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Abstract

This study explores the application of gen-
erative Large Language Models (LLMs) in
DNA sequence analysis, highlighting their
advantages over encoder-based models like
DNABERT2 and Nucleotide Transformer.
While encoder models excel in classification,
they struggle to integrate external textual infor-
mation. In contrast, generative LLMs can in-
corporate domain knowledge, such as BLASTn
annotations, to improve classification accu-
racy even without fine-tuning. We evalu-
ate this capability on antimicrobial resistance
(AMR) gene classification, comparing genera-
tive LLMs with encoder-based baselines. Re-
sults show that LLMs significantly enhance
classification when supplemented with textual
information. Additionally, we demonstrate
their potential in DNA sequence generation,
further expanding their applicability. Our find-
ings suggest that LLMs offer a novel paradigm
for integrating biological sequences with ex-
ternal knowledge, bridging gaps in traditional
classification methods.

1 Introduction

Language Models (LMs) have demonstrated re-
markable performance in various Natural Language
Processing (NLP) tasks and have recently gained
attention in bioinformatics, particularly in DNA se-
quence analysis. Encoder-based transformer mod-
els, such as DNABERT (Ji et al., 2021; Zhou et al.,
2023), ProteinBERT (Brandes et al., 2022) and
Nucleotide Transformer (Dalla-Torre et al., 2023),
have shown strong performance in DNA sequence
classification, leveraging nucleotide tokenization
and self-supervised pretraining. These models
are widely adopted for gene sequence analysis,
promoter prediction, and mutation impact assess-
ment. However, encoder-based models have in-
herent limitations in integrating external domain
knowledge. Their fixed input structures make it
difficult to incorporate additional textual context,
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such as BLASTn search results, which often con-
tain critical biological insights. Additionally, these
models may struggle to generalize when a single
DNA sequence is associated with multiple labels,
requiring strict pre-defined training paradigms.

Generative Large Language Models (LLMs),
such as GPT-based models (Brown et al., 2020),
introduce greater flexibility by allowing predic-
tions to be influenced by external knowledge via
prompting. Unlike encoder-based models, genera-
tive LLMs can dynamically incorporate supplemen-
tary textual information, which can enhance clas-
sification accuracy without requiring fine-tuning.
Some biomedical LLMs, such as BioGPT (Luo
et al., 2022) and Med-PalLM (Singhal et al., 2023),
have demonstrated strong performance in process-
ing medical and pharmaceutical text, but their ap-
plications in DNA sequence analysis remain under-
explored. Beyond classification, generative LLMs
also enable DNA sequence generation (Nguyen
et al., 2024; Brixi et al., 2025), a capability that
traditional encoder-based models lack. This opens
new possibilities for exploring sequence design,
mutation modeling, and synthetic data augmenta-
tion, further expanding the applicability of LLMs
in genomics.

This study systematically evaluates the effective-
ness of generative LLMs for DNA sequence clas-
sification and generation, comparing them against
traditional encoder-based baselines. Our key con-
tributions are as follows:

* We systematically compare generative LLMs
with encoder-based models on DNA sequence
classification tasks, providing a rigorous eval-
uation of their relative performance.

* We demonstrate that generative LLMs
can leverage supplementary domain-specific
knowledge to improve classification accuracy
even without fine-tuning.
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* We explore the potential of generative LLMs
in DNA sequence generation, analyzing their
ability to generate biologically meaningful se-
quences and their implications for synthetic
data augmentation.

Our findings suggest that generative LLMs offer
a novel paradigm for integrating DNA sequences
with external knowledge sources, expanding their
applicability in bioinformatics research.

2 Related Works

Transformer-based encoder models have been
widely applied to DNA sequence classifica-
tion. DNABERT (Ji et al., 2021; Zhou et al.,
2023) applies self-supervised learning to nu-
cleotide sequences using k-mer tokenization, while
DNABERT?2 improves efficiency by introducing
byte pair encoding (BPE) (Zhou et al., 2023). Nu-
cleotide Transformer (Dalla-Torre et al., 2023) ex-
tends this approach by pretraining on diverse ge-
nomic datasets, achieving strong performance in
gene classification tasks.

While these models perform well in classifica-
tion, they have limited ability to incorporate ex-
ternal domain knowledge, such as BLASTn an-
notations (Lobo, 2008). Moreover, they struggle
with handling multi-label classification, which is
common in genomic studies (Bonin et al., 2023a;
Marini et al., 2022). Our work differs by explor-
ing whether generative LLLMs can improve clas-
sification performance by dynamically integrating
external textual information without additional fine-
tuning.

