignment techniques,
where unknown DNA sequences are compared to
reference databases (Bonin et al., 2023). While
effective for known resistance genes, alignment-
based methods struggle with novel mutations and
require high computational resources for large-
scale datasets. Alternative computational ap-
proaches, such as Hidden Markov Models (HMMs)
(Eddy, 1998) and k-mer-based classification (Wood
and Salzberg, 2014), have been explored to recog-
nize sequence patterns beyond direct alignment.
However, these methods still face limitations in
capturing broader contextual dependencies within
genomic sequences. To address these limitations,
sequence-based machine learning approaches, such
as nucleotide transformers and DNABERT, have
been introduced (Ji et al., 2021; Zhou et al., 2024).
These models capture contextual representations
of DNA sequences and offer improved classifica-
tion performance over traditional alignment meth-
ods. However, existing sequence-based models
primarily predict antibiotic resistance based on nu-
cleotide sequence patterns alone, without incorpo-
rating additional biological knowledge. Antibiotic
resistance is not solely determined by genetic se-
quence variations, but also by gene function, regu-
latory mechanisms, and evolutionary relationships
(Kang et al., 2022). As a result, sequence-only
models may fail to generalize across diverse resis-
tance mechanisms and gene families.

Recent advancements in biomedical NLP and
knowledge-driven machine learning have demon-
strated the potential of integrating structured do-
main knowledge into predictive models. In fields
such as protein function prediction and clinical text
mining, hybrid approaches combining structured
knowledge with sequence-based embeddings have
shown promising results (Brandes et al., 2022).
This motivates the need for similar methods in an-
timicrobial resistance (AMR) classification. An-
tibiotic resistance databases such as CARD (Al-

cock et al., 2023) and MEGARes (Bonin et al.,
2023) provide valuable metadata beyond sequence-
based labels, including Gene Family classifications
and Resistance Mechanisms. These attributes cap-
ture biologically meaningful relationships between
genes and their resistance properties. However, ex-
isting AMR classification models do not fully lever-
age these structured annotations, treating resistance
prediction as a single-label classification problem
from raw sequences. While sequence-based lan-
guage models have improved antibiotic resistance
prediction, they still lack biological interpretabil-
ity and fail to incorporate structured knowledge
from domain-specific databases. The integration
of sequence embeddings with domain knowledge
has the potential to enhance classification perfor-
mance and interpretability. This motivates further
exploration of hybrid models that combine genetic
sequence processing with structured textual anno-
tations, enabling more comprehensive and general-
izable resistance prediction.

Figure 1: Overview of hybrid model for antibiotic re-
sistance drug class classification. The model takes as
input a nucleotide sequence, gene family, and resistance
mechanism, and predicts the corresponding drug class
by combining outputs from Nucleotide Transformer and
BioBERT.

3 Methods

Our model integrates sequence-based and text-
based representations to improve antibiotic resis-
tance drug class classification. Given a nucleotide
sequence (e.g., ATGC...), its associated gene family
(e.g., “beta-lactamase”), and resistance mechanism
(e.g., “antibiotic inactivation”), the model predicts
the corresponding drug class (e.g., “Phenicol”). As
illustrated in Figure 1, we utilize two pretrained
models such as a Nucleotide Transformer for pro-
cessing sequence input and BioBERT for encoding
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structured biological metadata. Their outputs are
combined using a weighted soft-voting ensemble
(Dietterich, 2000). The overall model architecture
is illustrated in the Appendix A.

3.1 Nucleotide Sequence Based Antibiotic
Resistance Drug Class Classification

To classify antibiotic resistance genes, we fine-
tune a nucleotide transformer (NT) model (Dalla-
Torre et al., 2023). We consider the NT model
as a strong sequence-only baseline that represents
current methods that rely solely on nucleotide
features without structured annotations. Unlike
conventional models primarily trained on human
genomes (Sanabria et al., 2024), NT is pre-trained
on a diverse collection of genomic sequences
from bacteria, fungi, and protozoa, allowing for
a more comprehensive representation of micro-
bial resistance patterns. For input processing, nu-
cleotide sequences are tokenized using a 6-mer tok-
enizer, a widely used k-mer tokenization technique
in genomic analysis (Mejía-Guerra and Buckler,
2019). The input length is restricted to 1000 nu-
cleotides, corresponding to the model’s pretraining
constraints. The classification task is fine-tuned us-
ing Low-Rank Adaptation (LoRA), which inserts
low-rank decomposed matrices into transformer
layers while keeping the original model weights
fixed (Hu et al., 2022). This significantly reduces
trainable parameters while maintaining model effi-
ciency and accuracy.

3.2 Text Information-Based Antibiotic
Resistance Classification

To complement sequence-based models, we fine-
tune BioBERT (Lee et al., 2020), a biomedical
language model pre-trained on PubMed and PMC
articles, to extract Gene Family and Resistance
Mechanism attributes from textual descriptions of
resistance genes. The input text is formatted us-
ing structured markers to enhance contextual un-
derstanding, improving attribute recognition and
classification accuracy. Fine-tuning is conducted
with a single classification layer, linking biologi-
cal domain knowledge with sequence-based pre-
dictions. A comparison of different entity repre-
sentation techniques is provided in Appendix D.
Although resistance mechanism and gene family
annotations may correlate with drug class labels,
they are curated independently from the target la-
bels in standardized resources such as CARD and
MEGARes. These structured attributes often co-

occur but not always perfectly aligned, providing
complementary biological context that enhances
classification robustness and interpretability.

3.3 Weighted Soft-voting Ensemble

To integrate predictions from the nucleotide
sequence-based model and the text-based model,
we implement a soft-voting ensemble strategy. The
ensemble model is designed to leverage the comple-
mentary strengths of both approaches (Kuncheva
and Whitaker, 2003), combining genetic sequence
representations with structured textual knowledge
for improved classification accuracy. The ensem-
ble takes two types of inputs: (1) the nucleotide
sequence, processed through the sequence-based
language model, and (2) textual annotations, in-
cluding Gene Family and Resistance Mechanism
attributes, extracted from the text-based model. To
optimize classification performance, we determine
the weight ratio of each model’s contribution using
a validation dataset. This validation set is separate
from the training and test datasets and is used to
fine-tune the weight distribution for optimal ensem-
ble decision-making. Final prediction probabilities
are computed using a weighted soft-voting scheme:

P (y | x) = λ·PNT(y | xseq)+(1−λ)·PBB(y | xtext)

where λ is a weight parameter determined from val-
idation performance. In our experiments, λ ranged
between 0.35 and 0.55 depending on the dataset,
reflecting the relative contributions of sequence-
based and text-based predictions.

3.4 Integrating Classes Based on Antibiotic
Resistance Ontology

Antibiotic resistance classification varies across
databases, with CARD and MEGARes using dif-
ferent resistance labels and hierarchical structures.
To address these inconsistencies, we employ the
EBI Antibiotic Resistance Ontology (ARO) (Cook
et al., 2016) to standardize resistance annotations
across datasets. Each database entry is mapped
to the ARO ontology by querying the EBI API
and retrieving hierarchical Gene Family relation-
ships. Instead of using fine-grained subcategories,
we adopt the third-level hierarchy in ARO, ensuring
that class representations remain general enough
for robust classification across different datasets.
This hierarchical integration harmonizes classifica-
tion schemes, reducing discrepancies in resistance
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annotations between databases. This mapping pro-
cess ensures consistency across heterogeneous la-
bels by aligning them to a shared third-level ARO
hierarchy, as detailed in Appendix B.

3.5 Data Augmentation Using a Large
Language Model

To mitigate data imbalance in antibiotic resistance
gene classification, we employ BioGPT (Luo et al.,
2022) for generating synthetic samples in under-
represented categories. Augmenting resistance de-
scriptions improves classification performance, par-
ticularly in Macro F1 score. The effectiveness of
this approach is detailed in Appendix E.

4 Experiments

We evaluate the performance of sequence-based
and text-based models for antibiotic resistance drug
class classification using three datasets: CARD,
MEGARes, and an integrated dataset combining
both sources. We compare Nucleotide Transformer
(NT), BioBERT (BB), and an ensemble of both
models, analyzing their effectiveness in different
dataset settings.