Generative Large Language Models (LLMs)
such as GPT-based models (Brown et al., 2020)
have demonstrated strong natural language under-
standing but have been rarely applied to DNA se-
quence analysis. BioGPT (Luo et al., 2022), for
example, is trained on biomedical literature but
lacks direct training on DNA sequences.

Unlike encoder-based models, LLMs can dy-
namically incorporate supplementary textual in-
formation, such as BLASTn search results (Lobo,
2008), potentially enhancing classification perfor-
mance. Additionally, LLMs have the potential for
DNA sequence generation, which can be applied
to mutation modeling and synthetic data augmen-
tation, as demonstrated in previous studies explor-
ing deep learning methods for genomic analysis
(Marini et al., 2022; Arango-Argoty et al., 2018;
Lakin et al., 2019).
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While prior studies have focused on applying
LLMs to biomedical text, our approach investi-
gates whether generative LLMs can be effectively
utilized for both classification and sequence gener-
ation in DNA analysis, providing a flexible alterna-
tive to traditional encoder-based models.

3 Methods

3.1 Data Collection

The dataset used in this study consists of antibi-
otic resistance gene sequences collected from the
MEGARes (Doster et al., 2020; Bonin et al., 2023b)
and CARD databases (Jia et al., 2017). The labels
from MEGARes and CARD were mapped using
the Antibiotic Resistance Ontology from the Euro-
pean Bioinformatics Institute (Cook et al., 2016),
following previous research methods (Yoo et al.,
2024). These databases contain DNA sequences
associated with antimicrobial resistance (AMR)
and provide multi-label annotations, where a single
sequence may belong to multiple resistance cate-
gories. To incorporate external domain knowledge,
we applied the BLASTn algorithm (Chen et al.,
2015) to identify sequences similar to each DNA
sequence in the dataset. For each sequence, the
top-5 BLASTn search results were selected based
on the e-value criterion, and their corresponding
functional annotations were extracted. This addi-
tional textual information includes gene descrip-
tions, known resistance mechanisms, and sequence
alignment details, which were later integrated into
our LLM-based classification prompts.

3.2 Baseline Models and Preprocessing

To compare the performance of generative LLMs
with existing DNA sequence classification mod-
els, we included encoder-based models as base-
lines: DNABERT?2, and Nucleotide Transformer.
DNABERT?2 (Zhou et al., 2023) is a BERT-based
model to process DNA sequences as natural lan-
guage text. It improved version of DNABERT
(Ji et al., 2021) by introducing byte pair encod-
ing (BPE) instead of utilizing k-mer tokenization,
allowing for more efficient sequence representa-
tion. Nucleotide Transformer (Dalla-Torre et al.,
2023), a transformer model pre-trained on diverse
genomic datasets, has demonstrated strong perfor-
mance in various molecular phenotype prediction
tasks.

For all models, DNA sequences were prepro-
cessed by converting them to uppercase, and in-



Model Accuracy  Precision  Recall  F1 Score
DNABERT?2 (Finetuning) 0.8697 0.8161 0.6996 0.7332
Nucleotide Transformer (Finetuning) 0.8289 0.8184 0.5867 0.6579
LLama3.1 8B-4bit 0.0037 0.0011 0.0002 0.0003
LLama3.1 8B-4bit + Blastn 0.0744 0.0530 0.0129 0.0207
LLama3.1 8B-4bit + Finetuning 0.5521 0.4760 0.5521 0.5080
Claude3.5sonet 0.1488 0.1770 0.0966 0.0735
Claude3.5sonet + Blastn 0.8042 0.6287 0.5421 0.5794
Chatgpt4o-mini 0.00 0.00 0.00 0.00
Chatgpt4o-mini + Blastn 0.7804 0.9090 0.7804 0.8398
Chatgpt4o-mini + Finetuning 0.9318 0.9337 0.9318 0.9319

Table 1: Performance metrics for DNA sequence classification across multiple models. Chatgpt4o-mini with
finetuning achieves the best overall performance, with the highest accuracy and F1 score, surpassing specialized
models like DNABERT?2 and the Nucleotide Transformer. Without finetuning or external features, general-purpose
LLMs such as LLaMA3.1, Claude3.5, and Chatgpt4o-mini perform poorly, indicating that both biological context
via BLASTn and domain-specific adaptation are critical for DNA sequence understanding.

valid sequences were removed. The final dataset
consisted only of validated antibiotic resistance
gene sequences.