4.1 Experimental Setup
We finetune NT on genetic sequences and
BioBERT on structured text annotations describ-
ing resistance genes. The ensemble model uses
a weighted soft-voting approach, integrating both
modalities. All models are trained on CARD,
MEGARes, and Integrated datasets, following the
standard pre-processing pipeline described in Meth-
ods. In addition, experiments using read-level data
generated based on the Integrated dataset is con-
ducted. Further details can be found in the Ap-
pendix C

4.2 Datasets
We use the CARD and MEGARes v3 datasets,
integrating Drug Class, Gene Family, and Resis-
tance Mechanism labels using the EBI ARO on-
tology. Following standard preprocessing, classes
with fewer than 15 samples are removed. Dataset
details are provided in the Appendix B.

4.3 Classification Results
Table 1 presents the classification results, demon-
strating the impact of integrating structured biolog-
ical knowledge into sequence-based models. Com-
pared to sequence-only models, incorporating Gene
Family and Resistance Mechanism attributes led

to significant performance improvements. Specifi-
cally, our method improved accuracy by 9.53 points
and Macro F1 by 30.34 points on CARD, while on
MEGARes, the improvement was 10.38 points and
50.57 points, respectively. These findings indicate
that sequence-based models alone struggle to cap-
ture higher-level biological relationships necessary
for robust resistance classification. By integrating
structured textual annotations, our model achieves
superior interpretability and generalization, partic-
ularly for low-resource resistance categories. Fur-
thermore, using integrated data from multiple anno-
tation systems enhances classification performance,
demonstrating the advantage of leveraging domain-
specific knowledge for a unified prediction model.

4.4 Ablation Analysis

To assess the contribution of each component in our
hybrid model, we conduct an ablation analysis com-
paring individual models (NT and BB) versus their
ensemble, and dataset configurations (individual
vs. integrated). As shown in Table 1, the ensemble
consistently outperforms NT and BB alone across
all datasets, confirming the complementary nature
of sequence-based and text-based representations.

The integrated dataset includes more diverse and
heterogeneous resistance profiles from both CARD
and MEGARes, offering a broader and more re-
alistic evaluation setting. Despite this increased
complexity, our ensemble model maintains strong
and consistent performance, demonstrating its ro-
bustness and generalizability across databases.

5 Discussion

Our results demonstrate that incorporating struc-
tured biological knowledge significantly enhances
antibiotic resistance classification. Sequence-based
models alone struggle to capture higher-order bio-
logical relationships that influence resistance mech-
anisms. By integrating Gene Family and Resis-
tance Mechanism annotations, our model improves
interpretability and generalization, particularly for
low-resource resistance categories. Furthermore,
class integration using the EBI ARO ontology stan-
dardizes resistance classification across datasets,
increasing training data availability and improv-
ing consistency. This standardization not only
enhances model performance but also facilitates
broader applicability across different resistance
gene databases. Notably, the near-perfect perfor-
mance observed on the MEGARes dataset may par-
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Dataset Method Accuracy Macro F1 Precision Recall
CARD NT 87.92 63.08 66.46 61.51
CARD BB 97.22 89.68 92.09 90.54
CARD Ensemble 97.55 93.44 95.72 92.86
MEGARes NT 89.61 46.42 54.92 43.94
MEGARes BB 99.64 99.47 99.96 99.03
MEGARes Ensemble 99.99 99.99 99.99 99.99
Integrated NT 82.89 65.79 81.84 58.67
Integrated BB 90.26 79.34 84.05 77.14
Integrated Ensemble 92.11 80.95 83.52 78.94
Integrated with reads NT 83.11 62.82 74.81 57.32
Integrated with reads BB 90.24 79.34 84.05 77.14
Integrated with reads Ensemble 93.40 81.85 84.34 80.25

Table 1: Result of using the CARD, MEGARes, and Integrated databases for antibiotic resistance drug class
prediction using Nucleotide Transformer(NT), BioBERT(BB), and a weighted ensemble of both. The weighted
ensemble with Nucleotide Transformer(NT) and BioBERT(BB) shows better performance in every datasets.