3.3 Fine-tuning and Prompt-based
Classification

To evaluate generative LLMs in DNA sequence
classification, we employed Low-Rank Adaptation
(LoRA) fine-tuning on LLaMA. LoRA enables
parameter-efficient tuning by modifying only a sub-
set of the model’s weight matrices, significantly
reducing computational costs while maintaining
performance (Hu et al., 2021). Further details pro-
vided in Appendix B. Additionally, we conducted
zero-shot inference using the Claude 3.5 sonet (An-
thropic, 2024) and ChatGPT-4 API to assess how
well proprietary generative models classify DNA
sequences without explicit training. To investigate
whether generative LLMs can classify DNA se-
quences without fine-tuning, we formulated two
experimental settings. In the first setting, models
were given only the DNA sequence as input. In
the second setting, models received both the DNA
sequence and the top-5 BLASTn search results,
including functional annotations and gene descrip-
tions. This setup allowed us to assess whether
LLMs can leverage external domain knowledge to
improve classification accuracy. Prompt details are
in Appendix A

3.4 LLM-Based DNA Sequence Generation

In addition to classification, we explored whether
generative LLMs can synthesize biologically mean-
ingful DNA sequences. To this end, we designed
a sequence generation task where models were
prompted with initial part of antibiotic resistance
genes and tasked with generating plausible full
DNA sequences. We implemented finetuning with
LLMs. Further details provided in Appendix C.

The quality of the generated sequences was as-
sessed using three similarity measures. Leven-
shtein (Levenshtein, 1966) distance was used to
quantify the sequence-level similarity by measur-
ing the minimum number of edits (insertions, dele-
tions, and substitutions) required to match a refer-
ence sequence. Jaccard’s index of similarity (Real
and Vargas, 1996) was computed on k-mer tok-
enized sequences to evaluate overlapping subse-
quences between generated and known resistance
gene sequences. Cosine similarity was also applied
to k-mer frequency vectors to compare overall se-
quence composition (Ng, 2017). To ensure basic
functional validity, we checked whether generated
sequences maintained proper nucleotide composi-
tion. GC content (Marmur and Doty, 1962) distri-
bution was compared to existing AMR sequences
to verify biological plausibility.

4 Experiments

4.1 DNA Classification

To evaluate the performance of generative language
models in DNA sequence classification, we con-
ducted experiments under three conditions. The
first setting involved using the base models, where
only the raw DNA sequence was provided as input.
The second setting introduced BLASTn search re-
sults, incorporating additional textual annotations
such as gene descriptions and resistance mecha-
nisms. The third setting involved fine-tuning the
models using labeled DNA sequences. For base-
line comparisons, we included DNABERT?2 and
Nucleotide Transformer, which have demonstrated
strong performance in DNA sequence classifica-
tion tasks. The generative models evaluated in
this study include LLaMA 3.1 (Meta Al, 2024)
(8B-4bit), Claude 3.5 Sonet, and ChatGPT-40-mini.
Each model was tested in zero-shot, BLASTn-

242



Cosine Similarity Levenshtein Similarity GC Correlation

Model Jaccard Similarity
GENERater (Zero-shot) 0.9970
ChatGPT-40-mini (Fine-tuned API) 0.9870
GENErator (LoRA Fine-tuned) 0.9970
LLaMA 3.2 1B (LoRA Fine-tuned) 0.2659
Gemma 3 1B (LoRA Fine-tuned) 0.3177

0.9680 0.3790 0.8436
0.9857 0.5776 0.7930
0.9680 0.3790 0.8436
0.5911 0.2004 0.6938
0.7580 0.2487 0.7305

Table 2: Similarity scores between generated DNA sequences and the ground truth across various models. GENER-
ater, both in zero-shot and LoRA fine-tuned settings, achieves near-perfect Jaccard and Cosine similarities, with
strong GC content correlation, indicating high biological fidelity. ChatGPT-40-mini also performs competitively
despite being a general-purpose LLM. In contrast, smaller fine-tuned models like LLaMA 3.2 1B and Gemma 3
1B yield significantly lower similarity scores across all metrics, highlighting the challenge of DNA generation in

low-resource model settings.

augmented, and fine-tuned configurations.

4.2 DNA Sequence Generation

In addition to classification, we assessed whether
generative language models could synthesize bio-
logically meaningful DNA sequences. A dataset of
antimicrobial resistance genes from Acinetobacter
baumannii was collected using the NCBI Entrez
API, with 1,000 sequences retrieved. The dataset
was split into 80% for training and 20% for test-
ing. Input sequences were trimmed to a length
of 200 base pairs, while the maximum generated
output length was set to 3,000 base pairs. Further
details on dataset characteristics provided in Ap-
pendix E. For baseline comparisons, we included
GENERater (Wu et al., 2025), which were eval-
uated in a zero-shot setting. For fine-tuned mod-
els, we used ChatGPT-40-mini finetuned via API
along with GENErator, LLaMA 3.2 1B (Grattafiori
et al., 2024), and Gemma 3 1B (Gemma Team,
Google DeepMind, 2025), which were finetuned
using the LoRA. Each model was assessed based
on its ability to generate sequences that resemble
known antimicrobial resistance genes.

5 Results and Discussion

Table 1 presents the classification results across
various model configurations. Encoder-based mod-
els, DNABERT?2 and Nucleotide Transformer, con-
sistently demonstrated the highest accuracy, with
DNABERT?2 achieving 86.97% accuracy and Nu-
cleotide Transformer reaching 82.89%. In contrast,
generative models performed poorly in the base
setting, with LLaMA 3.1 obtaining an accuracy
of only 0.37%. Considering this outcome along-
side the unclassified rate reported in Appendix D,
it appears that generative models have difficulty
performing direct DNA sequence classification
without supplementary context. The inclusion of
BLASTn search results significantly improved clas-

sification accuracy. ChatGPT-40-mini, which ini-
tially failed to classify any sequences correctly,
achieved 78.04% accuracy with BLASTn augmen-
tation. Similarly, Claude 3.5 Sonet improved from
14.88% to 80.42% accuracy. These results suggest
that LLMs benefit from external textual informa-
tion, compensating for their lack of prior expo-
sure to DNA sequences. Fine-tuning further en-
hanced classification accuracy, with ChatGPT-4o-
mini achieving 93.18%, surpassing DNABERT?2.
This demonstrates that while LLMs struggle in
a zero-shot setting, targeted training on DNA se-
quences allows them to match or exceed the perfor-
mance of specialized encoder-based models.

Table 2 summarizes the similarity scores for
generated DNA sequences. In the zero-shot set-
ting, GENERater produced sequences with high
Jaccard similarity (0.9970) and Cosine similarity
(0.9680), but relatively low Levenshtein similarity
(0.3790), indicating that while generated sequences
share common k-mers with known resistance genes,
their exact sequence composition differs signifi-
cantly. Fine-tuned models exhibited varying lev-
els of similarity. ChatGPT-40-mini, fine-tuned
via API, achieved the highest similarity across all
three metrics, particularly in Levenshtein similarity
(0.5776), suggesting that it generated sequences
more closely aligned with known resistance genes
at the character level. GENErator (LoRA Fine-
tuned) maintained nearly identical similarity scores
to its zero-shot counterpart, whereas LLaMA 3.2
1B and Gemma 3 1B displayed substantially lower
similarity scores across all metrics, indicating chal-
lenges in generating sequences that closely resem-
ble existing DNA. Further analysis of GC content
confirmed that fine-tuned models generated biolog-
ically plausible sequences. However, additional
validation is required to determine whether these
sequences retain functional properties relevant to
antimicrobial resistance.
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6 Conclusion

This study demonstrated that generative LLMs
offer greater flexibility in DNA sequence classi-
fication and generation compared to traditional
encoder-based models. While encoder models like
DNABERT?2 performed well in standard classifica-
tion tasks, generative models benefited significantly
from additional textual information, highlighting
their ability to integrate external domain knowl-
edge. Fine-tuned generative models also produced
biologically plausible DNA sequences, suggesting
potential applications in synthetic biology. How-
ever, LLMs struggled in zero-shot classification,
emphasizing the need for fine-tuning and improved
biological data integration.

7 Limitations

While this study highlights the potential of gener-
ative LLMs in DNA sequence analysis, there are
several areas for further improvement. Zero-shot
classification performance remained limited, under-
scoring the need for fine-tuning or integrating ex-
ternal biological knowledge to enhance prediction
accuracy. Future work could explore hybrid ap-
proaches that combine LLMs with domain-specific
models or structured databases to improve robust-
ness.