tially reflect the benefits of ontology-based class
harmonization and the high consistency of resis-
tance annotations in MEGARes. While these re-
sults highlight the model’s capacity to leverage
structured knowledge, they also suggest that anno-
tation quality and class structure play a key role in
enabling robust classification. Additionally, our en-
semble model maintains strong performance even
when using sequencing reads instead of full-length
genes, demonstrating its robustness in practical ap-
plications. Beyond classification performance, in-
corporating structured biological knowledge also
provides practical advantages in reducing exper-
imental complexity and time (see Appendix F).
By bridging the gap between sequence-based and
knowledge-driven classification, our approach of-
fers a scalable and interpretable solution for an-
timicrobial resistance prediction. However, our
approach still relies on the quality of existing re-
sistance gene annotations, which may not always
reflect emerging resistance mechanisms. Addition-
ally, maintaining up-to-date structured knowledge
requires continuous curation, posing a scalability
challenge.

6 Conclusion

We present a hybrid model that integrates sequence-
based and text-based representations to improve an-
tibiotic resistance classification. By incorporating
structured biological knowledge, including Gene
Family and Resistance Mechanism annotations, our
approach enhances interpretability and outperforms
sequence-only models. Additionally, we standard-
ize resistance classification using the EBI ontology
and utilize large language models for data augmen-
tation, improving performance in low-resource set-
tings. These results demonstrate the effectiveness

of combining genetic and textual information for
more accurate and scalable resistance prediction.

7 Limitation

While our approach improves antibiotic resistance
classification by integrating sequence-based and
text-based models, certain limitations remain. First,
our reliance on curated databases, such as CARD
and MEGARes, means that model performance
may be affected by biases in annotation quality
and completeness. Additionally, while integrat-
ing Gene Family and Resistance Mechanism im-
proves interpretability, the hierarchical structure
of these annotations may introduce inconsisten-
cies across datasets. Another limitation is the chal-
lenge of handling rare or novel resistance genes,
where even with data augmentation, model gen-
eralization remains an open problem. Computa-
tional efficiency remains a concern, as training
large-scale sequence and text models requires sig-
nificant resources, which may limit accessibility
for some research applications. Finally, beyond
domain-specific models, evaluating the potential of
recent general-purpose LLMs such as ChatGPT-4o
or Claude 4 Sonnet for antibiotic resistance predic-
tion remains an open direction for future research.
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A Model Overview

Figure 1 illustrates the overall architecture of our
proposed model, which integrates sequence-based
and text-based representations for antibiotic re-
sistance classification. We fine-tuned two pre-
trained language models—Nucleotide Transformer
and BioBERT—for DNA sequence classification
tasks involving the prediction of antimicrobial drug
classes. The Nucleotide Transformer model was
fine-tuned using parameter-efficient LoRA-based
adaptation. DNA sequences were truncated to
a maximum length of 1000 nucleotides and tok-
enized using a domain-specific tokenizer. Training
data was structured with input DNA sequences and
corresponding drug class labels. The model was
fine-tuned using a sequence classification objective
on a multi-class dataset. Performance was eval-
uated on a separate test set using macro-average
F1 score, accuracy, precision, recall, and balanced
accuracy. For BioBERT, the input consisted of
textual descriptions including gene family and re-
sistance mechanism information, formatted into
natural language prompts. These were tokenized
using a BERT tokenizer with a fixed input length.
A classification head was added to predict the drug
class labels. The model was trained for multiple
epochs and evaluated using the same metrics as for
the Nucleotide Transformer. Both models showed
effective performance in multi-class classification
tasks, demonstrating the potential of sequence- and
text-based pretraining approaches in genomic clas-
sification problems.
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Figure 2: EBI ARO Gene Family mapping: search to
find mapping information with header and ontology by
using API.