In DNA sequence generation, fine-tuned mod-
els successfully produced sequences structurally
similar to known antimicrobial resistance genes.
However, additional real-world validation through
laboratory experiments is necessary to determine
whether these sequences retain functional proper-
ties relevant to resistance mechanisms.

Another key consideration is the computational
cost associated with fine-tuning large-scale mod-
els. The substantial resource requirements high-
light the need for more efficient adaptation tech-
niques, such as parameter-efficient fine-tuning or
retrieval-augmented approaches. Future research
should investigate methods to balance computa-
tional efficiency with model performance to enable
broader accessibility and practical applications in
bioinformatics.
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A Example Prompts

A.1 Example Prompt Explanation including
DNA Sequence

In this example prompt, a DNA sequence is
provided along with several drug class labels,
such as Sulfonamides, Aminoglycosides, Beta-
lactams, Glycopeptides, Tetracyclines, Phenicol,
Fluoroquinolones, MLS (Macrolide-Lincosamide-
Streptogramin), and Multi-drug resistance. The
task involves asking the model to determine the
drug class that the DNA sequence is resistant to.
The prompt follows this format:

"Tell me the resistance drug
among drugs (Sulfonamides,
Aminoglycosides, Betalactams,
Glycopeptides, Tetracyclines,
Phenicol, Fluoroquinolones, MLS,
Multi-drug_resistance) with
DNA sequence (ATGAATCCCTATC...

.. .ACAAACTGCGAGGCAGTTCGCATGA) ?"

This prompt is used to assess the DNA sequence
for antibiotic resistance and classify the sequence
into one of the specified drug resistance categories.

A.2 Example Prompt Explanation including
Blastn information

In this prompt, a DNA sequence and the top 5
Blastn search results are provided. The task is to
predict the drug class that the DNA sequence is
resistant to, based on the alignment information
and matching sequences. The drug class labels in-
cluded in the prompt are Sulfonamides, Aminogly-
cosides, Betalactams, Glycopeptides, Tetracyclines,
Phenicol, Fluoroquinolones, MLS (Macrolide-
Lincosamide-Streptogramin), and Multi-drug re-
sistance.

The BLASTn results contain gene information
such as sequence titles, alignment length, e-values,
and detailed sequence alignments (query, match,
and subject sequences). This allows the model to
analyze the DNA sequence’s pattern and classify it
into the appropriate drug resistance category.

The prompt follows this format:

"Tell me the
among drugs
Aminoglycosides,
Glycopeptides, Tetracyclines,
Phenicol, Fluoroquinolones, MLS,
Multi-drug_resistance) with DNA
information ([{’sequence_title’:
’gi]1035502645|ref |[NG_048504.1|
Enterococcus casseliflavus
vanXY-C gene for D-Ala-D-Ala
dipeptidase/D-Ala-D-Ala

resistance drug
(Sulfonamides,
Betalactams,

carboxypeptidase
VanXY-C, complete CDS’,
’alignment_length’: 673,

’e_value’: 0.0, ’'query_sequence’:
"ATGAATCCCTATCTA. .. ,
"match_sequence’ :

SRR RN RN
’subject_sequence’: 0,

nH?”

This prompt aims to predict the antibiotic resis-
tance drug by using DNA sequence data from the
Blastn search results and identifying the relevant
drug resistance class.

B Finetuning of DNA Sequence
Classification Models

The Meta-LLaMA-3.1-8B-Instruct model was fine-
tuned using the Unsloth framework with 4-bit quan-
tization to enhance memory efficiency. A LoRA
configuration was applied to key projection layers,
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with moderate values for the rank and scaling pa-
rameters. The training dataset consisted of DNA
sequences and their associated resistant drug class
labels, organized in a system-user-assistant conver-
sational format and later converted to the Alpaca-
style instruction-following format. Each example
included instruction, input, and output fields, and
samples were padded with an end-of-sequence to-
ken. Training was conducted using the SFTTrainer
with mixed-precision enabled (fp16 or bf16), de-
pending on hardware availability. In addition, a
GPT-based model (gpt-40-mini-2024-07-18) was
customized using task-specific instruction exam-
ples via the OpenAl fine-tuning APIL.

C Finetuning of DNA Sequence
Generation Models

Three large language models (LLMs) were
fine-tuned for DNA sequence generation using
parameter-efficient fine-tuning (PEFT) with LoRA.
The dataset contained DNA input-output sequence
pairs, tokenized using model-specific tokeniz-
ers and padded using the end-of-sequence token.
LoRA configurations were adjusted for each model,
with common values for rank, scaling, and dropout,
and target modules selected based on the architec-
ture. Training was conducted for several epochs
with standard optimization settings.

The GENERator-eukaryote-3b-base model used
separate tokenization strategies for inputs and out-
puts, with padding tokens in the labels replaced by -
100. LoRA was applied to selected attention projec-
tions, and training used fp16 precision. The Llama-
3.2-1B model supported sequences up to 4096 to-
kens and followed a prompt format of "Input: <in-
put_sequence> Output: <output_sequence>", us-
ing bf16 precision and a memory-efficient opti-
mizer. The Gemma-3-1B-PT model followed a
similar formatting and applied LoRA to a subset of
projection layers, using float32 precision to ensure
stability. A GPT-based model (gpt-40-mini-2024-
07-18) was additionally adapted through OpenAl’s
fine-tuning API using domain-specific examples.

D Unclassified Rate

Additional gene information from the Blastn DB
search results was provided, performance improved
even without additional training on this data. As
seen in Table 3, the Unclassified Rate decreased
across all models. For the LLaMA 3.1 8B-4bit
quantized model, the rate dropped from 97% to

Model Unclassified Rate
LLama3.1 8B-4bit
(Base Model) 7%
LLama3.1 8B-4bit
(Blastn) 3%
LLama3.1 8B-4bit
. . 0%
(Finetuning)
Claude3.5sonet
(Base Model) 39%
Claude3.5sonet
(Blastn) 1%
Chatgpt4o-mini
(Base Model) 100%
Chatgpt4o-mini
(Blastn) 14%
Cha'tgpt4o'—m1n1 0%
(Finetuning)

Table 3: Model unclassified rates with long names dis-
played in two lines.

73% when using Blastn. For Claude 3.5 sonet,
it decreased from 39% to 11%. ChatGPT 4-mini
showed a sharp improvement, going from classi-
fying nothing to only leaving 14% unclassified.
When fine-tuning was applied, both the LLaMA
3.1 8B 4bit quantized model and ChatGPT 4-mini
reduced their unclassified rates to 0%.

E DNA Generation Dataset
Characteristics

Distribution of Genome Sequence Lengths
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Figure 1: Length distribution of the Acinetobacter bau-
mannii dataset.

Acinetobacter baumannii is a Gram-negative, op-
portunistic pathogen that poses a serious threat in
healthcare settings due to its ability to survive in di-
verse environments and its remarkable capacity for
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antibiotic resistance. This bacterium is known for
forming robust biofilms, which enhance its persis-
tence on medical equipment and hospital surfaces.
It exhibits resistance to multiple antibiotic classes,
including beta-lactams, aminoglycosides, and fluo-
roquinolones, primarily through mechanisms such
as enzymatic degradation (e.g., beta-lactamases),
efflux pumps, and target site modifications. Given
its clinical significance and growing prevalence in
multidrug-resistant infections, we collected 1,000
sequences of Acinetobacter baumannii using the
NCBI Entrez API for further analysis.

The dataset characteristics are summarized be-
low:

Sequence Statistic Length (bp)
Average sequence length 16,325.75
Median sequence length 1,033.50
Minimum sequence length 204

Maximum sequence length 1,210,760

Table 4: Statistics of the collected Acinetobacter bau-
mannii sequences

The length distribution of the dataset is shown
in Figure 1. The length distribution of the dataset
exhibits a wide range, spanning from 204 bp to
over 1.2 million bp, with a median length of ap-
proximately 1,033.50 bp. The substantial differ-
ence between the median and the mean (16,325.75
bp) suggests a right-skewed distribution, indicating
the presence of a small number of extremely long
sequences. Such distribution may impact down-
stream analysis, particularly in tasks such as se-
quence alignment or model training, where extreme
sequence lengths might introduce computational
challenges.

Additionally, the presence of very short se-
quences (minimum: 204 bp) suggests that prepro-
cessing steps such as length filtering or normal-
ization may be necessary to ensure consistency in
downstream analyses. A closer examination of the
length distribution (as illustrated in Figure 1) could
provide further insights into potential clustering
patterns or the need for stratified handling of differ-
ent length groups.
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