B Dataset Details

The CARD and MEGARes v3 datasets are used
for training and evaluation. Classes with fewer
than 15 samples are removed because obtaining
meaningful results from the data split is difficult.
The remaining data is split into 75% for training
data, 20% for test data, and 5% for validation data.
EBI ARO ontology search is used to integrate the
data, which is then split similarly to the above.
Classes with difficult-to-obtain meaningful results
are also removed. The MEGARes dataset con-
sists of 9733 Reference Sequences, 1088 SNPs,
4 antibiotic types, 59 resistance classes, and 233
mechanisms. The CARD dataset consists of 5194
Reference Sequences and 2005 SNPs, 142 Drug
Classes, 331 Gene Families, and 10 Resistance
Mechanisms. The EBI ARO ontology provides
hierarchical group information for genes. Using
the EBI ARO Ontology, Gene Family class infor-
mation can be integrated into a higher-level hierar-
chy. The number of Gene Family text information
classes in the case of MEGARes is 589, while for
CARD, it is 331. There are 300 and 166 datasets
with only one sample in their respective classes for
Gene Family in the case of MEGARes and CARD,
respectively. Resistance Mechanism is integrated
based on the 6 categories of CARD. The original
8 categories were reduced to 6, excluding cases of
various class combinations and those with very few
samples. Drug Class is integrated using 9 common
Drug Classes found in competing models. Integra-
tion is done based on names and theories and has
been verified. Macro f1 score, accuracy, balanced
accuracy, and precision are used as performance
metrics, and the results are listed in the Table 1.

Figure 3, Figure 4 and Figure 5 represent the
distribution of training dataset which is integrated
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Figure 3: Counts of the frequent Resistance Mechanism
in training dataset.
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Figure 4: Counts of the frequent Gene Family in training
dataset.
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Figure 5: Counts of the frequent Antimicrobial Resis-
tance Drug Classes in training dataset.

with CARD and MEGARes. We observe a long-
tail distribution for Resistance Mechanism, Gene
Family, and Drug Class classes.

The distribution indicates that certain resistance
mechanisms, gene families, and drug classes are
significantly overrepresented in the dataset, while
many others occur with low frequency. Specifi-
cally, antibiotic inactivation is the most common
resistance mechanism, while beta-lactamase genes
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dominate the gene family distribution. Similarly,
beta-lactams appear as the most frequently associ-
ated drug class.

This imbalance in distribution suggests that mod-
els trained on this dataset may exhibit biased perfor-
mance, favoring well-represented categories while
struggling with rare classes. Furthermore, the pres-
ence of diverse resistance mechanisms and gene
families emphasizes the complexity of antimicro-
bial resistance (AMR) prediction.

The dataset used in this study is pub-
licly available at https://zenodo.org/records/
15213479.

C Read Generation

Read generation is a computational process used to
simulate short DNA or RNA sequences, commonly
referred to as "reads", from reference genomes or
annotated genetic sequences. This technique is
designed to mimic the output of next-generation
sequencing (NGS) technologies (Hu et al., 2021),
providing a way to generate data for various ap-
plications such as machine learning model train-
ing, benchmarking, or evaluating bioinformatics
pipelines. In the context of antibiotic resistance
prediction, read generation is often performed us-
ing curated databases like CARD, MEGARes, or
the Integrated database, which contain known re-
sistance genes and associated metadata.

To simulate realistic reads, researchers com-
monly use specialized tools such as ART (Huang
et al., 2012), InSilicoSeq (Gourlé et al., 2019),
DWGSIM, NEAT (Schorderet, 2016), or Mason
(Holtgrewe, 2010). These simulators can generate
Illumina-style short reads with configurable read
lengths, sequencing errors, mutation rates, and cov-
erage depth. In this study, we used ART to generate
synthetic reads based on the Integrated database.
ART supports detailed customization of error pro-
files and is widely used for simulating realistic
Illumina sequencing data.

The generated reads can serve as a substitute
when real-world sequencing data is limited or un-
available. By generating reads from known refer-
ence sequences, researchers can perform controlled
experiments with clearly defined ground truth, as-
sess model robustness under noisy or imperfect
conditions, and evaluate how well different models
generalize to simulated real-world data. Overall,
read generation combined with realistic simulators
plays a crucial role in creating labeled datasets

that facilitate the development and validation of
genomic analysis tools.

D Entity Representation Techniques

To improve antibiotic resistance classification, we
experimented with different entity representation
techniques for encoding Gene Family and Resis-
tance Mechanism attributes in BioBERT-based
models. Table 2 compares the impact of these tech-
niques on classification performance.

These representations were designed to help
the model better distinguish between biological
attributes and general text (Yamada et al., 2023).
The Base format uses plain-text input without ad-
ditional markers, while the Entity Marker (punct)
format introduces brackets around key attributes.
The Typed Entity Marker (Zhou and Chen, 2022)
explicitly labels entities, providing more structured
input, and the Typed Entity Marker (punct) format
further combines these strategies.

Results indicate that using entity markers im-
proves classification performance. In particular, the
Typed Entity Marker (punct) approach achieves the
highest Macro F1 score, demonstrating that struc-
tured formatting helps the model capture contex-
tual relationships between resistance mechanisms
and gene families more effectively. Results indi-
cate that explicit formatting, such as typed entity
markers with punctuation, enhances BioBERT’s
contextual understanding about Gene Family and
Resistance Mechanism attributes from general text.
This suggests that structured annotations provide
useful inductive bias, allowing the model to better
capture domain-specific relationships.

E Impact of LLM-Based Data
Augmentation

Despite ontology-based class standardization, cer-
tain resistance categories remain underrepresented
due to natural imbalances in antibiotic resistance
gene distributions. To address this, we employ
BioGPT (Luo et al., 2022) for generating synthetic
samples in low-resource categories. BioGPT is
prompted to generate contextually similar resis-
tance gene descriptions, maintaining the linguistic
characteristics of real annotations to ensure realistic
and informative augmentation.

By integrating BioGPT-based augmentation, we
observe consistent improvements in classification
performance, particularly in Macro F1 scores for
rare classes. Table 3 presents the results of this
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Output Input Example BioBERT
Base Gene Family: Beta-lactamases, Resistance Mechanism: Antibiotic inactivation 78.20
Entity marker (punct) [Gene Family]: Beta-lactamases, [Resistance Mechanism]: Antibiotic inactivation 77.41
Typed entity marker *Beta-lactamases*, #Resistance Mechanism# 77.70
Typed entity marker (punct) *[Gene Family]: Beta-lactamases*, #[Resistance Mechanism]: Antibiotic inactivation# 78.46

Table 2: Test Macro F1 score of different entity representation techniques in antibiotic resistance classification with
BioBERT.

augmentation strategy, demonstrating its positive
impact on model robustness.

F Practical Advantages of Using Gene
Family and Resistance Mechanism

Incorporating Gene Family and Resistance Mecha-
nism information in antibiotic resistance classifica-
tion provides practical advantages, particularly in
reducing experimental complexity and time. Tradi-
tional laboratory-based methods, such as Minimum
Inhibitory Concentration (Kowalska-Krochmal and
Dudek-Wicher, 2021; Andrews, 2001a) (MIC) as-
says and Disk Diffusion Tests, require separate test-
ing for each antibiotic, which involves overnight
incubation and may take longer for certain organ-
isms (Andrews, 2001b). Testing multiple antibi-
otics increases time and resource consumption, and
experimental conditions such as growth medium
and gene expression variability can further compli-
cate results.

Sequence-based approaches, such as Polymerase
Chain Reaction (PCR) and Whole Genome Se-
quencing (WGS), enable the identification of
resistance-related genes directly from genomic
data (Bagger et al., 2024; Ng and Kirkness, 2010).
PCR/qPCR can provide results relatively quickly,
typically within hours, whereas WGS requires a
longer processing time, often taking multiple days
to complete (Cason et al., 2022).

Leveraging Gene Family and Resistance Mecha-
nism attributes allows for a more efficient compu-
tational approach to resistance prediction, minimiz-
ing reliance on exhaustive in vitro testing. Many
resistance mechanisms are well-characterized and
strongly associated with specific gene families. For
instance, betalactamase genes are well-known indi-
cators of resistance to betalactam antibiotics, such
as penicillins and cephalosporins (Bush and Jacoby,
2010). By integrating structured biological knowl-
edge with sequence-based models, resistance pre-
dictions can be made with greater confidence and
interpretability, supporting a scalable and practical
framework for antimicrobial resistance classifica-
tion.
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Method Accuracy Macro F1 Precision Recall
NT 84.15 64.04 72.78 59.28
NT with data augmentation 83.42 64.85 80.15 58.65
NT with reads 82.85 61.02 68.32 57.06
NT with reads and data augmentation 83.11 62.82 74.81 57.32

Table 3: Effect of BioGPT-based data augmentation on resistance classification performance. Augmentation
improves Macro F1, particularly for low-resource categories.
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